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Granular media are very common in nature and technology but present, due to the inelasticity of the collisions between grains very astonishing

collective phenomena. One of them is the spontaneous formation of clusters as observed in intergalactic dust. We will discuss the role of

dissipation in these effects and show recent progress in the understanding of the deviation from classical thermodynamics.

Descriptores: Granular materials; velocity distribution.

Los medios granulares son muy comunes en la naturaleza y en las tecnologı́as actuales. Además, debido a las colisiones inelásticas entre

los granos, presentan algunos comportamientos colectivos muy sorprendentes. Uno de ellos es la formación espontánea de aglomeraciones,

como las observadas en los polvos intergalácticos. Discutiremos el papel que juegan los efectos disipativos y mostraré progresos muy

recientes en el entendimento de las posibles incongruencias con los postulados termodinámicos clásicos.

Keywords: Medios granulares; distribución de velocidades.
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1. Introduction

Granular media are dissipative systems. The collisions be-

tween the grains are inelastic and therefore energy is intrinsi-

cally lost within the system while it is in motion. In order to

explore some of the fundamental resulting effects on the sta-

tistical properties of such systems, let us idealize a granular

medium by a set of N spherical particles, all being identical

and having only the exclusive volume hard-core potential as

interaction. In addition, one can imagine the particles to ro-

tate and to be able to transfer angular momentum from one

to the other during the collision. In that case, it is important

to consider also the tangential frictional properties and the

tangential dissipation. The inelastic properties are well de-

scribed by the restitution coefficient material constants. For

the time being let us ignore gravity.

Physical realization of such idealized systems are for in-

stance in some sense the interstellar dust [1] and in two

dimensions experiments on air tables. But also experi-

ments [2–7] under less idealized conditions can be performed

and have given insight about the statistics of such dissipative

gases. It has been shown by Goldhirsch and Zanetti [8] that

such a dissipative gas undergoes an instability of clustering.

The loss of homogeneity of the system has been made re-

sponsible for anomalous velocity distributions [9]. It is the

issue of this paper to review some of the origins of devia-

tions from Maxwell distributions, looking in particular at the

steady state in the case of the homogeneously driven system.

Equally puzzling non-Boltzmann distributions are also

found in dense granular systems. These have been exper-

imentally idealized in the two-dimensional experiment by

Behringer and collaborators [10, 11]. These systems of

sheared disks have also been simulated numerically confirm-

ing the experimental findings [10, 12]. We will also review

the findings of these measurements concerning the velocity

distributions.

2. Velocity distributions in the dissipative gas

Let us consider, as described above, a simple system of N
equal spheres in a box with periodic boundary conditions. In

Fig. 1 we see such a system of N = 11000 particles. When

two particles collide, the normal component of the relative

velocity is reduced by a factor r, the normal restitution coef-

ficient which lies between 0 and 1. r = 1 is the elastic case

one encounters in an atomic or molecular gas. The tangential

component of the relative velocity between the two particles

is changed by a factor rt, the tangential restitution coefficient.

This tangential restitution coefficient contains two physical

effects, namely dissipation and Coulomb friction. Typically

each of both effects is described by its own value and rt is

chosen to be the minimum of the two. Rotating particles have

as additional degree of freedom the angular velocities. The

relative tangential velocities between two grains at the con-

tact point is then the sum of the translational and rotational

components.

FIGURE 1. Initial configuration: 11000 particles in a box with pe-

riodic boundary conditions.
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There exist a variety of possibilities to simulate such sys-

tems, the most efficient one being an event driven algorithm

using look-up tables. Simulations of such systems have been

performed by many authors [6, 8, 13–15].

If such a system is initialised with a certain distribution

of velocities for the particles and no further energy is put into

the system, then it cools down and the energy decreases like

E ∝
1

t2
, (1)

in time in agreement with the kinetic gas theory [16]. After

some time one observes the appearance of clusters due to the

instability mentioned above, similar to those seen in Fig. 2.

