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Abstract
In machine learning, multiple instance learning is a method evolved from supervised learning algorithms, which defines a
“bag” as a collection of multiple examples with a wide range of applications. In this paper, we propose a novel deep multiple
instance learning model for medical image analysis, called triple-kernel gated attention-based multiple instance learning
with contrastive learning. It can be used to overcome the limitations of the existing multiple instance learning approaches
to medical image analysis. Our model consists of four steps. i) Extracting the representations by a simple convolutional
neural network using contrastive learning for training. ii) Using three different kernel functions to obtain the importance
of each instance from the entire image and forming an attention map. iii) Based on the attention map, aggregating the
entire image together by attention-based MIL pooling. iv) Feeding the results into the classifier for prediction. The results
on different datasets demonstrate that the proposed model outperforms state-of-the-art methods on binary and weakly
supervised classification tasks. It can provide more efficient classification results for various disease models and additional
explanatory information.

Keywords Deep learning · Multiple instance learning · Medical image analysis

1 Introduction

In machine learning, image classification typically assumes
that all images are labeled with different classes. However,
human pathological images may exhibit various disease
characteristics in actual medical procedures, so we cannot
simply assign a unique class to the whole image. This
typical problem is called multiple instance learning (MIL),
which was proposed by Dietterich et al. in 1997 [1]. It is
a learning problem with a bag with multiple instances as
the training unit. As most medical images have relatively
high resolution and weakly labeled small datasets, the MIL
method is a common method for medical image analysis
[2]. Several research has been conducted in which the MIL
method is applied to medical problems, such as drug activity
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prediction problem [1], dementia classification in brain MRI
[3], and computer-aided detection (CAD) [4].

In recent years, with the rapid development of deep
learning, the combination of MIL and neural network
models has become a development trend [5]. Xu et al.
first used a deep neural network as the feature extractor
with the MIL algorithm as the classifier for medical image
analysis [6]. Yousefi et al. proposed a framework to combine
the CNN-based MIL with random forest to improve the
performance for mass detection on breast data [7]. However,
these researches are more of an attempt to combine CNN
and MIL for medical image analysis that do not fully explain
the underlying logic. Ilse et al. presented an attention-based
strategy that improves the interpretability of MIL while
also enhancing its flexibility [8]. Since then, the study
of attention-based MIL has attracted much attention. Yao
et al. proposed attention-based deep MIL for whole slide
imaging classification [9]. In [10], an attention-based time-
incremental CNN was proposed for achieving both spatial
and temporal fusion of information from electrocardiogram
for multi-class detection. Han et al. extended the attention-
based deep MIL method to three-dimensional space for
accurate screening of COVID-19 [11]. However, both
methods require more data for their model training. In
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the case of some relatively rare disease, scarcity in the
data present a challenge to the research. Rymarczyk et al.
presented a kernel function on improving the performance
of attention-based deep MIL model on kinds of dataset [12].
However, the performance of their model is not stable with
a reasonable explanation.

1.1 Motivations

Although some of the studies mentioned above have
made significant progress in MIL methods, they all have
shortcomings. The motivation of this paper is to overcome
three existing limitations.

1. Diseased cells only occupy a part of the whole image
for medical images. For example, breast cancer cells in
the early stage usually cover less than five percent of the
entire mammogram, which leads to a high imbalance in
the proportion of examples in the positive bag, leading
to misclassification of these positive bags by the model.
In addition, the maximum pooling method is widely
used in deep learning, and its characteristic of retaining
only the largest value may lead to the lack of key
information. In addition, due to the small data size of
the medical image and under weak supervision, the
model easily loses key features due to overfitting issues.

2. The current models commonly extract features from
the given patch by CNN, such as ROI, because
training traditional windows sliding feature extractors
is very time-consuming and inefficient for high-
resolution medical images. However, this simplified
learning scheme may not obtain optimal features when
classifying medical images.

3. The training process of the deep learning model is
more like a black box, and the interpretation of the
intermediate process is not outstanding. However, due
to the particularity of medical images, doctors need
more information to support subsequent diagnoses
when using the model. Therefore, we need to explain
the intermediate process further.

1.2 Contributions

This paper proposes a novel deep MIL model for medical
image analysis called Triple-kernel Gated Attention-based
MIL with contrastive learning (TGA-MIL). It is used to
overcome the limitations of the existing MIL approach.
The model consists of four steps. First, extracting the
representations by a simple CNN model using contrastive
learning for training. Second, using three different kernel
functions to produce the importance of each instance from
the entire image and form an attention map. Third, the
attention map aggregates the entire image together by

attention-based MIL pooling. Finally, feeding the results to
the classifier for prediction. We use the TGA-MIL method
on MNIST, two classical MIL datasets, and various medical
image datasets, i.e., USBC breast cancer, colon cancer, and
DDSM dataset, to test and show that it can be used for
binary, multi-class, and weakly supervised classification
tasks. This paper makes the following key contributions:

1. We propose a general framework called TGA-MIL for
MIL problems, which combines three different kernels
to generate an attention map. Compared to state-of-the-
art models, the results show that TGA-MIL outperforms
other models in classification accuracy on different
datasets. Moreover, we use contrastive learning for
feature extraction in MIL. We successfully apply it to
the MIL problem in the medical field;

2. We propose a novel concatenation of the representations
from three kernels, i.e., Laplace (LA), Radial Basis
Function (RBF), and Inverse Multiquadric (IM), to
improve the representativeness of the features and
optimize the weight of the attention map, as well
as to improve the learning ability of the model
for the properties of input data, which is finally
manifested in the improvement of the classification
results on five different datasets. We show that
the concatenation of three different representations
outperforms the traditional method of using three
different representations as base learners for ensemble
learning; and

3. We apply and optimize the gate attention-based MIL,
and use the attention map in the model to interpret the
training process for medical image analysis.

