
Aerospace Technology Congress, 8-9 October 2019, Stockholm, Sweden

Swedish Society of Aeronautics and Astronautics (FTF)

Triple Modular Redundancy based on Runtime Reconfiguration and Formal
Models of Computation

Ricardo Bonna1, Denis S. Loubach2, Ingo Sander3, and Ingemar Söderquist4

E-mail: rbonna@fem.unicamp.br; dloubach@ita.br; ingo@kth.se; ingemar.soderquist@saabgroup.com
1Advanced Computing, Control & Embedded Systems Lab, University of Campinas – UNICAMP,

Campinas, SP, Brazil - 13083-860
2Department of Computer Systems, Computer Science Division, Aeronautics Institute of Technology – ITA,

São José dos Campos, SP, Brazil - 12228-900
3Division of Electronics/School of EECS, KTH Royal Institute of Technology, SE-164 40, Kista, Sweden

4Business Area Aeronautics, Saab AB, Linköping, Sweden

Abstract

Runtime reconfiguration is one promising way to mitigate for increased failure rate and

thereby it fulfills safety requirements needed for future safety-critical avionics systems. In

case of a hardware fault, the system is able, during runtime, to automatically detect such fault

and redirect the functionality from the defective module to a new safe reconfigured module,

thus minimizing the effects of hardware faults. This paper introduces a high level abstraction

architecture for safety-critical systems with runtime reconfiguration using the triple modular

redundancy and the synchronous model of computation. A modeling strategy to be used in

the design phase supported by formal models of computation is also addressed in the paper.

The triple modular redundancy technique is used for detecting faults where, in case of in-

consistency in one of the three processors caused by a fault, a new processor is reconfigured

based on a software or hardware reconfiguration, and it assumes the tasks of the faulty pro-

cessor. The introduced strategy considers that no other fault occurs during the reconfiguration

of a new processor.

Keywords: safety-critical systems, triple modular redundancy, runtime reconfiguration,

formal models of computation.

1 Introduction

The safety and reliability of modern avionics may be

threatened by trends that are largely driven by high-volume

commercial applications, e.g. environmental concerns as re-

striction of hazardous substances (RoHS) directive that forced

the removal of lead from commercial electronics and solders.

Another trend arises from technological innovation in com-

mercial electronics. The effort to place more functionality

and performance in smaller packages and lower power has led

to ever-shrinking device geometries down to deep submicron

dimensions with new physical failure mechanism that affect

the wear out of semiconductor devices. Additionally, small

geometries negatively affect the susceptibility of the semicon-

ductor device to atmospheric radiation.

One of the next big challenges for the avionics industry is to

address these trends that increase failure rate and thereby af-

fect safety and reliability. Bieber et al. [1] points out runtime

reconfiguration as one of the big challenges for the future gen-

eration of integrated modular avionic (IMA) systems. In the

event of a hardware failure, the system is able to reallocate

the functionalities from the faulted module into a safe mod-

ule, thus limiting the effects of a hardware failure on aircrafts.

Perhaps the most important component of a runtime reconfig-

urable safety-critical system is the fault detection mechanism.

One of such mechanisms is the triple modular redundancy

(TMR), capable of detecting and mask possible faults in a sys-

tem, improving reliability [2]. In such architecture, depicted

in Figure 1, three processes execute the same functionality,

and a majority voting mechanism selects the output that most

occurs. If one of the processors fails to produce the correct

output, possibly due to a single event upset (SEU), the voting

mechanism masks such fault with the output of the other two

processes. Any number of processors can be used in modu-

lar redundancies, however the minimum number of redundant

processors necessary to detect and mask a fault is three.

Systems with triple modular redundancy are tolerant to both

transient faults, i.e. faults that appear for a very short period

of time and then disappear, and single permanent fault, i.e.

faults that remains active for a long or possibly indefinite

DOI 

10.3384/ecp19162016

145

mailto:rbonna@fem.unicamp.br; dloubach@ita.br; ingo@kth.se; ingemar.soderquist@saabgroup.com


P1

P2

P3

V

Figure 1: Triple modular redundancy architecture. V repres-

ents the voting mechanism and P1, P2 and P3 represent three

processes with the same functionality.

amount of time. However, faults in the voting mechanism

lead to errors, making the voter a single point of failure. To

improve reliability, three voters can be used instead of one. In

that case if a fault occurs on the voters, the system can mask

such fault, thus eliminating the single point of failure.