Denser regions have more collisions and therefore more

dissipation. Consequently the pressure decreases and a flux

appears from outside into the already dense region. In this

clustering regime [15] the energy decreases in time only like

E ∝
1

t
. (2)

The velocity distribution also changes. Inside the clusters

the particles are particularly slow and between the clusters

the mean free path is very long and particles of comparatively

large velocities can exist. Therefore, as seen in the schematic

FIGURE 2. Steady state for δ = 1, r = 0.97, see Eq. (4).

FIGURE 3. Schematic evolution of the velocity distribution when

clustering occurs.

diagram of Fig. 3, the distribution of velocities in the cluster-

ing regime has a high peak at 0 velocities and anomalously

long tails. These velocity distributions have been measured

by several authors and agreement exists that anomality is

mainly due to having two distinct species of particles, those

in the clusters and those between them.

The cooling of a dissipative gas does not lead to a steady

state. One can at best formulate a scaling law in time and

find self-similarity. Another way of looking at a dissipative

gas is to produce a real steady state by driving the system in-

jecting into it homogeneously some energy to balance the en-

ergy which is dissipated. The driving can be done in different

ways, the most common one being componentwise additive:

v(t + ∆t) = v(t) + ηvo , (3)

in which at regular intervals ∆t each particle gets a change

of its velocity by a randomly chosen value. η is typically a

Gaussian random number, vo a reference velocity. Recently,

Cafiero et al. [17] have generalised this driving to

v(t + ∆t) = v(t) + η|v|δv1−δ
o , (4)

where the case δ = 1 corresponds to multiplicative driving

and δ = 0 to Eq. (3).

Finally, also a driving of the rotational degree of freedom

has been proposed by Cafiero et al. [18]. There, energy is in-

jected not into the translational velocities, but into the angular

velocities of the particles in an additive way

ω = ω(t) + ηvo . (5)

The driving through the translational velocity can always

lead to clustering, where the clusters can have quite differ-

ent shapes according to the values chosen for the restitution

coefficient. Only in the limit of r very close to unity, the

system stays homogeneous and a recent mean field formula-

tion which includes disipations formulated by Huthmann and

Zippelius [19] gives an expression for the kinetic energy in

the steady state as function of r but only agrees with the nu-

merical data in the region of r sufficiently close to unity. The

velocity distributions in Fig. 4 for the case of δ = 1, r = 0.9
shows very strong deviations from the Gaussian behaviour –

and seems to agree much better with a simple exponential

decay. In fact, Cafiero et al. [17] have made a systematic

analysis of the tails of the velocity distributions as function

of r and fitted them to a stretched exponential of the shape

foexp(−B|vx|
α) , (6)

where fo, B, and α are fit parameters. It was found that α=2
in the limit r−→1 – a Gaussian distribution in the elastic

limit, as expected. For small values of r they observed good

agreement with a mean field prediction α=(3−2δ)/2 [17,

20]. Again one would physically argue that the deviations

from the Gauss distribution are mainly due to clustering. The

mean field theory predicts α=3/2 for additive driving and

this has recently been measured by Losert et al. [5] in vi-

brated layers of glass beads.

Rev. Mex. Fı́s. 49 S2 (2003) ???–???



DYNAMICS OF GRANULAR MEDIA 3

FIGURE 4. Velocity distribution for δ = 1, r = 0.9. The dashed

line is a Gaussian and the full line has fo=7.6, B = 18.9 and

α = 1.05, [see Eq. (6)].

The picture is quite different for the case of rotational

driving. There, Cafiero et al. [18] found that the system

shows no clustering instability. Fig. 5 shows an image for

r = 0.1. Thus, the system appears homogeneous at least at

large scales. The mean field theory of Huthmann and Zip-

pelius [19] works very well for all values of r, see Fig. 6.

