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ABSTRACT A high number of research work is being carried out in the field of DC-DC converters

to improve the performance of microgrid operation. The DC microgrid has a high level of acceptance

because of the integration of renewable energy sources. In DC Microgrid, there is a need for improved

DC-DC converter topologies which offer high gain, small size, enhanced efficiency, reduced voltage

stress and reduced component count etc. A new Triple-Mode Active-Passive Parallel Intermediate Links

(TM-A2P-IL) converter is proposed in the paper. The A2P-IL is designed by a combination of an inductor,

capacitor, diode, and control switch. The proposed converter is derived by inserting A2P-IL in conventional

boost converter. The proposed TM-A2P-IL converter operates in three modes and provides a high voltage

gain without using a transformer, voltage multiplier stages, coupled inductor, switched inductor/capacitor

circuitry. The other benefits of the proposed TM-A2P-IL converters are flexibility in the selection of duty

cycles, reduced voltage stress of devices, small reactive components, single-stage power conversion. The

proposed converter circuit, operating principle, steady-state analysis is studied for both CCM and DCM,

discussed. The comparison between available similar type converters and the proposed converter is provided.

The operation and performance of the proposed A2P-IL converter are validated through simulation and

experimental work.

INDEX TERMS Active-passive links, boost converter, DC microgrid, high voltage gain, parallel

intermediate links, reduced voltage stress.

I. INTRODUCTION

Renewable Energy Sources (RES) are increasingly replacing

conventional and fossil fuels because of their depleting nature

and contribution to global warming. The solar power is found

abundantly in nature; hence, PV power is seen as a welcome

revolution. This has given rise to the evolution of microgrid,

The associate editor coordinating the review of this manuscript and

approving it for publication was Eklas Hossain .

which consists of different Distributed Energy Resources

(DER) and interconnected loads with established control

entity to manage the network [1], [2]. Fig. 1 shows the typical

structure of DC microgrid. There is also seen an increased

number of loads operating on DC power.

With the PV power generating DC output and loads oper-

ating on DC power, DC microgrid has caught the attention of

various governments, academicians and researchers [3], [4].

DC output power converter with high efficiency and high
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FIGURE 1. General 400V DC Microgrid system.

voltage gain is necessary to integrate renewable into a micro-

grid. The DC-DC converters can be classified into isolated

and non-isolated converters [5]. The isolated converter uses

a transformer and coupled inductors where voltage gain

depends on turns ratio or coupling factor. However, there are

many disadvantages include leakage inductance resulting in

voltage spikes, increased converter’s inductance value with

an increase in voltage gain.

The cost of the transformer also puts an additional burden

on the total cost of the converter [6], [7]. The coupled

inductors-based converter offers a higher gain with an

increase in the coupling factor. This provides proper voltage

regulation, but the leakage inductance has its adverse effect

on switch voltage stress and additionally clamp circuitry is

required for these converters [8], [9]. On the other hand,

there are many benefits to employing a non-isolated con-

verter. With the elimination of the transformer, it reduces the

cost and size of the converter [10], [11]. This also makes

the converter circuit simpler in topology. A conventional

boost converter is the most basic form of the step-up con-

verter, but it encounters the diode reverse recovery problem

when converter operates at a high duty cycle to achieve

high voltage gain. The conventional boost converters, when

operated under extreme duty ratio, do not provide the suf-

ficient duration of time to transfer the energy stored in

the inductor to the capacitor. The other drawbacks of the

classical boost converter are reduced efficiency at a higher

duty cycle, voltage stress across devices, high input current

rating, electromagnetic interference, reverse recovery of the

diode, low efficiency at a higher duty cycle, etc. [12], [13].

The quadratic boost converters offer high voltage gain by

using two stages of classical converters. However, required

higher rating devices and reactive components, the problem

of reverse recovery with the diodes persist and also require

accurate control because of non-linear voltage gain [14], [15].

The cascaded boost converters employ to increase the gain

to the required level. However, this comes at the cost of an

increased number of components which makes the circuit

expensive, complicated and bulky [16], [17].

