
Triple Tilting Rotor mini-UAV: Modeling and Embedded Control of the

Attitude

J. Escareño, A. Sanchez, O. Garcia, R. Lozano

Abstract— The goal of this paper is to present a novel
configuration for a three-rotor mini Unmanned Aerial Vehi-
cle (UAV). The proposed design incorporates advantageous
structural features which enhance the maneuverability of the
rotorcraft. The detailed mathematical model of the vehicle’s
attitude is obtained through the Newton-Euler formulation.
In terms of control, we propose a control law which is robust
with respect to dynamical couplings and adverse torques. The
vehicle tilts simultaneously the three rotors to stabilize the
yaw dynamics. The resulting control algorithm is simple for
embedded purposes. A customized low-cost embedded system
was developed to test an autonomous stabilized-attitude flight,
obtaining satisfactory results.

Index Terms— Three-rotor aircraft, Coupled dynamics,
Collective tilting, Homemade IMU, Embedded architecture,
VTOL.

I. INTRODUCTION

The growing interest on the design of rotary-wing UAVs

for military and civilian applications, has encouraged in-

dustry and researchers to search for new designs, aiming at

more efficient configurations in terms of size, flight range,

autonomy and payload capacity.

A reliable autonomous attitude-stabilized flight is re-

quired for reconnaissance and surveillance missions, where

the goal is to provide a visual perspective of ”blind” areas

(around the corner, over the hill). In these missions, the

3D position is usually controlled by the operator (e.g.

cop/soldier at a safe location) through an on-board camera,

whereas the attitude is computer-controlled.

There exists various types of rotorcrafts. Some have

two rotors like the the classical helicopter or the tilting

rotor aircraft. Four-rotor rotorcrafts are also very popular

[2]. Other multi-rotorcrafts have even a large number or

rotors as the one in [3] which has eight rotors. Some of

these rotorcraft have variable pitch blades like the classical

helicopter or tilting rotors [4] and have strong nonlinear

couplings which increase the complexity of the controller

design. Four-rotor configurations have smaller nonlinear

coupling and are easier to control. In this paper we are

interested in designing a rotorcraft using only three fixed

pitch blade rotors which have the same manoeuvrability of

four-rotor aircrafts. The reduction in the number of rotors

from four to three allows to obtain more compact vehicles

(backpackable UAVs) for rapid deployment, as well as

longer flight autonomy.
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There exist few works concerning three-rotor vehicles

in the literature. In [5], a body-rotating (lack of yaw

control) three-rotor is presented. In this configuration the

vehicle maintains the horizontal attitude by combining the

aircraft’s gyroscopic effect and a piezoelectric sensor, also

described in the paper, in order to sense the tilt angle with

respect to the horizontal orientation. An alternative three-

rotor configuration is presented in [6]. In this design, the

front rotors control the roll motion and provide the main

lift component, whereas the tail rotor controls the pitch

and yaw motion (rotor tilting). The control algorithm was

run in an external PC based on the approach of the nested

saturations.

In the present paper we propose a three-rotor configu-

ration, called Delta1, which incorporates certain structural

advantages in order to improve the attitude stabilization.

The proposed vehicle provides a reliable maneuverability

despite the reduced number of rotors. In terms of control,

we design a control strategy to stabilize the attitude of

the Delta rotorcraft in presence of dynamic coupling and

adverse propeller effects (the gyroscopic and blade’s drag

torques). Moreover, the resulting algorithm is simple for

embedded purposes. The paper is organized as follows:

Section II presents the detailed dynamical model of the

three-rotor rotorcraft. The control strategy is presented in

section III. The simulation results of the attitude stabiliza-

tion are given in section IV. In section V, we describe the

experimental prototype, the embedded system as well as

real-time results of an autonomous attitude-stabilized flight

of the Delta UAV. Finally some concluding remarks are

given in section VI.

II. DELTA UAV

The Delta mini-UAV has three rotors located at the

same distance from the center of gravity C. This structural

feature (symmetry) allows to provide a symmetric lift

contribution for the vehicle, improving its stability and

payload capability. In addition, the heading is controlled

by the collective tilting of the rotors.

A. Attitude dynamics

The body frame is formed by B={iB
C
, jB

C
, kB

C
}, and is

attached to the vehicle, whose C is located at the origin of

the frame. The equation that models the rotational motion

of the vehicle is given by

IΩ̇B + ΩB × IΩB = ΓB (1)

1We have chosen Delta to denote the symmetrical rotor placement on
the vehicle
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Fig. 1. Delta rotorcraft free-body scheme.

Fig. 2. Yaw motion

where the body-axis torque vector is mainly composed by a

torque provided by actuators and a parasitic torque provide

by propeller (gyroscopic effect, blade’s drag).

