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Abstract. The Semantic Web fosters novel applications targeting a more effi-
cient and satisfying exploitation of the data available on the web, e.g. faceted
browsing of linked open data. Large amounts and high diversity of knowledge in
the Semantic Web pose the challenging question of appropriate relevance ranking
for producing fine-grained and rich descriptions of the available data, e.g. to guide
the user along most promising knowledge aspects. Existing methods for graph-
based authority ranking lack support for fine-grained latent coherence between
resources and predicates (i.e. support for link semantics in the linked data model).
In this paper, we present TripleRank, a novel approach for faceted authority rank-
ing in the context of RDF knowledge bases. TripleRank captures the additional
latent semantics of Semantic Web data by means of statistical methods in order
to produce richer descriptions of the available data. We model the Semantic Web
by a 3-dimensional tensor that enables the seamless representation of arbitrary
semantic links. For the analysis of that model, we apply the PARAFAC decompo-
sition, which can be seen as a multi-modal counterpart to Web authority ranking
with HITS. The result are groupings of resources and predicates that characterize
their authority and navigational (hub) properties with respect to identified topics.
We have applied TripleRank to multiple data sets from the linked open data com-
munity and gathered encouraging feedback in a user evaluation where TripleRank
results have been exploited in a faceted browsing scenario.

1 Introduction
Relevance ranking is a crucial component for a wide range of Semantic Web appli-
cations, such as semantic search and semantic browsing. Online services such as the
dbpedia.org [4] provide rich descriptions of Semantic Web resources that render man-
ual browsing extremely difficult. For instance, the resource The Beatles has no less than
1228 links going in and out of it. In the context of RDF knowledge bases, data can be
seen as a graph where nodes represent RDF resources and edges correspond to RDF
predicates that link resources. Consequently, graph-based authority ranking algorithms
known from Web retrieval, such as PageRank [8], HITS [23] or SALSA [27], can be
adopted for the Semantic Web setting, too. Instead of ratings for Web pages they will
then output ratings for RDF resources, with respect to one or more criteria, e.g. hub and
authority scores in HITS. These scores reflect the centrality/importance of particular
RDF resources in the knowledge representation and thus can be exploited for relevance
estimation.



Two important observations can be made about the authority ranking for RDF data.
On one hand, the computational models of standard algorithms for Web analysis only
consider structural information, i.e. the connectivity of graph nodes. Additional link
semantics, e.g. knowledge about different link types, is not used. On the other hand,
knowledge representation in the Semantic Web is heterogeneous. There is no single
ontology for the Semantic Web that describes all of the available data in a concise
way. Instead, there are many cases of overlapping, redundant, and conflicting ontolo-
gies describing similar information. Therefore, we may expect redundancies like the
co-existence of different predicates with highly similar (or identical) meaning. For in-
stance, even the well maintained data from dbpedia.org contains the redundant links
http://dbpedia.org/ontology/writer and http://dbpedia.org/property/writer which have the
same semantics. Common authority ranking algorithms provide no support for finding
such groups of semantically coherent relationships.

For incorporating missing link semantics, various adaptations to the common au-
thority ranking models can be constructed. However, changes to the computational
model may alter the original behavior of an algorithm and impose new restrictions.
For instance, the ObjectRank [6] approach adds link semantics to PageRank. However,
it requires to assign static probabilities to each type of link before its application. Thus,
ObjectRank lacks the flexibility of the original approach which can be easily applied to
arbitrary Semantic Web graphs without such upfront assignments. Moreover, the modi-
fication of the original models and algorithms can impose side effects and hampers the
comprehensibility of the approach. Interpretations on the impact of each modification
are required to enable the evaluation of such modifications.

In this paper, we introduce a new approach TripleRank for authority ranking of
linked data on the Semantic Web that naturally takes into account its additional se-
mantics. We reconsider the paradigm of two-dimensional graph representation (e.g. ad-
jacency matrix for HITS, probabilistic transition matrix for PageRank, a mixture of
these models for SALSA, etc.) and represent semantic graphs by 3-dimensional ten-
sors. Our model has a clear semantics and supports the seamless representation of RDF
graphs, including link/predicate semantics. For finding authoritative sources, we apply
the PARAFAC decomposition [18] which can be seen as a multi-dimensional corre-
spondent to a singular value decomposition of a matrix. Tensor decomposition yields
rich information on the resources and predicates of the analyzed Semantic Web graph
beyond simple rankings. Rated groupings of RDF resources and RDF predicates with
respect to their (latent) topic, authority, and navigational (hub) characteristics are the
outcome of the analysis. These results can be exploited to support a variety of applica-
tions, such as semantic faceted navigation. We present encouraging results of TripleR-
ank gathered by its application to multiple RDF data sets from the Wikipedia free en-
cyclopedia and the DBLP research publications database.

The contribution is organized as follows. In Section 2 we distinguish our work from
related approaches for rating Web pages and (semi-)structured data. Section 3 intro-
duces the tensor-based semantic graph representation for RDF knowledge bases and its
PARAFAC decomposition for authority ranking. Section 4 addresses design and archi-
tecture issues of TripleRank. Consequently, Section 5 shows results of systematic user



studies that demonstrate the viability of TripleRank and its advantages in comparison
with other methods. Section 6 summarizes and concludes the contribution.

2 Related Work

From the conceptual perspective, two topics can be seen as closely related to our
TripleRank approach: authority ranking for Web contents and graph-based relevance
ranking for semi-structured data. This section gives a short overview of these areas and
distinguishes TripleRank from other existing solutions.