Moreover, the rating of components and devices are

increasing with the number of cascaded stages. The

interleaved boost converter topologies offer reduced input

current ripples. However, the voltage gain of this topology is

similar to a conventional boost converter [18].

Recently, the interleaved structure is used along with

diode-capacitor stages to attain higher voltage gain.

Nevertheless, these converters required a large number of

diode and capacitors at the output side [19]–[22]. The

Switched Capacitor (SC) type converter presents a more

straightforward structure with reduced voltage stress across

switches. However, these structures have low efficiency and

required a large number of power devices and capacitors,

and mainly suitable for low power application [23], [24].

The conventional converters could be integrated with volt-

age multiplier cells to increase the gain and reduces the

maximum voltage across the switches. However, the power

handling capability is limited, and the circuit is complicated

due to the requirement of a large number of diode-capacitor

multiplier stages [25]–[28]. The concept of voltage lift is

used in the converter presented in [29], [30]. The converter

is relatively simple in structure with minimum switches

resulting in reduced cost. It also offers the least possible

voltage ripple and high efficiency. Charging the inductor in

parallel and discharging the inductor in series is a usual way

to improve the voltage gain [31], [32]. In [33], voltage gain

is slightly improved by using two switches and additional

diode and capacitor circuitry. In [34]–[36], two different

duty cycles are used to achieve a higher voltage gain. The

converter is a non-isolated version and suitable for microgrid

application. However, the voltage gain is not significantly

improved, even using three switches and switched inductor

technique. A higher voltage gain is possible with the use

of active-passive inductor cells [37]. Active-passive inductor

cells are integrated to increase the voltage gain. The inductor

cells are replaced by switched inductor cells to increase the

voltage gain [38]. However, this converter is operated with

a single duty cycle, and the efficiency is severely affected

because of repeated loops of energy transfer within the

converter circuit. Moreover, the power circuitry required a

high number of diodes and inductors, which increases the

cost and size of the converter.

The proposed Triple-Mode Active-Passive Parallel

Intermediate Links (TM-A2P-IL) converter is useful to

overcome the drawbacks above. The TM-A2P-IL converter

derived by inserting parallel A2P-IL in classical boost con-

verter to achieve a high voltage gain. Moreover, the two-duty

cycle control possible for the proposed converter, which

provides flexibility in the selection of duty cycles for control

switches. The proposed converter does not use any voltage

multiplier circuit, switched capacitor units, switched inductor

units, and transformers. The A2P-IL converter is modular and

scalable to any number of stages. The proposed converter is

offered a solution to achieve high voltage gain with flexibility

in the selection of duty cycle for DC microgrid applica-

tions. The organization of the paper is described as follows:

Section II deals with the primary circuit of the proposed

A2P-IL converter, CCM and DCM characteristics wave-

forms, and voltage gain analysis. The design equations and
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FIGURE 2. Power circuit of TM-A2P-IL converter.

comparison are presented in Section III. The simulation and

experimental results are presented with suitable discussion in

Section IV. At last, the conclusion is given in Section V.

II. TRIPLE-MODE ACTIVE-PASSIVE PARALLEL

INTERMEDIATE LINKS (TM-A2P-IL) CONVERTER

A. POWER CIRCUIT OF TM-A2P-IL CONVERTER

The circuit diagram of the proposed TM-A2P-IL converter

is shown in Fig. 2. The proposed TM-A2P-IL converter is

derived by modification in the power circuit of the con-

ventional boost converter. The conventional boost converter

consists of a switch (S), inductor (L), the diode (D) and

capacitor (C). The modification is carried out by inserting a

set of n parallel legs within the conventional boost converter,

as shown in Fig. 2. Each A2P-IL consists of a closed circuit

consisting of an inductor, a capacitor, and a diode with the

addition of a control switch over the top. To obtain flexibility

in duty cycle and high voltage gain, a unidirectional switch

So is added together with the diode Do in series with it. Ideal

switch, inductors and capacitors are considered to explain the

operation of the proposed TM-A2P-IL converter. It is also

assumed that the switches S, S1, . . . , and Sn are operated with

a duty cycle of q1, while the switch So is operated with the

duty cycle of q2. The addition of duty cycles q1 + q2 is kept

at less than unity, i.e. q1+q2 < 1. It is also to be noted that the

switch So is operated after turned off the remaining switches.