2 Related work

2.1 Multiple instance learning

In machine learning, MIL is a method evolved from
supervised learning algorithms, which defines a “bag”
as a collection of multiple examples with a wide range
of applications [13]. Dietterich et al. completed one of
the seminal studies in this subject [1]. Typically, MIL-
based frameworks utilize either mean pooling or maximum
pooling, with the latter being the more common. Both
operators are non-trainable, which limits their capacity.
Although MIL pooling operators with global adaptive
parameters are widely used in many fields, their flexibility
is limited [13].

Over the last 20 years, MIL has been effectively used
in various areas, such as CAD [14], image classification
[15], image segmentation [16], image annotation [17],
object tracking [18], human action recognition [19], and
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interaction detection [20]. The challenge of diagnosing
chronic obstructive pulmonary disease using breast CT also
appears to have improved [21]. Jia et al. structured this goal
as a MIL issue and created a weakly labeled histopathology
image dataset to segment cancerous regions with weak
supervision [22]. Most research focuses on the bag-level
MIL scenario since building the instance-level classification
method requires the true label of an instance and considers
learning an optimal classification model for the target.

2.2 DeepMIL

Previous MIL research considered selected features to
represent instances, hence additional feature extraction was
unnecessary. However, new research into the use of fully-
connected neural networks in MIL suggests that it may still
be advantageous [23]. Similarly, combining MIL with deep
learning in computer vision enhances accuracy dramatically.
Kraus et al. devised a method for classifying and segmenting
microscope images using the Noisy-AND pooling function
that combines deep CNNs with MIL [24]. Zhou et al.
proposed using simply image-level annotation to diagnose
diabetic retinopathy using a MIL approach with AlexNet
[25]. However, in image classification, the reasonable use
of attention-based methods to combine deep learning with
MIL is more effective and illustrative [8].

2.3 Attention-basedMIL

The purpose of embedding attention processes into deep
learning is to mimic human brain activity by concentrating
on a few crucial regions. Attention is responsible for several
breakthroughs in natural language processing, notably the
Transformer architecture [26]. The attention-based deep
learning framework is a widely used embedding attention
scheme. Pappas et al. sought to employ a network instead
of a linear regression model to compute the attention
weights on instances [27]. Qi et al. sought to classify, and
segment point sets using the attention-based MIL operator
[28]. Ilse et al. proposed two kinds of attention-based MIL
operators to enhance the performance of neural networks
[8]. This proposal is shown to outperform the max and
mean operators. Furthermore, Han et al. proposed to apply
the attention technique to 3D data with automated instance
generation. All these studies motivate us to further research
attention-based MIL.

2.4 Contrastive learning

Contrastive learning [29] is a self-supervised learning
approach whose basic idea is to make base models perform
certain auxiliary tasks based on temporal correspondence
[30], and cross-modal consistency [31]. It achieves great

success and attention in the field of machine learning.
Contrastive representation learning has played a significant
role in natural language processing in the past two decades.
For example, in 2008, a two-class classification task with
contrastive representation learning [32], was successful in
determining whether and how the middle word of a context
window is related to its context. Moreover, the Bidirectional
Encoder Representation from Transformer (BERT) [26]
model utilizes contrastive learning to extract bidirectional
word representations with the Transformer architecture’s
decoder and distinguishes itself in multiple downstream
tasks with transfer learning. It demonstrates the unique
capability of contrastive learning to learn highly effective
representations of original images [29]. There are many
ways to construct auxiliary tasks with data augmentation,
e.g., rotation prediction [33] and automatic colorization
[34]. These auxiliary tasks are built to train new weights
of a base neural network to extract features efficiently. The
CT scan images of COVID-19 tend to be limited because
many CT scan datasets are not sharable due to privacy
concerns [35]. Besides, labeling images manually is time-
consuming and requires a lot of experience, making it
an uphill task. Because of this, a self-supervised learning
model is necessary in such cases. The application of self-
supervised learning can enable a base neural network to
learn feature representations more efficiently than those
without it, allowing the size of datasets to be significantly
increased by image augmentations. As a result, it can
save much time for researchers in annotating medical
image datasets. With the development of contrastive self-
supervised learning, there are now many popular methods,
e.g., Momentum Contrastive (MoCo) [36], and Simple
Framework of Contrastive Learning (SimCLR) [37]. MoCo
focuses on building a consistent dictionary to speed up the
learning process of contrastive learning. The SimCLR has
larger batch sizes and extensive data augmentation, further
facilitating the contrastive learning process [37]. Therefore,
to explore how contrastive learning can positively affect
medical image analysis, we attempt to apply this strategy to
our medical image classification task. Moreover, Chaitanya
et al. proposed a novel contrastive learning framework
by leveraging domain-specific and problem-specific cues
for medical image analysis [38]. They improved the
performance of contrastive learning in dense prediction
issues. Wu et al. proposed a new contrastive learning
framework with a shared model by federated learning for
medical image analysis [39]. The results showed that feature
exchanges could be used to improve the labeling efficiency
of medical images. Wang et al. sought to alleviate the
limited labeling issue on the medical image analysis, and
they proposed an uncertainty weighted integration method
incorporating contrastive learning to extract representations
[40]. Moreover, adversarial networks are also an alternative
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method to handle this issue. For example, Wang et al.
proposed a 3D auto-context-based locality adaptive multi-
modality generative adversarial networks for high quality
medical image analysis, and the results showed their method
could boost the training data with limited labels [41]. Luo
et al. proposed adaptive rectification adversarial networks
on this field [42]. In our research, we choose SimCLR to
learn representations without manual labels.