In view of this, this paper proposes a high level abstraction

architecture for safety-critical systems with runtime reconfig-

uration (RTR) using the triple modular redundancy and the

synchronous (SY) model of computation (MoC). Such archi-

tecture is composed of one fault detection mechanism, sev-

eral runtime reconfigurable processes, and a control device

to manage the reconfiguration process. Differently from

the traditional triple modular redundancy architectures, the

proposed architecture can mask multiple permanent faults,

provided that no two faults occur in a small time interval

defined by the reconfiguration time of a new module.

2 Models of Computation

Models of computation are a collection of rules dictating the

semantics of execution and concurrency in computational sys-

tems. A common framework to classify and compare differ-

ent MoCs is the tagged signal model [3]. In such framework,

MoCs are a set of processes acting on signals, according to

the following definitions.

Definition 1 (Signal). In the tagged signal model, a signal

s ∈ S is a set of events ei = (ti,vi) composed by a tag ti ∈ T

and a value vi ∈V . The set of signals S is a subset of T ×V .

Definition 2 (Process). In the tagged signal model, a process

P is a set of possible behaviors that defines relations between

input signals si ∈ SI and output signals so ∈ SO. The set of out-

put signals is given by the intersection between the set of input

signals and the process SO = SI ∩P. A functional process is a

process described by a single value mapping f : SI → SO and

describes either one behavior or no behavior at all.

The tagged signal model classifies MoCs as being timed or

untimed. In a timed MoC, all events in all signals can be

ordered based on its tags, i.e. the set of tags T is totally

ordered. In an untimed MoC, the set of tags T is partially

ordered, i.e. events can only be locally ordered.

2.1 Synchronous (SY) MoC

The synchronous MoC belongs to the class of timed MoCs

and it is based on the perfect synchrony hypothesis, which

states that neither computation nor communication consumes

time. As a consequence, every signal is synchronized, mean-

ing that for any event in any signal, there is an event with the

same tag in every other signal. This allows the representation

of signals as a list of values in which the position of each value

in the list represents its tag, i.e., s[k] = v with k ∈ T and v∈V .

Another important property of the synchronous MoC is that

the absence of an event is well defined. Such phenomenon is

defined as an event, with some tag t ∈ T , whose value is the

absent value ⊥ ∈V , i.e. e = (t,⊥).

Although the perfect synchrony hypothesis is not physically

feasible, the synchronous MoC works well when modeling

clocked-based systems, provided that both computation and

communication are fast enough to fit within one evaluation

cycle.

3 Modeling TMR with RTR

A triple redundancy architecture proposal using runtime re-

configuration is illustrated in Figure 2.

RTRP1

RTRP2

RTRP3

...

RTRPn

Voter

CSSM
Control

Device

sout

sin

ct1
ct2

ct3
ctn

ct1

ct2

ct3

ctn

Figure 2: Triple redundancy architecture with runtime recon-

figuration applicable to safety-critical systems.

It works as follows: three runtime reconfigurable processors,

RTRP1..3, are configured with the same functionality and,

given the same input signal, should provide the same out-

put signal. Knowing this property, the Voter compares the

results and possibly the states outputted by each processor.

If, by any chance, one of the processor’s output differs from

the other two, the Voter assumes that there must be a fault

in such processor and, therefore, a new processor must take

its place. In view of this, the Voter sends a signal to the

Control Device informing which processor is malfunction-

ing, so that the Control Device can allocate a new RTRPx

to assume the failed processor’s task.

The newly allocated processor must then synchronize its

states with the two remaining RTRP that are still executing

R. Bonna Triple modular redundency by reconfiguration

DOI 

10.3384/ecp19162016

Proceedings of the 10th Aerospace Technology  Congress 

October 8-9, 2019, Stockholm, Sweden

146



in order to mask the fault. To do that, the first time a pro-

cessor executes, it loads the current states from a current state

shared memory (CSSM), which is represented as a delay us-

ing the SY MoC and can be physically implemented as a set

of processor registers.