ΓB

c = ΓB

c + ΓB

g + ΓB

d (2)

The angular rate vector relative to body-axis (ΩB =
(p, q, r)T ) frame is related to the Euler angular rate vector

(η̇ = (φ̇, θ̇, ψ̇)T ) by

ΩB = Wnη̇ with Wn =





1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ



 (3)

Wn denotes separate rotations of the three Euler angles rate

components by three different orthonormal matrices (Euler

rotations)[8]-[1]. Using (3) we obtain the time derivative,

given as

Ω̇B = Wnη̈ +

(

∂Wn

∂φ
φ̇ +

∂Wn

∂θ
θ̇

)

η̇, (4)

in (1), we obtain the detailed equation that describes the

dynamical behavior of the rotational motion:

I

[

Wnη̈ +

(

∂Wn

∂φ
φ̇ +

∂Wn

∂θ
θ̇

)

η̇

]

+(Wnη̇)×I(Wnη̇) = ΓB

(5)

• Actuator torque: The expression that defines the

actuators torque is obtained in terms of the body-axis

frame.

ΓB

c = ℓB
1
× TB

1
+ ℓB

2
× TB

2
+ ℓB

3
× TB

3
(6)

with

ℓB
1

=
[

ℓ sin(π
6
), ℓ cos(π

6
), 0

]T
,

ℓB
2

=
[

ℓ sin(π
6
),−ℓ cos(π

6
, 0

]T
,

ℓB
3

= [−ℓ, 0, 0]
T

.

where ℓ denotes the distance from the motor to the

gravity center. To obtain the thrust vectors T1 and T2

in terms of the body axis, we consider an auxiliary

frame provided by the tilting angle ξ, thus, it is

required a rotation Rξy about jy . Afterwards, a fixed

rotation Rπ
6 about kz provided by the structure of the

vehicle [see figure 2].

Rξy =





cos ξ 0 sin ξ
0 1 0

− sin ξ 0 cos ξ



 (7)

TB

1
= Rπ

6 RξT
ξ
1

TB

2
= (Rπ

6 )T (Rξ)T T
ξ
2

(8)

For T3 the only existing rotation is the one provided

by the tilting angle ξ, but now, about −ix.

Rξx =





1 0 0
0 cos ξ sin ξ
0 − sin ξ cos ξ



 (9)

TB

3
= RξxT

ξ
3

(10)

From (8) and (10), the three scalar equations for the

body-axis thrust can be written as

TB

1
= [T1 cos π

6
sin ξ,−T1 sin ξ sin η, T1 cos ξ]T

TB

2
= [−T2 cos π

6
sin ξ,−T2 sin ξ sin η, T2 cos ξ]T

TB

3
= [0, T3 sin ξ, T3 cos ξ]T

(11)

Finally, using (II-A) and (11) to solve (6), we obtain

the expression of the actuators vector torque:

ΓB

c =





1

2

√
3ℓ(cos ξ)(T1 − T2)

− 1

2
ℓ(cos ξ)(T1 + T2 − 2T3)

−ℓ(sin ξ)(T1 + T2 + T3)



 (12)

• Gyroscopic torque: The rotor tilting produce an ad-

verse torque, which can be described by the following

ΓB

g = −Ib

3
∑

i=1

(ΩB × ωB

bi
) (13)

with
ωB

b1
= Rπ

6 Rξωξ
b1

ωB

b2
= (Rπ

6 )T (Rξy )T ωξ
b2

ωB

b3
= Rξxωξ

b3

where Ib and ωbi
are, respectively, the inertia moment

and the angular speed of the propellers.
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• Drag torque: An adverse torque is also generated

by the air resistance experienced by a rotating blade

(drag), which can be modeled as

ΓB

d =
3

∑

i=1

ℓBi × DB

bi
(14)

with
DB

b1
= Rπ

6 RξyDξ
b1

DB

b2
= (Rπ

6 )T (Rξy )T Dξ
b2

DB

b3
= RξxDξ

b3

III. CONTROL STRATEGY

In this section we present a control strategy to stabilize

the attitude of the three-rotor VTOL. For this analysis we

have neglected the gyroscopic and propeller-drag torques,

in experimental test we will show that the proposed strat-

egy is robust enough to deal with this terms. This control

strategy splits the rotational dynamics in three subsystems:

the axial, lateral and longitudinal dynamics.

• Axial dynamics: This dynamics correspond to the

heading motion of the vehicle, which is described by

the following equation:

Izψ̈ = −ℓ(sin ξ)(T1 + T2 + T3), (15)

For simplicity we consider the normalized value of Iz

and ℓ(T1+T2+T3), i.e. Iz = 1 and ℓ(T1+T2+T3) =
1. Now, let us rewrite the vector-state representation

of (15)
ẋψ1

= xψ2

ẋψ2
= − sin(uψ)

(16)

where xψ1
= ψ,xψ2

= ψ̇ and uψ = ξ. We propose

the following control input, in order to stabilize the

system (16)

uψ = arcsin(vψ) (17)

Notice that arcsin(vψ) is defined for values within the

interval −1 ≤ vψ/kψ ≤ 1. For this reason we will

bound vψ to this interval. To do so, we will employ

a saturation-based algorithm [9], which is described

next.