3Methodology

We propose a self-supervised image classification method.
The whole framework is given in Fig. 1. In this section,
to make this work clearer, we describe related background
formulas and introduce our model.

3.1 Multiple instance learning

The training set in MIL comprises multi-instance bags
with classification labels, with each bag containing some
instances without classification labels. A positive bag is
defined as having at least one positive instance in a multi-
instance bag. A negative bag is defined as having no positive
instance in a bag. Multiple instance learning aims to build
a multi-instance classifier by learning multi-instance bags
with classification labels and applying the classifier to

predict unknown multi-instance bags. The data unit of the
MIL data set is the bag. Taking the binary classification of
MIL as an example, we assume each instance as x ∈ χ

with a label y ∈ {0, 1} which is unknown to the learner. Let
B = {(x1, y1) , . . . , (xn, yn)} be a bag with label c(B) given
by

c(B) =
{

0, iff
∑

yi = 0
1, otherwise

(1)

This formula is only applicable in the case of using
instance-level classifiers with a given label. However, each
instance is a patch extracted from the original image in
medical images. In actual situations, there is no given label
for each instance. It is difficult to train a model that only
learns to optimize the target based on the largest instance
label in the real world. Since the labels of instances can be
unknown in a weakly supervised task, there is a problem
that the instance-level classifier may be undertrained. This
leads to an increase in the number of misclassified cases.

The most common MIL approach is the embedding-
based approach, which involves three steps in classifying
a bag of instances [8]. First, obtaining a function f to
extract the representations of instances. Second, designing
a symmetric function to combine transformed instances.
Finally, using a function g to modify combined instances.
However, this approach is usually difficult to obtain key
instances in improving the classification performance of

Fig. 1 The framework of our
TGA-MIL
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the classifier. In this regard, an additional instance-level
approach is introduced to provide an estimated score for
obtaining key instances.

3.2 Self-training the CNN feature extractor using
contrastive learning

Since MIL is a weakly supervised problem, we use self-
supervised contrastive learning to learn the feature extractor
f . Specifically, we consider SimCLR from [37], a state-
of-the-art self-supervised learning framework that learns
robust representations without manual labels. SimCLR is
a strategy whose auxiliary task mainly focuses on learning
the efficient representations depending on the optimization
of the reciprocal information between the extracted features
from different random image augmentations of a single
object. Our model considers image cropping, flipping,
and Gaussian noise as image augmentation methods.
The training process guarantees consistency between sub-
images from the same image. Feature extractors obtain the
representation of training samples for further classification
tasks.

3.3 Attention-basedMIL pooling

Ilse et al. presented kinds of MIL pooling inspired by the
instance-level approach to modify the existing embedding-
level approach [8]. Before introducing our innovation part,
we briefly describe the two schemes proposed in Ilse’s
article to illustrate our scheme better.

3.3.1 Attention pooling

Attention-based MIL is an embedding-based MIL approach.
It starts by mapping instances from a given bag X into a
low-dimensional space to obtain their embeddings H =
{h1, . . . ,hk} , hi ∈ R

M . It performs the following MIL
pooling to obtain a representation of the whole bag:

hbag =
k∑

i=1

aihi, (2)

where:

ak = exp
{
w� tanh

(
Vh�

k

)}
∑k

j=1 exp
{
w� tanh

(
Vh�

j

)} , (3)

where w ∈ R
L×1 and V ∈ R

L×M are parameters and
the tanh(·) is used to prevent the gradient from exploding.
This module can be used to obtain the similarity between
instances. Moreover, the sum of the attention weight ai is 1,
and a bigger weight means a more significant impact of the
instance on the classification.

3.3.2 Gated attention pooling

In addition, since tanh (x) is approximately linear at
x ∈ [−1, 1], its ability to learn complex relationships is
limited, leading to a decrease in the representativeness of
the extracted features. Therefore, Ilse et al. proposed to
additionally use the gating mechanism together with tanh(·)
non-linearity that yields [8]:

ak = exp
{
w� (

tanh
(
Vh�

k

) � sigm
(
Uh�

k

))}
∑K

j=1 exp
{
w�

(
tanh

(
Vh�

j

)
� sigm

(
Uh�

j

))} , (4)

where U ∈ R
L×M are parameters, � is an element-

wise multiplication and sigm(·) is the sigmoid function.
Compared with tanh(·), gated attention introduces nonlinear
characteristics to overcome the limitations of linear
equations.

The basic idea of attention-based MIL consists of four
steps. First, CNN is used to obtain representations from each
bag. Second, the attention or gated attention mechanism is
used to produce the attention weights by the representations.
Third, attention-based MIL pooling is used to obtain a
vector for each bag. Finally, fully-connected layers are used
to classify the vector for the results.

3.4 Gated attention-basedMIL using three kernels

Inspired by the successful use of kernel function in SVM,
Tsai et al. successfully applied an RBF-based formulation
for the attention mechanism in Transformer on translation
field [43]. Moreover, Kim et al. proposed LA kernel instead
of the dot product in the image processing field [44].
However, the instability of the results makes the overall
performance inferior to the dot product. Although they are
either not used in the image domain or the results are not
satisfactory, their concept makes us think that a different
kernel function can be used instead of the dot product in the
gated attention-based pooling, i.e., � in (4). In our study,
we use the previously described RBF and LA kernels, but
also discuss the IM kernel that is widely used in SVM. Their
formulas are as follows.