Similarly to N-modular redundancy (NMR) with spares,

when one of the processors becomes unreliable, i.e. starts

to produce inconsistent results, it is replaced by a spare pro-

cessor. However, here the spare processors, represented by

RTRPn, with n > 3, can be initially loaded with less critical

applications that can be overloaded when needed, providing

better usability of resources.

For such architecture to work properly it is assumed that

neither the Voter nor the Control Device fails, thus both

of these devices are single point of failure for this system. Al-

though it is possible to eliminate the Voter’s single point of

failure by using three voters, there can only be one reconfig-

uration manager, represented by the Control Device.

When two RTRPs fail either at the same time, or in a time

window smaller than the necessary time to reconfigure a new

processor, we say the triple redundancy system fails. To show

how likely such failure occurs, consider that all RTRP have

the same failure rate and, for every cycle, the probability of

failure of an RTRP j is p(Fj) = ρ . Consider also that it takes

m clock cycles to reconfigure a new RTRP in case of a failure.

Then, the probability p(Fa|Fb) of some RTRPa to fail in a time

window of m+1 cycles (including the cycle in which the fault

was detected), provided that some RTRPb has already failed,

is given by

p(Fa|Fb) = 1− (1−ρ)2(m+1) (1)

Therefore, the probability of failure of our triple redundancy

architecture with RTR is given by

p(Fa∩Fb) = p(Fb)p(Fa|Fb)

= ρ(1− (1−ρ)2(m+1))
(2)

We define the ratio of improvement RI as being the probability

of failure of a single RTRP divided by the probability of fail-

ure of our triple redundancy architecture, given by (2). The

larger the ratio of improvement, the more fail-safe the triple

redundancy with RTR is when compared to an architecture

with a single processor. Such ratio of improvement is given

by

RI =
1

1− (1−ρ)2(m+1)
(3)

The ratio of improvement RI shows the importance of the re-

configuration time m in the robustness of the triple redund-

ancy architecture with RTR. In case of a fault in one of

the processors, the system can still continue to perform cor-

rectly with two processors while another RTRP is being recon-

figured, however it becomes vulnerable to a second fault in

this time window. Therefore, the fastest the reconfiguration,

the less vulnerable the system is. Traditional triple redund-

ancy architectures (without RTR) are immune to a single pro-

cessor permanent fault, however they are vulnerable to mul-

tiple faults.

3.1 Runtime Reconfigurable Process (RTRP)

We start to model the triple redundancy architecture by mod-

eling what we are calling a runtime reconfigurable process,

similar to the architecture presented in [4]. We consider that

for such process to be in its most general form, it must have

some internal memory to store its states, and it must take into

account reconfiguration time. When a new RTRP is being re-

configured, it takes a number m ∈ N of clock cycles, propor-

tional to the size of the functionality bitstreams, to perform

reconfiguration before it is able to execute for the first time.

When the RTRP executes for the first time, it must synchronize

its internal memory with the internal memory of the other two

RTRP executing the same functionality. In order to achieve

that, we added an extra input, a synchronization input x̄, so

that when the RTRP executes for the first time, it gets its initial

state from the synchronization input.

We model an RTRP as a finite state machine with x[k] ∈ S

being the state vector, sin[k]∈V I the inputs, and y[k]∈V O the

outputs at an instant k, with V I and V O the set of values from

the input and output signals respectively. The functionality

of an RTRP is represented by a state transition function f :

S×V I → S and an output function g : S×V I → V O. Such

functionality is stored in a configuration memory and can be

changed by a control input signal ct that is responsible for

the reconfiguration. The control signal ct is responsible for

changing both f and g when needed, and this change takes m

clock cycles to finish. Finally, the processor can execute for

the first time with the new configuration.

A representation of an RTRP is shown in Figure 3. Feedback

loops, along with delay blocks (represented by z−1), are used

to represent memories following the pattern: the blue roun-

ded delay represents configuration memory, the squared black

delay represents RTRP’s internal memory, and the dashed

delay represents a virtual count down to simulate reconfig-

uration time.