Hence, the delay time of switch So is q1T , where T is the total

time period.

B. CONTINUOUS CONDUCTION MODE

The waveform of the TM-A2P-IL converter during CCM

is shown in Fig. 3. The proposed converter performs three

modes of operation as explain as follows,

1) IST MODE OF OPERATION (Time T0 TO Ta)

Fig. 4(a) presents the circuit diagram for the I st mode of

operation. Gate pulses are provided to the switches S, S1,

S2 . . . , and Sn, while the switch So is turn OFF with the gate

pulse. During this mode, the inductors (L, L1, L2 . . . , and Ln)

and capacitors (C1,C2 . . . , andCn) are charged by the voltage

source vin. The diode D is reverse biased and diodes (D1,

D2 . . . , and Dn) are forward biased. Therefore, all the induc-

tors and capacitors of A2P-IL legs are charged in parallel. The

voltages across inductors L, L1, L2 . . . , and Ln are obtained as,

vL , vL1, vL2 . . . , vLn} ≈ Vin (1)

where Vin is the average input voltage. The voltage across

capacitors C , C1, C2 . . . , and Cn are obtained as,

vC1, vC2 . . . , vCn} ≈ Vin; vC ≈ Vout (2)

where Vout is the average output voltage. The current through

inductor L and capacitor C can be obtained as,

iL = iin−

(

n
∑

w=1

iCw +

n
∑

v=1

iLv

)

, iC =−iout ≈ −
Vout

R
(3)

The ripples in the inductors currents for this mode are

calculated as follows,
{

1iIL =
VinT

L
q1,1i

I
L1 =

VinT

L1
q1, · · · ,1iLn

I =
VinT

Ln
q1

(4)

The inductance rating of the all the inductor are same,

therefore, (4) is rewritten as,

1iIL =1iIL1 = · · ·=1iLn
I =

VinT

L
q1 =

VinT

L1
q1 =

VinT

Ln
q1

(5)

2) IInd MODE OF OPERATION (Time Ta TO Tb)

Fig. 4(b) presents the circuit diagram for the IInd mode of

operation. The switch So is turn ON, while the remaining

switches (S, S1, S2 . . . , and Sn) are turned OFF. The diodes

(D1, D2 . . . , and Dn) that were previously forward-biased

are now reverse biased. However, the diode D continues

to be reverse biased during this mode. The inductors are

now charged in series by capacitor voltages and input

voltage. The inductor and capacitor voltages are related as

follows,










vL+vLn + .+ vL2 + vL1≈Vin+vCn + .+ vC2+vC1

vL +

n
∑

v=1

vLv ≈

n
∑

w=1

vCw + Vin
(6)

The voltage across capacitors C , C1, C2 . . . , and Cn are

obtained as,

vC1, vC2 . . . , vCn} ≈ Vin; vC ≈ Vout (7)

By using (6) and (7), the voltages across inductors L, L1,

L2 . . . , and Ln are obtained as,

vL , vL1, vL2, · · · , vLn} ≈ Vin (8)

134718 VOLUME 8, 2020
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FIGURE 3. Waveforms of voltage and current across/through components
and devices for CCM.