LA : k(v, u) = −‖v − u‖1 (5)

RBF : k(v, u) = exp

(
−‖v − u‖2

2

2σ 2

)
(6)

IM : k(v, u) = 1√‖v − u‖2 + c2
(7)

where σ and c are trainable parameters. RBF can
approximate any nonlinear function with arbitrary precision
and has global approximation capability. The convergence
speed is fast, and the learning generalization ability of
the corresponding attention map is improved. However,

20315Triple-kernel gated attention-based multiple instance learning with contrastive learning...



since the performance of RBF depends on the choice of
the center of the data points, it leads to the instability of
performance. LA kernel overcomes the limitations of the
central dependency issue in RBF kernel. However, because
it is a parameter-free kernel, we cannot fine-tune it during
the training process. IM kernel is an improved version
of RBF, which is used to neutralize the unstable nature
of RBF. In summary, dot-product attention displays non-
smooth predictions. We use triple kernels to help smooth out
the interpolations and combine their strengths to improve
the performance of our model.

We consider the instability of the kernel function in [44]
and the problem of the limited amount of medical image
data. Therefore, unlike (2), we concatenate and transpose ak

generated by the three kernels. Afterward, we concatenate
the three identical hk and feed them to gated attention-based
MIL pooling.

This method is similar to ensemble learning, so we
compare it to the typical stacking method in subsequent
comparative experiments, which combines data sets with
multiple base learners and generates a new meta-model
[45]. The specific process of stacking is used with 3 base
learners, i.e., gated attention-based MIL with RBF, IM, and
LA kernel, respectively.

4 Experiments

In our experiments, we evaluate the efficacy of our method
using many different datasets as follows. Five classical MIL
benchmark datasets, Musk1, Musk2, Fox, Tiger, Elephant
[1]; an MNIST-based image dataset [46]; three medical
datasets, USBC breast cancer [47], colon cancer [48], and
DDSM [49]. We employ a standard assessment approach,
10-fold cross-validation, and five repeats in Musk1, Musk2,
and the MNIST-based dataset to achieve a fair comparison.

For consistency on the DDSM, we use the same exper-
imental method from [50]. To compare the performance
between different methods, we use metrics which includes
the classification accuracy, precision, recall, F-score, and
AUC. For computations, our models are implemented into
Tensorflow and trained on the GTX1080Ti.

4.1 Musk1, Musk2, fox, tiger, and elephant

4.1.1 Experimental settings

In the first experiments, we will test our method against
other deep MIL methods on five classical benchmark
datasets, i.e., Musk1, Musk2, Fox, Tiger, and Elephant.
Musk1 and Musk2 are used to identify whether a medication
molecule will attach to a target protein. A positive molecule
has at least one form that can bind well, whereas a negative
molecule has no shapes that can bind well. In MIL contexts,
this problem may be expressed fairly naturally: each
molecule would be a bag, and the possible conformations
would be instances in that bag [1]. Fox, Tiger, and
Elephant contain features extracted from corresponding
animal images. These datasets are made up of extracted
feature vectors from instances and do not need the learning
of a feature extractor. Because the characteristics have
already been established, the experiment involves directly
feeding the feature to three kernel functions for predicting
attention maps without contrastive learning.

4.1.2 Results

Experiments are repeated five times, each using 10-fold
cross-validation to compare our TGA-MIL to other current
designs on the MIL issue, as given in Table 1. The results
show that our TGA-MIL surpasses the state-of-the-art
models on four datasets except for Fox. Meanwhile, on the

Table 1 Results on classical MIL datasets

Methods Musk1 Musk2 Fox Tiger Elephant

mi-Net [51] 0.889 ± 0.039 0.858 ± 0.049 0.613 ± 0.035 0.824 ± 0.034 0.858 ± 0.037

MI-Net [51] 0.887 ± 0.041 0.859 ± 0.046 0.622 ± 0.038 0.830 ± 0.032 0.862 ± 0.034

MI-Net with DS [51] 0.894 ± 0.042 0.874 ± 0.043 0.630 ± 0.037 0.845 ± 0.039 0.872 ± 0.032

MI-Net with RC [51] 0.898 ± 0.043 0.873 ± 0.044 0.619 ± 0.047 0.836 ± 0.037 0.873 ± 0.044

Attention [8] 0.892 ± 0.040 0.858 ± 0.048 0.615 ± 0.043 0.839 ± 0.022 0.868 ± 0.022

Gated Attention [8] 0.900 ± 0.050 0.863 ± 0.042 0.603 ± 0.029 0.845 ± 0.018 0.857 ± 0.027

mi-Net Attention [52] 0.900 ± 0.063 0.870 ± 0.048 0.630 ± 0.026 0.845 ± 0.028 0.865 ± 0.024

ELDB [53] 0.902 ± 0.016 0.857 ± 0.039 0.648 ± 0.014 0.767 ± 0.013 0.843 ± 0.012

TGA-MIL (ours) 0.910 ± 0.033 0.881 ± 0.040 0.628 ± 0.020 0.846 ± 0.015 0.875 ± 0.020

Experiments were repeated five times, with the average classification accuracy (±standard error) provided. The best results for each dataset are
highlighted in bold
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Fig. 2 Sample images that are
easily misclassified (a) “9”, (b)
“7”, (c) “4”

Fox dataset, our TGA-MIL also obtains the fourth-highest
results. This shows that our method is more efficient.