RTRP j

logic

z−1

z−1

z−1

x[k+1]x[k]

m[k+1]
m[k]

( f [k+1],g[k+1])
( f [k],g[k])

x̄[k]

sin[k] y j [k]

ct j
[k]

Figure 3: RTRP internal schematics, i.e. function application

logic. The delays represented by z−1 are used to store state

vector x, the pair of functions ( f ,g) and the reconfiguration

countdown m.

R. Bonna Triple modular redundency by reconfiguration

DOI 

10.3384/ecp19162016

Proceedings of the 10th Aerospace Technology  Congress 

October 8-9, 2019, Stockholm, Sweden

147



Let ct [k] be the control signal in the instant k, which can be

either the absent value ⊥ or a 3-tuple (f,g,m), with f : S×
V I → S, g : S×V I → V O and m ∈ N. ct [k] = ⊥ indicates

no reconfiguration is needed and, therefore, the process can

execute the current configuration normally, if able to. When

ct [k] = (f,g,m), a reconfiguration must be performed and the

functions f and g will replace the current configuration. Such

reconfiguration process takes m cycles to finish.

At any instant k, the functionality of a runtime reconfigurable

process is given by the pair ( f [k],g[k]). Such pair is stored

in the configuration memory until a reconfiguration request is

received via ct . To represent such behavior, the functionality

transition function is given by

( f [k+1],g[k+1]) =

{

(f,g) if ct [k] = (f,g,m)

( f [k],g[k]) if ct [k] =⊥
(4)

To represent the time spent to perform the reconfiguration of

a process, the countdown variable m[k] ∈ N stores how many

cycles are left to finish the reconfiguration. m[k]> 0 indicates

that the process is reconfiguring at the instant k and, therefore,

cannot execute. (5) represents the behavior of the countdown

signal m.

m[k+1] =











m−1 if ct [k] = (f,g,m)

m[k]−1 if ct [k] =⊥ and m[k]> 0

0 if ct [k] =⊥ and m[k] = 0

(5)

When a reconfiguration is being performed, i.e. when m > 0,

the RTRP outputs the absent value ⊥ for both the next state

x[k+1] and the output y j[k]. The first time the RTRP executes

after reconfiguration, it uses the state input x̄ as initial states.

Afterwards, it keeps executing with its internal state x. The

state transition function at any instant k is given by

x[k+1] =











⊥ if ct [k] 6=⊥ or m[k]> 0

f [k](x̄[k],sin[k]) else if x[k] =⊥

f [k](x[k],sin[k]) otherwise

(6)

with x̄[k] being the value of the states stored in CSSM in the

instant k. The output of a runtime reconfigurable process at

any instant k is given by

y j[k] =











⊥ if ct [k] 6=⊥ or m[k]> 0

g[k](x̄[k],sin[k]) else if x[k] =⊥

g[k](x[k],sin[k]) otherwise

(7)

Initial values f [0], g[0], m[0] and x[0], indicating the initial

configuration and states of each RTRP, must be provided.

3.2 Voter

The Voter’s task is to compare the outputs of the three RTRPs

that are currently active, and alert the Control Device when

one of the outputs differs from the other two. Figure 4 shows

the voter inputs and outputs.

The input cv is responsible to select the three currently active

RTRP, so that the voter can compare their results and, in case

Voter

s1[k]

s2[k]

s3[k]

sn[k]

.

.

.

sout [k]

r[k]

xv[k]

cv[k]

Figure 4: Voter with inputs and outputs.

of any inconsistency, it informs the Control Device about

the failed RTRP through the signal r. The Voter outputs the

most occurring of the RTRP results through sout and send the

current RTRP state to CSSM via xv. Let s j be the signal that

carries the output and the states of RTRP j. Events from cv and

s j are defined as follows.

cv[k] = (a,b,c), a,b,c ∈ {1,2, . . . ,n} (8)

s j[k] = (y j[k],x j[k]), j ∈ {1,2, . . . ,n} (9)

The outputs sout and xv are modeled as follows.