We define the following change of variables:

z1 = xψ2

z2 = z1 + xψ1

(18)

and vψ = σa(z1 + σb(z2)). Then, the control input

(17) becomes

uψ = arcsin(σa(z1 + σb(z2))) (19)

where σn is a saturation function defined as

ση(s) =







η s > η
s − η ≤ s ≤ η
−η s < −η

We will show that the control law (19) stabilizes the

system (15) around the origin.

Stability analysis

Let us consider the following positive function V1 =
1

2
z2

1
where z1 = xψ2

. Thus, ż1 = ẋψ2
= − sin(uψ)

and thus V̇1 is

V̇1 = −z1σa(z1 + σb(z2)) (20)

note that if |z1| > a and a > b then V̇1 < 0.

Therefore, there exists a finite time t1 such that for

t > t1 then |z1| < a. For t > t1 the control law (19)

becomes

uψ = arcsin(z1 + σb(z2))

Since z2 = z1 + xψ1
, it follows that

ż2 = − sin(uψ) + z1 = −σb(z2)

Define the positive function V2 = 1

2
z2

2
then V̇2 is

V̇2 = −z2σb(z2) (21)

where V̇2 < 0. For this reason, after a finite time t2
such that for t > t2 then |z2| < b.

From (21) we notice that z2 → 0, and recalling (18)

we conclude that

xψ1
→ 0

xψ2
→ 0

• Longitudinal dynamics: The pitch behavior is gov-

erned by the following equation:

Iy θ̈ = −1

2
ℓ(cos ξ)(T1 + T2 − 2T3) (22)

notice the existence of a nonlinear term which de-

pends on the axial dynamics, i.e. cos ξ. Thus, in order

to render this dynamics independent, we should make

it robust to this coupling term. For control analysis

we assume a normalized value of Iy and 1

2
ℓ, now

rewriting (22) as

θ̈ = −δuθ (23)

with δ = cos(ξ) and uθ = T1 +T2−2T3. δ is consid-

ered as a perturbation, which is restricted to 0.54 ≤
δ ≤ 1. This bound arises from the operation range

of the servomotor, which was previously bounded

to −1 ≤ ξ ≤ 1. The vector-state representation

Ẋθ = AXθ + Buθ of (23) is

Ẋθ =

(

0 1
0 0

) (

xθ1

xθ2

)

+

(

0
−δuθ

)

(24)

where xθ1
= θ and xθ2

= θ̇. Notice that A is not

Hurwitz, then, to render it stable, we introduce an

artificial input ūθ

Ẋθ =

(

0 1
0 0

)(

xθ1

xθ2

)

+

(

0
−(ūθ − ūθ + δuθ)

)

(25)

with ūθ = (aθ1
xθ1

+ aθ2
xθ2

) having aθ1
, aθ2

> 0,

and we obtain

Ẋθ =

(

0 1
−aθ1

−aθ1

)(

xθ1

xθ2

)

+

(

0
ρθ + δuθ

)

(26)
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with ρθ = aθ1
xθ1

+ aθ2
xθ2

. Finally we look for an

input to deal with δ. We propose uθ = −2ūθ to get

Ẋθ =

(

0 1
−aθ1

−aθ2

) (

xθ1

xθ2

)

+

(

0
ρθ(1 − 2δ)

)

(27)

choosing this input, we ensure stability for the system

for any value within the interval 0.54 ≤ δ ≤ 1
• Lateral dynamics: The remaining dynamics is the

roll dynamics, which has also the same nonlinear term

δ from the axial dynamics. As a result, we follow the

same methodology to deduce a controller to stabilize

this dynamics.

Ixφ̈ =
1

2

√
3ℓ(cos ξ)(T1 − T2) (28)

employing similar assumptions as in the previous

analysis, we can rewrite (28) as

φ̈ = δuφ (29)

where uφ = T1 − T2. The corresponding vector-state

representation Ẋφ = AXφ + Buφ, considering the

artificial input is written as

Ẋφ =

(

0 1
0 0

)(

xφ1

xφ2

)

+

(

0
ūφ − ūφ + δuφ

)

(30)

where xφ1
= φ and xφ2

= φ̇. Then, we propose ūφ =
−(aφ1

xφ1
+ aφ2

xφ2
) and uφ = 2ūφ to get

Ẋφ =

(

0 1
−aφ1

−aφ2

)(

xθ1

xθ2

)

+

(

0
ρφ(1 − 2δ)

)

(31)

with ρφ = (aφ1
xφ1

+ aφ2
xφ2

). This control-input

choice stabilizes the system (28) for any value within

the interval 0.54 ≤ δ ≤ 1.