The current through inductor L and capacitor C can be

obtained as,

iL = iin, iC = −iout ≈ −
Vout

R
(9)

The ripples in the inductor currents for this mode are

calculated as follows,
{

1iIIL =
VinT

L
q2,1i

II
L1 =

VinT

L1
q2, · · · ,1iLn

II =
VinT

Ln
q2

(10)

The inductance rating of the all the inductor are same,

therefore, (10) is rewritten as,

1iIIL =1iIiL1=· · · = 1iLn
II =

VinT

L
q2 =

VinT

L1
q2=

VinT

Ln
q2

(11)

3) IIIrd MODE OF OPERATION (Time Tb TO Tc)

Fig. 4(c) presents the circuit diagram for the IIIrd mode of

operation. All the switches (S, So, S1, S2 . . . , and Sn) are

turn OFF during this period. The diode D, which was reverse

biased for mode I and II is forward biased now. The diodes

(D1, D2 . . . , and Dn) continue to be in a reverse-biased state.

The energies that were build-up by the inductors and capaci-

tors of A2P-IL legs during themode I and II are released to the

capacitor C and load R. The inductor and capacitor voltages

are related as follows,










vL+vLn + .+ vL1≈Vin−Vout+vCn + .+ vC2+vC1

vL +

n
∑

v=1

vLv ≈

n
∑

w=1

vCw + Vin − Vout
(12)

where Vout is the average output voltage. The voltage across

capacitors C , C1, C2, . . . , and Cn are obtained as,

vC1, vC2 . . . , vCn} ≈ Vin; vC ≈ Vout (13)

By using (12) and (13), the voltages across inductors L, L1,

L2 . . . , and Ln are obtained as,

vL , vL1, vL2, · · · , vLn} ≈
(n+ 1)Vin − Vout

n+ 1
(14)

The current through inductor L and capacitor C can be

obtained as,

iL = iin, iC = iin − iout ≈ iin −
Vout

R
(15)

The ripples in the inductor currents are calculated as

follows,


























1iIIIL =
((n+ 1)Vin − Vout)T

(n+ 1)L
(1 − q1 − q2)

1iIIIL1 =
((n+ 1)Vin − Vout)T

(n+ 1)L1
(1 − q1 − q2)

· · · ,1iLn
III =

((n+ 1)Vin − Vout)T

(n+ 1)Ln
(1 − q1 − q2)

(16)

The inductance rating of the all the inductor are same,

therefore, (16) is rewritten as,










1iIIIL =· · ·1iLn
III =

((n+ 1)Vin−Vout)T

(n+ 1)L
(1−q1 − q2)

. . . =
((n+ 1)Vin − Vout)T

(n+ 1)Ln
(1 − q1 − q2)

(17)
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FIGURE 4. Equivalent circuitry of A2P-IL converter (a) Ist Mode (To – Ta), (b) IInd Mode (Ta –Tb), and
(c) IIIrd Mode (Tb – Tc ).

During CCM, the voltage gain of A2P-IL converter is

obtained as,

GV 〉CCM or GV =
Vout

Vin

〉

CCM

=
n+ 1

1 − q1 − q2
(18)

C. DISCONTINUOUS CONDUCTION MODE

The waveform of the TM-A2P-IL converter for DCM is

shown in Fig. 5. The proposed converter performs four modes

of operation as explain as follows,

1) Ist MODE OF OPERATION (Time T0 TO Ta)

This mode of operation is similar to that of I st mode of

operation of CCM and follows the same equivalent power

circuit. The inductors (L, L1, L2, . . . , and Ln) carry cur-

rents which increase linearly, and their maximum values are

obtained as follows,

IL〉max−I = Vin
q1T

L
, · · · , ILn〉max−I = Vin

q1T

Ln
(19)

The inductor currents reach the maximum value at the time

t = q1T, and the voltage across all the inductors are same.