(sout[k],xv[k]) =











(ya[k],xa[k]) if ya[k] = yb[k]

or ya[k] = yc[k]

(yb[k],xb[k]) if yb[k] = yc[k]

(10)

The signal r is used to inform the Control Device, in case

of a failure, which RTRP failed. If the results from the three

active RTRPs are consistent in instant k, r[k] assumes the ab-

sent value, otherwise it assumes the number of the faulted

RTRP. Thus, the output r is modeled as follows.

r[k] =



















⊥ if ya[k] = yb[k] = yc[k]

a if ya[k] 6= yb[k] = yc[k]

b if yb[k] 6= ya[k] = yc[k]

c if yc[k] 6= ya[k] = yb[k]

(11)

3.3 Control Device

Finally, the Control Device is responsible for reconfigur-

ing new RTRP based on the signal r received from the Voter,

indicating which RTRP is not producing a correct answer. The

Control Device keeps track of which RTRPs are active and,

depending on the value received through the signal r, it per-

forms a state transition to a new state indicating the active

RTRP. Figure 5 shows the Control Device internal schem-

atics.

Every time the Control Device performs a state transition,

meaning an inconsistency was detected by the Voter, it sends

the new configuration to the RTRP through signals ctn , and

it waits m clocks, representing the time it takes to finish the

reconfiguration of an RTRP, before being able to reconfigure a

new RTRP in case of another inconsistency. The output/input

signal m keeps track of how many clock cycles are left to

finish a reconfiguration of a new RTRP, and it is modeled as

R. Bonna Triple modular redundency by reconfiguration

DOI 

10.3384/ecp19162016

Proceedings of the 10th Aerospace Technology  Congress 

October 8-9, 2019, Stockholm, Sweden

148



Control

Device

logic

z−1

z−1

z−1

m[k+1]
m[k]

cv[k+1]

cv[k]

r[k]

cv[k]

. . .

ct1
ct2

ct3
. . .

ctn

Figure 5: Control Device internal schematics.

follows.

m[k+1] =











m if r[k] 6=⊥ and m[k] = 0

m[k]−1 if m[k]> 0

0 otherwise

(12)

The output cv carries the current three active RTRPs as a tuple,

such as in (8). The behavior of the Control Device regard-

ing the output cv is modeled as follows.

cv[k+1] =

{

cv[k] if r[k] =⊥ or m[k]> 0

h(cv[k],r[k]) if r[k] 6=⊥ and m[k] = 0
(13)

with h((a,b,c),r) given by

h((a,b,c),r) =











(max(a,b,c)+1,b,c) if r = a

(a,max(a,b,c)+1,c) if r = b

(a,b,max(a,b,c)+1) if r = c

(14)

(12) and (13) define a behavior that is represented graphic-

ally in Figure 6. While m[k] > 0, the Control Device is

in the “Reconf” state, meaning a new RTRP is being recon-

figured, and any reconfiguration request that is sent through

r is ignored while in this state. After the reconfiguration

is finished (m[k] = 0), the Control Device returns to the

“Ready” state, awaiting for a new reconfiguration request.

Finally, the control outputs ct j
behave as follows: when the

transition from Ready to Reconf is taken, i.e. r[k] 6= ⊥
and m[k] = 0, the Control Device outputs a reconfigura-

tion signal given by the 3-tuple (f,g,m) to the output j =
max(cv[k]) + 1 (the next available spare RTRP); in any other

case, it outputs ⊥. Such behavior is given by

ct j
[k+1] =











(f,g,m) if r[k] 6=⊥ and m[k] = 0

and max(cv[k])+1 = j

⊥ otherwise

(15)

Initial conditions to m, cv and ct j
must be provided. As a

general rule, we use the following initial conditions: m[0] =
0, cv[0] = (1,2,3) and ct j

[0] = ⊥. These initial conditions

indicate the system starts with the three first RTRPs already

configured and the Control Device in the Ready state.