4.2 MINST-based dataset

4.2.1 Experimental settings

Representations in the classical MIL benchmark datasets
have been pre-extracted, so there are limitations in the
measurement of classification performance. To demonstrate
the capacity of our approach in an experiment that is both
classical and more challenging, we turn our attention to
the MNIST dataset in the second experiment. To fairly
compare the capabilities of our TGA-MIL method with the
original attention-based MIL methods, we carry out the
same processing as [8] on the MNIST dataset. As shown in
Fig. 2, the MNIST dataset is easy to misclassify the images
of “9”, “7”, and “4”. A bag is created by selecting a random
number of 28 × 28 grayscale images from the MNIST
dataset. We define positive bag to be one that contains at
least one image “9”. In the test set, we use a fixed number of
100 bags. For comparison, we follow the CNN architecture
according to [8], called LeNet 5 without contrastive learning
[54]. The optimal hyperparameters are given in Table 2.
We also apply data augmentation, e.g., random rotations,
random cropping, and horizontal and vertical flipping. In the
experiments, we design a random positive number with 10
as the mean and 1 as the variance for each bag. The integer
closest to this random number is the number of instances in
the bag. Besides, we use varying numbers of training bags,
i.e., 50, 100, 150, 200, 250, 300. Using these settings, we
test how varying the number of training bags and instances
will affect MIL models. Since our training data is randomly
selected, it is easy to produce a high degree of imbalance
between positive and negative samples. Therefore, in this

experiment, we only use AUC, which is less sensitive to the
imbalance of positive and negative samples, to compare the
classification performance between different models.

4.2.2 Results

The results of AUC for MNIST-based dataset are presented
in Fig. 3 and Table 3. The findings of the experiment are
given as follows,

1. When the number of training sets is small (only 50
bags), the stability of all methods is relatively low (the
variance is the largest). Our method increases the num-
ber and stability of representations through different
kernels, which increases the AUC performance by at
least 2% compared to other methods and significantly
reduces the variance;

2. When the number of data set is moderate (100 and 150),
our method does not obtain the best AUC results, but
the gap with the best method is about 0.5%;

3. When the number of data sets is relatively large (200,
250, and 300 bags), the performance of all methods
on the MNIST-based dataset tends to be stable, and
the results are close. This is because the data set
is relatively basic and not challenging. However, our
method can further improve the maximum performance
of the original method through three different kernels
and obtain the highest AUC; and

4. Figure 4 gives the difference between our TGA-MIL
and the attention weights generated by attention-based
MIL and gated attention-based MIL. We can obtain
that when “4”, “7”, “9” appears simultaneously in our
method, the attention weights corresponding to “9” are
enlarged, while the attention weights corresponding to
“4” and “7” are relatively reduced. When there are only

Table 2 The hyperparameters for MNIST-based dataset

Optimizer β1, β2 Learning rate Maximum of Epochs Selection criteria

Adam 0.9,0.999 0.0001 50 lowest loss
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Fig. 3 Results for MNIST-based
dataset with different number of
training bags

“7”, its corresponding attention weights are still stable
and will not be ignored by the model.

4.3 USBC breast cancer and colon cancer datasets

4.3.1 Experimental settings

The automatic identification of malignant areas in entire
images stained with Hematoxylin and Eosin (H&E) is a
popular research task. Current supervised methods utilize
pixel-level annotations [55]. However, the preparation of
large amounts of H&E data requires pathologists to spend
much time, which is difficult to achieve in real life. Therefore,
solutions using WSI will reduce the workload of patholo-
gists. In this experiment, we test our method in classifying
two weakly-labeled histopathology images of the breast
cancer dataset from USBC [47] and the colon cancer dataset
[48]. The description of each dataset is given as follows:

The USBC breast cancer dataset contains 58 H&E
images with weakly labels, each measuring 896 × 768.
If a photo contains breast cancer cells, it is classified as
malignant; otherwise, it is classified as benign. Every
image is divided into 32 × 32 patches and 672 patches
per bag. We remove the patch which has 75% or more
white pixels.
Colon cancer dataset contains 100 H&E images. The
images are derived from various tissue appearances in
both normal and cancerous areas. The majority of nuclei
in each cell were indicated in each picture. There are
four classes of nuclei in the dataset, including epithelial,
inflammatory, fibroblast, and miscellaneous nuclei. A
bag consists of patches with the resolution of 27 × 27.
Furthermore, epithelial cell tagging is important from
a therapeutic standpoint since epithelial cells are the
source of colon cancer. Therefore, if a bag includes one
or more epithelial nuclei, it is assigned a positive label.

Table 3 MNIST-based dataset with a different number of training bags

Number of Training bags 50 100 150 200 250 300

Max-pooling 0.531 ± 0.063 0.701 ± 0.092 0.940 ± 0.003 0.957 ± 0.001 0.970 ± 0.001 0.972 ± 0.001

Mean-pooling 0.611 ± 0.053 0.627 ± 0.083 0.925 ± 0.007 0.964 ± 0.004 0.969 ± 0.001 0.970 ± 0.001

Attention [8] 0.727 ± 0.043 0.901 ± 0.005 0.955 ± 0.006 0.970 ± 0.002 0.969 ± 0.001 0.976 ± 0.001

Gated Attention [8] 0.733 ± 0.041 0.906 ± 0.008 0.945 ± 0.001 0.974 ± 0.002 0.977 ± 0.001 0.975 ± 0.002

TGA-MIL (ours) 0.753 ± 0.034 0.900 ± 0.020 0.950 ± 0.001 0.975 ± 0.001 0.980 ± 0.002 0.983 ± 0.002