IV. SIMULATION STUDY

In this section we evaluate the performance of the

control laws proposed in the previous sections, numerical

simulation is conducted for both control strategies. The

parameters employed in the simulation are contained in the

table below The initial situation of the vehicle is the follow-

Parameter Value

Ix 1 kgm2

Iy 1 kgm2

Iz 1 kgm2

ℓ 0.3 m

TABLE I

SIMULATION PARAMETERS

ing: (ψ(0), θ(0), φ(0), ψ̇(0), θ̇(0), φ̇(0))=(1,1,-1,1,π
4

,0).

The control algorithm utilizes the following control gains:

The performance of the control strategy to achieve an

stabilized-attitude flight for the three-rotor mini-UAV is

shown on the following set of figures. The figure (3)

illustrates the evolution of the heading motion, while figure

Dynamics Gain 1 Gain 2

Yaw aψ1
= 1 aψ2

= 1

Pitch aθ1
= 2 aθ2

= 2

Roll aφ1
= 1 aφ2

= 1

TABLE II

CONTROL GAINS

(4) shows the roll and pitch stabilization and finally, the

tilt angle ξ and the perturbation term δ are shown in figure

(5). Notice that roll and pitch remain stable despite the

perturbation term δ.
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Fig. 3. Performance of heading (yaw)
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Fig. 4. Performance of horizontal attitude (roll and pitch)
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Fig. 5. Performance of tilt angle and perturbation

V. EXPERIMENTAL SETUP

A. Aircraft description

The Delta UAV fuselage is made of carbon fiber, mea-

suring approximately 0.3m on each side of the Delta. The

weight of the vehicle is 0.45 Kg including the battery

(Lithium-Polymer). The tilting mechanics is based on

electronic servo-motors [see figure 6].
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Fig. 6. Dimensions of the Delta UAV.

B. Embedded system

The embedded system includes: an on-board microcon-

troller, a data acquisition module, and a sensor board. Fig-

ure 7 shows the instrumentation of the embedded autopilot.

RABBIT
MICROCONTROLLER

INERTIAL
MEASUREMENT
UNIT
(IMU)

SERVOMOTOR

SENSORS

BRUSHLESS
MOTOR

CONTROL
DRIVER

Fig. 7. Principal parts of the Delta UAV.

1) On-board microcontroller (OBM): The flight con-

trol law is stored in the microcontroller and the motors

are controlled using a PWM signal. The microcontroller

processes the feedback signal (IMU), i.e. signal filtering

and I-O serial data as well as the pulse width measurement

coming from the R/C receptor so that the OBM can include

an external user input to perform either manual flight or

semi-automatic flight. The selected microcontroller is a 512

Kb flash memory with a 29.4 MHz processor.

2) Data acquisition module (DAQ): The DAQ module

links the IMU signal with OMB. It employs a PIC16F873

which features 5 analog input channels with 8 bits res-

olution and 24 digital I/O channels. This module also

incorporate a buffer to interface the PWM signal with the

rotor driver.

3) Sensor module (IMU): A customized sensor board

was designed and built to provide the PVTOL’s angular

position (φ, θ) and angular rate (φ̇, θ̇, ψ̇). This board en-

compasses one dual-axis accelerometer (inclinometers) and

three gyroscopes.

IMU

 ADC PIC

S
E

R
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L

RC Receiver

D-Fusion

Control

P
W

M

PWM

Capture

P
IN

G

ΣΣΣΣ

Power interface

Optocoupling

P
W

M

Mosfets

GYRO Z

 

GYRO X

ACC X

 
GYRO Y

 

ACC Y

Rabbit

C-surfaces Propeller

Actuators

Fig. 8. Block diagram of the embedded autopilot of the Delta UAV.

C. Experimental results

In this section, we show the experimental results corre-

sponding the autonomous attitude-stabilized flight of the

Delta UAV. The performance obtained of the Delta UAV

are illustrated in the figures 9, 10 and 11.
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Fig. 9. Roll angle and roll control of the Delta UAV.

VI. CONCLUDING REMARKS

We have presented in detail the mathematical model

corresponding to the attitude of the proposed configuration.

We have built a VTOL rotorcraft based on three tilting

rotor that provides a reliable attitude and maneuverability.

We have proposed a control strategy robust with respect to

dynamic couplings and to the adverse torques (ΓB
g , ΓB

d )

produced by the gyroscopic-effect and propeller’s drag.

The resulting control law is simple for embedded purposes.
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Fig. 10. Pitch angle and pitch control of the Delta UAV.
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Fig. 11. Yaw angular rate and yaw control.

We have performed a successful autonomous attitude-

stabilized flight.
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