Ready

(m[k] = 0)

Reconf

(m[k]> 0)

r[k] 6=⊥/

m[k+1]←m,

cv[k+1]← h(cv[k],r[k])

m[k] = 1/

m[k+1]← 0,

cv[k+1]← cv[k]

m[k]> 1/

m[k+1]← m[k]−1,

cv[k+1]← cv[k]

r[k] =⊥/

m[k+1]← 0,

cv[k+1]← cv[k]

Figure 6: State chart ruling the behavior of the Control

Device.

4 RTR Modeling with SY

An strategy and comparison of frameworks supporting

formal-based development and models of computation is

presented by Horita et al. [5]. Based on their result, we opt

here for the use of ForSyDe [6] to model our TMR system. As

ForSyDe is implemented in Haskell, a functional language,

implementing (4) to (15) is considered an easy task, and we

one does not need to worry about side effects either. Another

advantage of functional languages is that functions can be

used as normal data, allowing the exchange of control events

such as (f,g,m).

The ForSyDe SY library possesses a collection of process

constructors, as well as delays, to implement all the processes

presented so far. We use the process constructors combnSY,

with n indicating the number of inputs, unzipmSY, with m

indicating the number of outputs, and delaySY.

Listing 1 shows the ForSyDe implementation of an RTRP pro-

cess, where rtrpFunc is a Haskell function that implements

(4) to (7). For this implementation, we consider an architec-

ture with 5 RTRPs (three initially operating RTRPs and two

spare ones). As mentioned in Section 3.1, the initial values

f [0], g[0], m[0] and x[0] must be provided and are represented

as f0, g0, m0 and x0.

Listing 1: RTRP process implemented in ForSyDe.

1 rtrp (f0,g0,m0 ,x0) ct s_in x’ = out

2 where (out , fb) = unzipSY $ comb4SY

rtrpFunc ct s_in x’ fb ’

3 fb ’ = delaySY (f0 ,g0,m0,x0) fb

In a similar way, Listing 2 shows the ForSyDe implement-

ation of the Voter process, where voterFunc is a Haskell

function that implements (10) to (11).

Listing 2: Voter process implemented in ForSyDe.

1 voter cv s1 s2 s3 s4 s5 = unzip3SY $ comb2SY

voterFunc cv (zip5SY s1 s2 s3 s4 s5)

Listing 3 shows the ForSyDe implementation of the Control

Device process, where ctrlDevLogic is a Haskell function

that implements (12) to (15), and prosopon1 is a Haskell

implementation of a 3-tuple (f,g,m).

R. Bonna Triple modular redundency by reconfiguration

DOI 

10.3384/ecp19162016

Proceedings of the 10th Aerospace Technology  Congress 

October 8-9, 2019, Stockholm, Sweden

149



Listing 3: Control Device process implemented in For-

SyDe.

1 ctrlDev r = (cv, cts)

2 where (cv, m, ct) = unzip3SY $ comb3SY (

ctrlDevLogic prosopon1) r m’ cv’

3 cts = unzip5SY ct

4 m’ = delaySY 0 m

5 cv’ = delaySY (1,2,3) cv

Finally, Listing 4 shows the TMR process network from Fig-

ure 2 implemented in ForSyDe.

Listing 4: TMR process network implemented in ForSyDe.

1 tmrPN s_in = (r, s_out , out2 , out4)

2 where out1 = rtrp1 ct1 ’ s_in x’

3 out2 = rtrp2 ct2 ’ s_in x’

4 out3 = rtrp3 ct3 ’ s_in x’

5 out4 = rtrp4 ct4 ’ s_in x’

6 out5 = rtrp5 ct5 ’ s_in x’

7 (s_out , x, r) = voter cv’ out1 out2

out3 out4 out5

8 x’ = delaySY (Prst 0) x

9 (cv , (ct1 ,ct2 ,ct3 ,ct4 ,ct5)) =

ctrlDev r

10 cv’ = delaySY (1,2,3) cv

11 ct1 ’ = delaySY Abst ct1

12 ct2 ’ = delaySY Abst ct2

13 ct3 ’ = delaySY Abst ct3

14 ct4 ’ = delaySY Abst ct4

15 ct5 ’ = delaySY Abst ct5

4.1 Simulation Results

To simulate the TMR architecture, we first need to define the

functionalities of each RTRP. The first three RTRPs are imple-

mented to behave as accumulators, i.e. each input is added to

the result of the previous execution. Functions f and g, from

(16) and (17), are used to implement such accumulator. To

simulate a failure in one of these three RTRPs (in this case, we

chose to be RTRP2) we implemented a faulted accumulator,

replacing f for f̃ given by (18), in which when the result of

the previous execution is 3, instead of adding the input to it,

it will subtract. RTRPs 4 and 5 are implemented using f̄ given

by (19). We assume that it takes 2 clock cycles to reconfigure

a new RTRP, i.e. m = 2.