The distribution of angular velocities agrees quite well

with a Gaussian. But the distribution of translational veloc-

ities is anomalous; the data are shown in Fig. 7. The line

through the data points is a fit of the stretched exponential

with α = 1.41. This is a very interesting result because

it shows that one can find important substantial deviations

from the Boltzmann behaviour without having clustering and

being in a steady state with a Gaussian driving with one de-

gree of freedom (rotation). The sole transfer from rotational

to translational motion in an inelastic way is responsible for

the anomaly.

Summarizing, we have described the status of a dissipa-

tive gas. The anomalous velocity distributions are not neces-

sarily due to clustering. The dissipative gas acts as a noise

transformer which transfers Gaussian into non-Gaussian dis-

tributions by going from one degree of freedom to the other

without conserving energy. This observation still has to be

understood.

3. Distributions in dense granular packings

Behringer and collaborators [10, 11, 21, 22] performed ex-

periments in two-dimensional Couette-cells filled with about

3000 photoelastic disks and monitored in detail velocities and

rotations of each individual disk during shearing in steady

state. This shearing was imposed by rotating the inner wheel

of the cell and keeping the outer wheel at rest. The force dis-

tributions were visualized and the density, tangential velocity

and average spin were measured as functions of R, the dis-

tance from the inner wheel. Also the probability distributions

for the tangential velocities were determined. Numerical sim-

ulations [10,12] have tried to reproduce as faithfully as possi-

ble the experimental conditions and obtained agreement with

the experiments in all the average properties.

FIGURE 5. Steady state for r = 0.1 and rotational driving.

FIGURE 6. Simulation (points) and mean field theory (full line) for

the ratio between rotational and translational energy.

FIGURE 7 Translational velocity distribution for r = 0.1 and rota-

tional driving. The solid line is a Gaussian and the dashed line has

the form of Eq. (6), with δ = 1.41.
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The result of this combination, experiments and simula-

tions, concerning the velocity distributions is shown in Fig. 8

close to the outer ring which is at rest. There the velocities are

very small since the granular packing does nearly not move.

As seen in the figure, the distributions are not Gaussian, but

have rather exponential tails. One also recognizes the good

agreement between experiment and simulation. For the case

of such dense systems, one can actually argue in favour of

such an exponential distribution. Since one can suppose that

the particles are equidistant, one can consider the collision

rate be a fixed number without important fluctuations. Let us

say that the particles collide at regular intervals and diminish

each time their velocity by a factor of r. Supposing one is

in steady state, one has the scaling behaviour P (v) = P (rv)
which is solved by a stretched exponential of the form e−avα

.

Since one can expect that the average velocity also rescales

by a multiplication with r, one concludes α = 1 which is the

searched result.

Velocity distributions measured at the inner ring are typi-

cally bimodal with one peak at zero velocity [11,21,22]. Such

distributions were also found in MD simulations of vibrated

systems [10].

4. Conclusions

In this short paper we have reviewed the empirical situation

of velocity distributions in granular media. Clearly, deviation

from Boltzmann statistics is observed. In the case of clus-

tering an anomalous behaviour can be explained by the ap-

pearance of two types of particles, the slow ones inside of the

cluster and the faster ones between the clusters. In the case

of dense systems the lack of fluctuations in distances between

particles produces exponential tails due to the multiplicative

nature of dissipation. The dilute case in which a system is

FIGURE 8. Tangential velocity distribution close to the fixed

boundary.

driven through rotations fulfils the conditions of homogene-

ity, molecular chaos and Gaussian distribution in the driven

degrees of freedom. Nevertheless does the dissipative trans-

fer from one degree of freedom to the other generate ve-

locity distributions with tails which numerically agree with

stretched exponentials and an exponent that varies from the

mean field values at low restitution to the Gaussian behaviour

in the elastic limit. This last case of anomaly has no physical

explanation up to date.

It would certainly be interesting to try on the one hand

to derive the long tail behaviour through driven Boltzmann-

like equations by inserting not as usual Gaussian noise to get

a more consistent understanding of the foundations of these

distributions. It would also be interesting to see if a more

generalised statistics like the one proposed by Tsallis [23] is

an adequate tool to treat these systems.
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