Therefore,

IL〉max−I = IL1〉max−I , · · · , ILn〉max−I (20)

2) IInd MODE OF OPERATION (Time Ta TO Tb)

This mode of operation is similar to that of IInd mode

of operation of CCM and follows the same equivalent

power circuit. The current continues to increase linearly and

the maximum values of mode II are obtained as follows,

IL〉max−II = (q1 + q2)
VinT

L
, · · · , ILn〉max−II

= (q1 + q2)
VinT

Ln
(21)

The inductor currents reach the maximum value for

mode II at the time t = q1T + q2T and the voltage across

all the inductors are same. Therefore,

IL〉max−II = IL1〉max−II , · · · = ILn〉max−II (22)

3) IIIrd MODE OF OPERATION (Time Tb TO Tc)

This mode of operation is similar to that of IIIrd mode of

operation of CCM and follows the same equivalent power

circuit. The current through the inductors reduces linearly to

reach the zero value at time t = q1T + q2T + q3T. The

expression for the maximum value of inductor currents in this

mode is as follows,










IL〉max−III =
(Vout − (n+ 1)Vin)

(n+ 1)

q3T

L
,

· · · , ILn〉max−III =
(Vout − (n+ 1)Vin)

(n+ 1)

q3T

Ln

(23)

The inductor currents reach the zero value at the time

t = q1T +q2T +q3T , and the voltage across all the inductors

are same. Therefore,

IL〉max−III = IL1〉max−III , · · · = ILn〉max−III (24)

134720 VOLUME 8, 2020
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FIGURE 5. Waveforms of voltage and current across/through
components and devices for DCM.

4) IVth MODE OF OPERATION (TIME Tc TO T )
The equivalent circuit of IVth mode of operation is shown

in Fig. 6. During this mode, all the switches in the circuit have

their gate pulses OFF, and all the diodes are reverse biased.

The stored energy in the output capacitorC is delivered to the

load R.

With the help of (21) and (23), the value of q3 is obtained

as follows,

q3 =
(q1 + q2)(n+ 1)Vin

vout − (n+ 1)Vin
(25)

The capacitor C average current can be expressed as,

ICo =
V 2
in

(

q
1
+ q

2

)2
(n+ 1)T

2 (Vout − (n+ 1)Vin)L
−
Vout

R
(26)

The average current through any capacitor is zero.

Therefore, the (26) is rewritten as follows,

V 2
in (q1 + q2)

2 (n+ 1)T

2 (Vout − (n+ 1)Vin)L
−
Vout

R
= 0 (27)

The voltage gain of the TM-A2P-IL converter for DCM is

derived as follows,

GV 〉DCM =
Vout

Vin

〉

DCM

=
n+ 1

2

+

√

(n+ 1)2

4
+
(q1 + q2)

2 (n+ 1)

2ψL
(28)

where, 9L is normalized inductors time constant, and it is

equated to fL/T = fL1/R = . . . = fLn/R.

The expression for boundary normalized inductor time

constant 9LB is obtained as,

ψL−B =
(q1 + q2) (1 − q1 − q2)

2

2 (n+ 1)
(29)

The CCM and DCM regions are marked in the plot of

9L−B, which is shown in Fig. 7. The following conditions

must be satisfied in order to operate the A2P-IL converter in

CCM.

(q1 + q2) (1−q1−q2)
2

2 (n+1)
≺

(

fL

R
=
fL1

R
=· · ·=

fLn

R

)

(30)

III. DESIGN AND COMPARISON

A. DESIGN OF TM-A2P-IL CONVERTER

The design of TM-A2P-IL converter is carried out by con-

sidering the parameters input voltage (Vin), output voltage

(Vout ), output power (Pout ), load (R) and time period (T ).

By using the following equation, the duty cycle is

calculated,

GV =
Vout

Vin
=

n+ 1

1 − q1 − q2
=

1

1 − QTM−A2P−IL(q1, q2)
QTM−A2P−IL(q1, q2) = (n+ q1 + q2) / (n+ 1)







(31)

Worst efficiency (ηworst ) is considered, and the duty cycle

function at worst converter efficiency is,

QTM−A2P−IL(q1, q2) =
GV − ηworst

GV
(32)

The following equation is used to calculate the critical

inductances (LC ) and the associated critical current rating of

the inductor (ILc),

Lc =
(q1 + q2)Vin

f ×1iL
=
(q1 + q2)Vin

f × 30%ofIL
, ILc > IL + 0.51iL

(33)
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FIGURE 6. Equivalent circuitry of A2P-IL converter in DCM (Tc -T ).