f(x,u) = x+u (16)

g(x,u) = x (17)

f̃(x,u) =

{

x−u if x = 3

x+u otherwise
(18)

f̄(x,u) = x−u (19)

Table 1 shows the simulation results considering a constant

input stream of ones. When k = 4, RTRP2 outputs the wrong

result, as seen in y2. At the same instant, the Voter detects

such fault and signals the Control Device that an error oc-

curred in RTRP2 and, therefore, it needs to be replaced. Then,

the Control Device starts the reconfiguration procedure for

RTRP4, which takes 2 cycles to complete. When k = 7, RTRP4

is fully reconfigured and matches the RTRP1 and RTRP3 out-

puts. As we can see, the output given by sout is not affected

by the fault in RTRP2, nor the reconfiguration of RTRP4. We

can also notice that r = 4 when k = 5 and k = 6, indicating

that the Voter is signaling the Control Device about an er-

ror in the output of RTRP4. As RTRP4 is being reconfigured in

this interval, the Control Device is in the Reconf state and,

therefore, is ignoring the values arriving through r.

Table 1: Simulation results in ForSyDe

k 0 1 2 3 4 5 6 7 8 9

sin 1 1 1 1 1 1 1 1 1 1

sout 0 1 2 3 4 5 6 7 8 9

y1 0 1 2 3 4 5 6 7 8 9

y2 0 1 2 3 2 3 2 3 2 3

y3 0 1 2 3 4 5 6 7 8 9

y4 0 -1 -2 -3 -4 ⊥ ⊥ 7 8 9

y5 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

r ⊥ ⊥ ⊥ ⊥ 2 4 4 ⊥ ⊥ ⊥

5 Related Work

The idea of using triple modular redundancy with runtime re-

configuration is not new. SRAM field programmable gate ar-

rays (FPGAs) must protect its configuration memory from

SEUs, and TMR techniques are applied to such devices.

However, when a majority voter is fed with two wrong an-

swers, possibly caused by multiple independent SEUs, it pro-

duces the wrong result. One way to solve this issue is to peri-

odically write back the whole bistream of each module, which

is time consuming and leaves the modules inactive during this

period. [7] proposes an optimization of the reconfiguration

time in order to cope with this problem.

Another application of TMR using RTR is presented by [8],

where an adaptive reconfigurable voting mechanism whose

main goal is to extend the dynamic and partial reconfiguration

SEU mitigation to the voter, which is usually the single point

of failure in TMR architectures.

A novel technique for synchronizing the states of a newly re-

configured module is presented in [9]. Such technique con-

sists on predicting the future state to which the system will

soon converge (check point state) and presetting the recon-

figured module to it. Therefore, only the reconfigured module

will be set on hold until the check-point state is reached.

The research introduced in [10] claims an improvement of

fault resilience, on up to 80%, by composing and applying

space and time redundancy, i.e. multiprocessors and schedul-

ing, with task migration among processors in hard real-time

systems design. That architecture follows the multiple in-

struction, multiple data (MIMD) taxonomy, as proposed by

[11].

6 Conclusion

This paper introduced a high level abstraction architecture for

safety-critical systems with runtime reconfiguration (RTR)

using the triple modular redundancy and the synchronous

(SY) model of computation (MoC).

R. Bonna Triple modular redundency by reconfiguration

DOI 

10.3384/ecp19162016

Proceedings of the 10th Aerospace Technology  Congress 

October 8-9, 2019, Stockholm, Sweden

150



The triple modular redundancy was chosen to be the mechan-

ism for detecting and masking faults. While the triple mod-

ular redundancy is a classic way to implement fail mitigation

in safety-critical systems, in the event of a permanent fault,

the system can mask such fault. However it gets vulnerable to

a second fault.