Experiments were repeated five times, with the average AUC (±standard error) provided. The best results for different numbers of training bags
are highlighted in bold
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Fig. 4 Examples of different models with corresponding attention weights and prediction labels with 300 bags

We train the model weights on both datasets using the
Adam optimizer with a constant learning rate of 0.0001.
For MIL model training, a mini-batch size of 1 is used.
SimCLR is used to train the feature extractor using patches
derived from the training sets of the datasets. We utilize the
Adam optimizer for SimCLR, with a min-batch size of 128
and an initial learning rate of 0.0001. ResNet is the CNN
backbone used in MIL models and SimCLR. Specifically,
for SimCLR, we use data augmentations, including random

Table 4 The description of abbreviations with corresponding experi-
mental design

Abbreviations Experimental design

GA-RBF Gated attention-based MIL with RBF kernel

GA-IM Gated attention-based MIL with IM kernel

GA-LA Gated attention-based MIL with LA kernel

S-AGR Stacking with attention, gated attention and GA-RBF

S-AGI Stacking with attention, gated attention and GA-IM

S-AGL Stacking with attention, gated attention and GA-LA

S-RIL Stacking with GA-RBF, GA-IM, and GA-LA

cropping, horizontal/vertical flipping, and random zoom.
Warmup, fine-tuning, and end-to-end training take 60, 20,
and 20 epochs, respectively. 10-fold cross-validation with
one validation fold and one test fold is repeated five
times. We have designed several experimental models with
corresponding abbreviations for comparisons, as given in
Table 4.

4.3.2 Results

We present results in Tables 5 and 6 for USBC breast and
colon cancer, respectively. The findings of two histological
datasets are as follows,

1. Our method achieves the highest value in comparing
the five metrics of the two data sets, especially for
the two most important indicators for medical images,
i.e., accuracy, and recall. These two indicators fully
demonstrate that our algorithm can still achieve higher
performance than other algorithms on classical MIL
datasets and data in the medical field;

2. We achieve at least 1.0% improvement in classification
accuracy compared to the baseline method on the
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Table 5 Results on USBC breast cancer dataset

Methods Accuracy Precision Recall F-score AUC

Max-pooling 0.609 ± 0.018 0.594 ± 0.021 0.449 ± 0.097 0.516 ± 0.063 0.608 ± 0.028

Mean-pooling 0.738 ± 0.021 0.730 ± 0.021 0.661 ± 0.051 0.659 ± 0.027 0.806 ± 0.008

Attention [8] 0.738 ± 0.019 0.711 ± 0.020 0.728 ± 0.037 0.700 ± 0.030 0.785 ± 0.019

Gated Attention [8] 0.747 ± 0.016 0.719 ± 0.015 0.730 ± 0.022 0.718 ± 0.020 0.793 ± 0.023

mi-Net Attention [52] 0.750 ± 0.020 0.722 ± 0.020 0.725 ± 0.020 0.711 ± 0.022 0.790 ± 0.030

ELDB [53] 0.760 ± 0.018 0.720 ± 0.018 0.735 ± 0.029 0.721 ± 0.032 0.800 ± 0.028

GA-RBF 0.751 ± 0.014 0.716 ± 0.012 0.748 ± 0.021 0.725 ± 0.018 0.793 ± 0.020

GA-IM 0.749 ± 0.013 0.729 ± 0.013 0.743 ± 0.023 0.721 ± 0.019 0.779 ± 0.020

GA-LA 0.737 ± 0.018 0.731 ± 0.020 0.747 ± 0.020 0.712 ± 0.021 0.768 ± 0.025

S-AGR 0.757 ± 0.014 0.740 ± 0.014 0.760 ± 0.020 0.721 ± 0.018 0.801 ± 0.017

S-AGI 0.758 ± 0.013 0.742 ± 0.011 0.750 ± 0.015 0.732 ± 0.018 0.823 ± 0.020

S-AGL 0.756 ± 0.013 0.725 ± 0.017 0.758 ± 0.012 0.725 ± 0.017 0.813 ± 0.020

S-RIL 0.764 ± 0.011 0.758 ± 0.015 0.763 ± 0.010 0.737 ± 0.009 0.840 ± 0.009

TGA-MIL (ours) 0.770 ± 0.010 0.756 ± 0.011 0.768 ± 0.008 0.742 ± 0.018 0.831 ± 0.007

Experiments were repeated five times, with the average (±standard error) provided. The abbreviations in the table have been described in Table 4.
The best results for each metric are highlighted in bold

USBC breast cancer. In addition, compared to the
other experimental group we designed, at least an
improvement of 0.6% is achieved. In the comparative
experiment, one kernel function is improved by about
1% relative to the baseline model. This is enough
to demonstrate that the kernel function in our design
is conducive to improving the selection effect of the
attention map, and the participation of SimCLR and
concatenation methods has better performance than the
general stacking method; and

3. The localization performance indicates the capability
of different models to delineate positive instances.
Heat maps of different models from the USBC breast
dataset are illustrated in Fig. 5. It can be seen in
the figure that compared to the two baseline methods,
the heat map generated by our TGA-MIL increases
the weights of the corresponding instances in the
ground truth and significantly reduces the weights
corresponding to the external non-key instances. It is
sufficient to demonstrate that our model can enable

Table 6 Results on colon cancer dataset

Methods Accuracy Precision Recall F-score AUC

Max-pooling 0.810 ± 0.013 0.870 ± 0.014 0.783 ± 0.019 0.821 ± 0.019 0.910 ± 0.009

Mean-pooling 0.832 ± 0.012 0.867 ± 0.011 0.754 ± 0.030 0.813 ± 0.015 0.902 ± 0.008