TABLE 1. Comparison of A2P-IL converter with classical and recently proposed converters.

FIGURE 7. Plot of βLB versus duty cycle k1 and k2.

where, 1iL is assumed to be 30% of the average inductor

current (IL).

The voltage rating and critical capacitances of C1,

C2. . . , and Cn is calculated as below,

C1 = C2. = Cn =
(1 − q1 − q2) Iin

f ×1VC
,

VC1 = VC2 = . = VCn ≥ Vi (34)

The voltage rating and critical capacitance of Co is

calculated as follows,

Co =
(q1 + q2)Vout

1VCo × R× f
=

(k1 + k2)Vout

R× f × 1%ofVo
, VCo ≥ Vout

(35)

The voltage rating of switches S, So, S1, . . . , and Sn can be

obtained as,

VS = VS1 =
Vout

n+ 1
; VSj(j=2,3...,n) =

jVout

n+ 1
; VSo > Vout

(36)

The diodes D, D, D1, . . . , and Dn voltage ratings can be

arrived as,

VD1 = VD2 = . . . = VDn =
−Vout

n+ 1
; VD = −Vout (37)

B. COMPARISON

Table 1 presents the comparison between the proposed and

available similar converter configurations. A conventional

boost converter is modified in [32], [34]. The active switched

134722 VOLUME 8, 2020
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FIGURE 8. Simulation results (a) Voltage and current at input and output terminal, (b) inductor current and Output voltage, (c) Voltage across
capacitor and input current, (d) Voltage across diodes and output voltage, (e) Voltage across switches.

inductor techniques and voltage life techniques are incor-

porated in the new leg added with the conventional boost

converter. The converters presented in [37], [38] and the pro-

posed TM-A2P-IL converters carry multi-leg structure fea-

ture which allows for selection of multiple numbers of legs.

Only one switch is required for each leg. However, the con-

verter presented in [38] employs 2 inductors and 5 diodes

for each leg in addition to the single switch. The proposed

converter requires only 1 capacitor, 1 diode and 1 induc-

tor, which significantly reduce the component count. The

selection of a flexible duty cycle range offers a high voltage

gain. This can be achieved by employing multiple numbers of

switches rather than a single switch. The conventional boost

converters and the converters presented in [32] precisely

suffer from the problem of limited voltage gain problem.

The proposed A2P-IL converter and presented converter in

[34] offer a flexible selection of duty cycle range with the

help of two different duty cycles. Hence, by operating the

converter with two different duty cycles, the converter can

effectively offer high voltage gain. The TM-A2P-IL converter

undergoes a lower normalized voltage stress compared to the

converters [32], [34], [37], [38]. This enables the use of a

semiconductor switch by the proposed converter with a low

voltage rating. As the number of legs increase, the volt-

age stress on the switches reduces, which is a striking fea-

ture of TM-A2P-IL converter. The additional switch in the

TM-A2P-IL converter is enabling the operation of the con-

verter with two different duty cycles. The additional switch

also undergoes only minimum voltage stress than the output

voltage. In the proposed converter, the diode at the output side

has lower voltage stress compared to the output diode of con-

verter [34], [37], [38]. Hence, it can be observed clearly that

the proposed TM-A2P-IL converter offers many advantages

over the other converters in the literature by providing higher

voltage gain and flexibility in the selection of duty cycle for

switches.

IV. SIMULATION AND EXPERIMENTAL RESULTS

Initially, to investigate the performance and theoretical anal-

ysis of the converter, the proposed converter is tested through

simulation work. The converter with 2 A2P-IL is simulated

by considering the parameters output reference voltage 400V,

input voltage 40V, output power 500W, and switching fre-

quency 50kHz. The inductance of 700µH is selected for each

leg and capacitance for each leg is equal to 220µF. The output

capacitance is 220µF. The switches S, S1, and S2 operated
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FIGURE 9. Experimental results (a) Voltage and current at input and output terminal, (b) inductor current and Output voltage,
(c) Voltage across capacitor and input current, (d) Voltage across diodes and output voltage, (e) Voltage across switches.

in 180o phase shift switch So. The observed simulation results

are shown in Fig. 8. In Fig. 8(a), the voltage and current at the

input and output port are shown. It is observed that 400.3V is

achieved at the output port when the input voltage is 40V.