A triple modular redundancy using RTR provides a way for

the system to circumvent failures in the presence of multiple

permanent faults, provided that no “two faults” happen in a

time interval defined by the reconfiguration time of a new

module.

We implemented the proposed high level architecture model

in the framework ForSyDe and verified that a new RTRP can

be correctly reconfigured in m cycles and can have its states

synchronized with the other two RTRPs.

Acknowledgments

This research work is supported by the Research De-

velopment Foundation (Fundação de Desenvolvimento da

Pesquisa) - FUNDEP/MCTIC/MDIC

References

[1] Pierre Bieber, Frédéric Boniol, Marc Boyer, Eric Noul-

ard, and Claire Pagetti. New Challenges for Future

Avionic Architectures. AerospaceLab, (4):p. 1–10, May

2012.

[2] R. E. Lyons and W. Vanderkulk. The use of triple-

modular redundancy to improve computer reliability.

IBM Journal of Research and Development, 6(2):200–

209, April 1962.

[3] E.A. Lee and A. Sangiovanni-Vincentelli. A framework

for comparing models of computation. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Trans-

actions on, 17(12):1217–1229, Dec 1998.

[4] Denis S. Loubach. A runtime reconfiguration design tar-

geting avionics systems. In 2016 IEEE/AIAA 35th Di-

gital Avionics Systems Conference (DASC), pages 1–8,

Sacramento, USA, September 2016. IEEE.

[5] Augusto Y. Horita, Ricardo Bonna, and Denis S.

Loubach. Analysis and comparison of frameworks sup-

porting formal system development based on models of

computation. In Shahram Latifi, editor, 16th Interna-

tional Conference on Information Technology-New Gen-

erations (ITNG 2019). Advances in Intelligent Systems

and Computing, vol 800, pages 161–167, Cham, 2019.

Springer International Publishing.

[6] Ingo Sander, Axel Jantsch, and Seyed-Hosein

Attarzadeh-Niaki. ForSyDe: System design using

a functional language and models of computation. In

Soonhoi Ha and Jürgen Teich, editors, Handbook of

Hardware/Software Codesign, pages 99–140. Springer

Netherlands, 2017.

[7] L. Sterpone and A. Ullah. On the optimal reconfigura-

tion times for tmr circuits on sram based fpgas. In 2013

NASA/ESA Conference on Adaptive Hardware and Sys-

tems (AHS-2013), pages 9–14, June 2013.

[8] F. Veljković, T. Riesgo, and E. de la Torre. Adaptive re-

configurable voting for enhanced reliability in medium-

grained fault tolerant architectures. In 2015 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS-

2015), pages 1–8, June 2015.

[9] Conrado Pilotto, José Rodrigo Azambuja, and

Fernanda Lima Kastensmidt. Synchronizing triple

modular redundant designs in dynamic partial reconfig-

uration applications. In Proceedings of the 21st Annual

Symposium on Integrated Circuits and System Design,

SBCCI ’08, pages 199–204, New York, NY, USA,

2008. ACM.

[10] D. S. Loubach and A. M. da Cunha. Avionics hard

real-time systems’ concerning fault tolerance. In 2012

IEEE/AIAA 31st Digital Avionics Systems Conference

(DASC), pages 6A2–1–6A2–18, Oct 2012.

[11] M. J. Flynn. Some computer organizations and their

effectiveness. IEEE Transactions on Computers, C-

21(9):948–960, Sep. 1972.

R. Bonna Triple modular redundency by reconfiguration

DOI 

10.3384/ecp19162016

Proceedings of the 10th Aerospace Technology  Congress 

October 8-9, 2019, Stockholm, Sweden

151


	Introduction
	Models of Computation
	Synchronous (SY) MoC

	Modeling TMR with RTR
	Runtime Reconfigurable Process (RTRP)
	Voter
	Control Device

	RTR Modeling with SY
	Simulation Results

	Related Work
	Conclusion