Attention [8] 0.900 ± 0.009 0.946 ± 0.013 0.851 ± 0.009 0.902 ± 0.010 0.959 ± 0.008

Gated Attention [8] 0.890 ± 0.010 0.950 ± 0.015 0.840 ± 0.029 0.899 ± 0.022 0.955 ± 0.009

mi-Net Attention [52] 0.900 ± 0.015 0.952 ± 0.011 0.850 ± 0.035 0.870 ± 0.025 0.951 ± 0.015

ELDB [53] 0.915 ± 0.012 0.951 ± 0.010 0.855 ± 0.027 0.878 ± 0.025 0.978 ± 0.010

GA-RBF 0.894 ± 0.012 0.914 ± 0.010 0.825 ± 0.026 0.871 ± 0.017 0.963 ± 0.007

GA-IM 0.902 ± 0.010 0.917 ± 0.008 0.807 ± 0.023 0.892 ± 0.014 0.969 ± 0.008

GA-LA 0.872 ± 0.009 0.920 ± 0.009 0.786 ± 0.030 0.792 ± 0.035 0.953 ± 0.021

S-AGR 0.906 ± 0.008 0.944 ± 0.008 0.832 ± 0.015 0.887 ± 0.012 0.972 ± 0.010

S-AGI 0.902 ± 0.007 0.924 ± 0.010 0.867 ± 0.014 0.877 ± 0.011 0.973 ± 0.008

S-AGL 0.886 ± 0.008 0.923 ± 0.007 0.794 ± 0.026 0.813 ± 0.012 0.965 ± 0.015

S-RIL 0.915 ± 0.009 0.938 ± 0.013 0.865 ± 0.010 0.876 ± 0.012 0.978 ± 0.007

TGA-MIL (ours) 0.927 ± 0.010 0.955 ± 0.015 0.881 ± 0.018 0.886 ± 0.018 0.983 ± 0.009

Experiments were repeated five times, with the average (±standard error) provided. The abbreviations in the table have been described in Table 4.
The best results for each metric are highlighted in bold

20320 H. Hu et al.



Fig. 5 An example of different
methods generates a heat map
comparison based on the
attention map for USBC breast
cancer dataset. Note that the
attention weight is normalized
to [0,1] and multiplied by each
instance to produce the
corresponding heat map. (a)
Original image from USBC
breast cancer dataset, (b)
Ground truth instances from
given labels, (c) Heat map from
attention-based MIL, (d) Heat
map from gate attention-based
MIL, (e) Heat map from
TGA-MIL

the model to pay more attention to the key instances,
learn more realistic and effective representations, and
improve classification performance. This approach
is very conducive to reducing the number of false
negatives and can also be used to explain why our
method achieves the highest recall.

4.3.3 Ablation study

In our ablation study, we study the impact of using
different numbers of kernels on the performance of these
two datasets. As Table 7 demonstrates, the performance
of three kernels outperforms others on three metrics, i.e.,
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Table 7 Ablation study on USBC breast cancer dataset

Methods Accuracy Precision Recall F-score AUC

k = 1 (RBF) 0.751 ± 0.014 0.716 ± 0.012 0.748 ± 0.021 0.725 ± 0.018 0.793 ± 0.020

k = 1 (IM) 0.749 ± 0.013 0.729 ± 0.013 0.743 ± 0.023 0.721 ± 0.019 0.779 ± 0.020

k = 1 (LA) 0.737 ± 0.018 0.731 ± 0.020 0.747 ± 0.020 0.712 ± 0.021 0.768 ± 0.025

k = 2 (RBF+IM) 0.762 ± 0.021 0.751 ± 0.020 0.755 ± 0.030 0.738 ± 0.027 0.829 ± 0.030

k = 2 (IM+LA) 0.758 ± 0.020 0.759 ± 0.019 0.745 ± 0.021 0.743 ± 0.022 0.819 ± 0.023

k = 2 (RBF+LA) 0.765 ± 0.024 0.760 ± 0.024 0.757 ± 0.030 0.741 ± 0.025 0.808 ± 0.010

k =3 (RBF+IM+LA) 0.770 ± 0.010 0.756 ± 0.011 0.768 ± 0.008 0.742 ± 0.018 0.831 ± 0.007

Experiments were repeated five times, with the average (±standard error) provided. k stands for the number of kernels with their names in
parentheses. The best results for each metric are highlighted in bold

accuracy, F-score, and AUC. Meanwhile, all metrics on
three kernels obtain the lowest standard errors. Therefore,
three kernels are the most stable model with the best
performance. In Table 8, the model of three kernels
performs best on all metrics. As such, it is the most suitable
model.

4.4 DDSM

4.4.1 Experimental settings

In this experiment, we use a public dataset called DDSM
[49]. This public dataset consists of 2620 digitized film-
screen screening mammograms with pixel-level ground
truth annotation for tumors [49]. Each mammogram includes
two standard projections, the CC view and the mediolateral
oblique MLO view, along with localization information.
Specialists supplied the localization information stored in
DDSM. We use the mammogram images from Lumisys
scanner, which has the highest resolution in DDSM as our
whole dataset. The subset of DDSM has 666 images in the
benign class and 657 images in the malignant class [50]. In

the experiment, without cross-validation, we randomly split
the whole dataset into a training set, a validation set, and
a test set according to proportions of 80%, 10%, and 10%,
respectively. For this experiment, each image from DDSM
is cropped into 224 × 224 instances without overlapping to
form a bag. The hyperparameters of base model are given in
Table 9. The SimCLR is also used for our TGA-MIL with
the initial parameters for feature extraction by pre-trained
on ImageNet.