The average values of output and input current are 1.25A and

12.87A, respectively.

The inductors L, L1 and L2 current and output voltage

waveforms are shown in Fig. 8(b). It is observed that in mode

I and II, inductors L, L1 and L2 aremagnetized with a constant

slope. In mode III, inductors L, L1 and L2 are demagnetized

with a constant slope. It is also observed that the current

through inductors L, L1 and L2 are 4.78A, 4.74A, and 4.73A,

respectively. The voltage waveform across capacitors C1, C2,

andCo and the input current waveform are shown in Fig. 8(c).

It is observed that the voltage across capacitor C1 and C2

are equal to the input voltage. The voltage across capacitorCo
is equal to the output voltage, i.e. 400.4V. The output voltage

and voltage waveform across diodes D1, D2 and D are shown

in Fig. 8(d). It is observed that peak inverse voltage across

diode D1 is D2 are −133.7V and −133.4V, respectively.

TABLE 2. Specification of the converter.

The peak inverse voltage across diode D is −400.5V. The

voltage across switches S, S1, S2, and So is shown in Fig. 8(e).

The maximum voltage across S, S1, S2 and So are 133.9V,

133.6V, 267.1V, and 400.2V, respectively.

Experimental work is carried out to investigate the

practical performance of the proposed TM-A2P-IL converter.

The experimental parameters are given in Table 2. The

reference output voltage is set at 400V. Fig. 9(a) shows the

experimentally observed waveform of input voltage, input
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FIGURE 10. Efficiency plot for different power level.

current, output voltage and output current. It is observed that

the input voltage is boosted from 40.9V to 400.2V. The input

current is found to be 13.03Awhile the output current is found

to be 1.25A. Fig. 9(b) shows the experimentally observed cur-

rents waveforms of inductors L, L1 and L2 along with output

voltage. The inductor currents are continuous, and average

current through inductors L, L1 and L2 are 4.95A, 4.87A,

and 4.85A, respectively. The experimentally observed voltage

across capacitor C1, C2 and Co are shown in Fig. 9(c). The

voltage across capacitorsC1,C2 andCo are 39.8V, 39.2V, and

400.3V. Fig. 9(d) shows the voltage waveform across diodes

D1, D2 and D. The peak inverse voltages across diodes D1,

D2, andD are−133.9V,−133.1V, and−400.8V, respectively.

The voltage across switches S, S1, S2, and So are presented

in Fig. 9(e). The maximum voltage across S, S1, S2 and So
are 135.2V, 134.8V, 267.3V, and 400.9V, respectively. Several

experimental tests are carried out by considering the different

power level to investigate the efficiency of the proposed

converter. The efficiency plot for different power level is

shown in Fig. 10. It is found that the practical efficiency of

the converter is 93.86% at 500W.

V. CONCLUSION

A new high gain converter called ‘‘Triple mode Active Pas-

sive Parallel Intermediate Links’’ (TM-A2P-IL) converter is

proposed for DC microgrid applications. The classical boost

converter is modified, and Active Passive Parallel Intermedi-

ate Links (A2P-IL) incorporated to achieve high voltage gain.

Each A2P-IL leg is a combination of an inductor, capacitor,

diode and control switch. The proposed converter operates in

three modes and offers a high voltage gain and flexibility in

the selection of duty cycle. The detail mode of operation, volt-

age gain, and boundary for CCM and DCM, design of con-

verter is presented. The proposed converter compared with

recently available converter, the proposed converter provides

an option to select the number of stages with flexibility in

selection duty cycles to achieve high voltage gain. Simulation

and experimental results are presented which validate the the-

oretical analysis and functionality of the proposed converter.

The efficiency of the proposed converter is 93.86% at 500W.
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