4.4.2 Results

The sensitivity of each method is given in Table 10.
It is not difficult to see that the previous algorithm
has been outdated. Compared to the previously proposed
model, the original two attention-based MIL algorithms
or our newly proposed TGA-MIL algorithm have made
considerable progress. Even if the previous algorithm
label is instance-based, and we only have a bag-based
label, our new algorithm still increases sensitivity by
1.1%. Moreover, unlike previous algorithms, TGA-MIL can
provide more attention to the key instances for the model,

Table 8 Results on colon cancer dataset

Methods accuracy Precision Recall F-score AUC

k =1 (RBF) 0.894 ± 0.012 0.914 ± 0.010 0.825 ± 0.026 0.871 ± 0.017 0.963 ± 0.007

k =1 (IM) 0.902 ± 0.010 0.917 ± 0.008 0.807 ± 0.023 0.892 ± 0.014 0.969 ± 0.008

k =1 (LA) 0.872 ± 0.009 0.920 ± 0.009 0.786 ± 0.030 0.792 ± 0.035 0.953 ± 0.021

k =2 (RBF+IM) 0.889 ± 0.020 0.907 ± 0.021 0.842 ± 0.030 0.860 ± 0.023 0.955 ± 0.012

k =2 (IM+LA) 0.920 ± 0.015 0.945 ± 0.015 0.865 ± 0.021 0.882 ± 0.015 0.976 ± 0.014

k =2 (RBF+LA) 0.918 ± 0.008 0.937 ± 0.004 0.879 ± 0.023 0.872 ± 0.030 0.957 ± 0.017

k =3 (RBF+IM+LA) 0.927 ± 0.010 0.955 ± 0.015 0.881 ± 0.018 0.886 ± 0.018 0.983 ± 0.009

Experiments were repeated five times, with the average (±standard error) provided

20322 H. Hu et al.



Table 9 The hyperparameters for DDSM dataset

Optimizer β1, β2 Learning rate Maximum of Epochs Batch size

Adam 0.9,0.999 0.0001 50 1 (bag)

thereby reducing the time consumption while improving the
performance of the algorithm in the sliding window method.
In Fig. 6, we can see that the external boundary can be
ignored without manually removing the black instance, and
the areas that may have cancerous cells are automatically
highlighted.

5 Conclusions and future work

This paper presents a novel MIL approach for medical
image analysis, called triple-kernel gated attention-based
multiple instance learning with contrastive learning (TGA-
MIL). In contrast to gated attention-based MIL approach,
it uses SimCLR for initial CNN parameters instead
of being pre-trained from ImageNet and concatenating
three different kernels, LA, RBF, and IM, for extracting
representations. The experiments on nine datasets (Musk1,
Musk2, Fox, Tiger, Elephant, MNIST-based dataset, USBC
breast cancer dataset, colon cancer dataset, DDSM dataset)
confirm that our method is on par or outperforms the current
state-of-the-art methodology based on various metrics. In
contrast, our method uses the attention map to focus on
more representative parts, thus solving the problem of
insufficient labels. This overcomes the limitation that the
whole image cannot be used as input data. Also, the

Table 10 The overall detection performance (malignant vs. benign) of
our method and other state-of-the-art methods

Algorithms Sensitivity

K-means and SVM [56] 83%

Cascaded Deep Learning and Random Forests [57] 77.2%

ANN [58] 75.9%

Feed Forward Neural Network [59] 74.6%

Extreme Learning Machine [60] 81.8%

Faster-RCNN [61] 71.2%

CNN-based Framework [50] 85.2%

Attention [8] 86.2%

Gated Attention [8] 86.4%

mi-Net Attention [52] 86.7%

ELDB [53] 85.8%

TGA-MIL (ours) 87.8%

The best result is highlighted in bold

performance using the whole image is close to that of
using only the ROI, which illustrates the practicality of
our method. Finally, unlike previous algorithms such as
black boxes, TGA-MIL can provide more attention to
the key instances for the model, thereby reducing the
time consumption while improving the performance of the
algorithm in the sliding window method.

Future research can be carried out in two aspects. First,
we applied the method of contrastive learning to perform
self-supervised learning to overcome the adverse effects of
unlabeled instances. However, we directly use the SimCLR
method in this part. In the future, we will design contrastive
learning that is more in line with medical images to replace
SimCLR and improve the practicality of the model in the
medical field. Second, we use the heat map generated
according to the attention weight to explain which parts
of the model will be more concentrated when used to
understand the progress of the model. However, for medical
images, this may be further developed, such as how the
representation generated by the feature extractor affects
the subsequent formation so that the doctor can better

Fig. 6 An example of DDSM dataset with corresponding heat map
by our TGA-MIL. Note that the attention weight is normalized to
[0,1] and multiplied by each instance for producing the correspond
heat map. (a) Original image from DDSM dataset, the ground truth is
surrounded by the red circle, (b) Heat map from TGA-MIL

20323Triple-kernel gated attention-based multiple instance learning with contrastive learning...



understand the internal mechanism of the model when using
it.
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5. Dimitriou N, Arandjelović O., Caie PD (2019) Deep learning for
whole slide image analysis: an overview. Front Med 6:264

6. Xu Y, Mo T, Feng Q, Zhong P, Lai M, Eric I, Chang C (2014)
Deep learning of feature representation with multiple instance
learning for medical image analysis. In: 2014 IEEE international
conference on acoustics, speech and signal processing (ICASSP).
IEEE, pp 1626–1630
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