2.1 Rating Web Pages

PageRank [8], HITS [23] and SALSA [27] are prominent algorithms for ranking Web
pages based on link analysis. PageRank builds upon a model of a random walk among
Web pages, where the stationary probability of passing through a certain page is in-
terpreted as measure of its importance. HITS is based on the notion of a mutual re-
enforcement between importance (authority) and connectivity (hub) scores of Web
pages. SALSA can be seen as a more complex hybrid solution that integrates ideas
of PageRank and HITS by combination of both link traversing directions (i.e. forward
and backward) for constructing graph models. The conceptual generalization for this
kind of methods is given in [14]. Unlike TripleRank, this family of methods provides
no natural mechanisms for expressing and exploiting link semantics.

The contextualization of graph models can be achieved through different customiza-
tions of the mentioned models. Possible adaptations include various custom weightings
of graph edges (e.g. based on appearance of particular terms in Web documents [31,29],
content classification [13,19], structural properties like in-domain vs. out-domain link-
ing [7], etc.) or joint probabilistic modeling for content and connectivity of Web pages
[12]. In contrast to TripleRank, these solutions are designed for the Web setting and do
not introduce distinguished link semantics. The solution presented in [26] uses for Web
authority ranking the higher-order representation of the hyperlink graph by labeling the
graph edges with the anchor text of the hyperlinks. This method is closely related to
TripleRank, but addresses a fully different problem setting (links and anchors in the
Web graph vs. linked data in Semantic Web RDF graphs). Additionally, our paper aug-
ments the introduction of TripleRank with a user evaluation that gives insight into the
applicability of the overall authority ranking approach.

Another kind of contextualization for authority ranking models can be observed
in the area of search personalization. For instance, Eirinaki and Vazirgiannis present a
modification of the PageRank algorithm to compute personalized recommendations of
Web pages given a path of visited pages [16]. Their approach requires access to web
server logs that provide statistics about the paths browsed by other users. BrowseRank
[28] is a further example of a page ranking approach that requires to collect statistics
on user behavior such as the time spent on a web page. The generalized algorithm for
personalized authority ranking is described in [22].

Our TripleRank approach is designed for a different scenario of resource recom-
mendation when browsing linked data. As when browsing the Web, detailed statistical



information about prior user visits is not available in our problem setting. Our TripleR-
ank approach is conceptually more general and does not rely on user profiles and query
logs. As when browsing the Web, detailed statistical information about prior user visits
is often not available in our Semantic Web scenario. However, this information can be
easily integrated with TripleRank, if necessary.

2.2 Rating (Semi-)Structured Data

ObjectRank [6] adds authority transfer weights for different types of links to the PageR-
ank algorithm. Such weights influence the random walk of prospective users and are to
be assigned by domain experts. Beagle++ [10] is an extension for the Beagle desktop
search engine that applies ObjectRank to RDF meta data about desktop objects to im-
prove their ranking in desktop search scenarios. TripleRank also considers the seman-
tics of link types, however, it is an approach for computing ranks for RDF resources at
runtime, does not rely on manually assigned link weights, and is based on the general-
ized HITS algorithm instead of PageRank.

Several research works have dealt with information retrieval in the Semantic Web,
presenting approaches for ranking resources based on keyword input, e.g. Swoogle [15]
and ReConRank [21]. Browsing-based search strategies, as targeted by TripleRank, dif-
fer from keyword search with respect to the search process, its perception by users, and
the input and output data processed to implement browsing support [9]. Rocha et al.
[32] presented an approach to semantic search that associates tf-idf, represented by se-
mantic specificity and semantic similarity, to semantic relations to apply a spreading
activation approach on this augmented graph.

Anyanwu and Sheth present a framework for query answering with respect to so
called semantic associations [3]. A semantic association represents semantic similarity
between paths connecting different resources in an RDF model. Aleman-Meza et al.
[1] presented and evaluated methods for ranking semantic associations. As a continued
work of [3], the presented methods target the identification of similar resources to apply
it in scenarios like terror-prevention. Their approach involves ranking criteria consid-
ering graph structure, and user context. User context is defined statically by selecting
ontology concepts that are considered as representative for a user’s context. Ramakr-
ishnan et al. present heuristics for weighting graph patterns connecting two nodes in a
graph considering the differences of edges given by RDF graphs that include schema in-
formation encoded as RDFS ontologies [30]. Prior approaches on graph pattern analysis
presented methods assuming that only one type of edge exists. Next to a presentation of
the heuristics, they present an evaluation of them targeting the question which heuristic
results in higher quality patterns.

3 TripleRank: The Semantic Web as Tensor

The authority ranking approach by TripleRank builds upon the analysis of a tensor. In
this section, we first introduce our modeling approach for representing the Semantic
Web as tensor. We then continue with details on its analysis.



3.1 The TripleRank Model

We define a Semantic Web graph as a graph G = (V,L,E, linkType) where V is the
set of RDF resources in the graph, L is the set of literals contained, and E is the set of
links between RDF resources in V . Additionally, the function linkType : E → V re-
turns the URI of the property that links two resources. Fig. 1(a) shows a small Semantic
Web graph that contains seven resources (A,B,C,D,E,loves,hates) and ten links of two
different types: loves and hates.

(a) Sample Semantic Web Graph (b) Tensor Representation

Fig. 1. Modeling Example

We represent Semantic Web graphs by a 3-dimensional tensor T where each of its
slices represents an adjacency matrix for one RDF property. Figure 1(b) illustrates the
tensor resulting from the transformation of the sample graph shown in Fig. 1(a). The
first adjacency matrix T (:, :, 1)1 models linkage by the property loves. An entry > 0
corresponds to the existence of a link by this property, empty entries are considered as
zeroes. The second matrix T (:, :, 2) models links by the property hates. For instance,
the graph expresses that Alex hates Bob, which corresponds to T (1, 2, 2) = 1.

3.2 PARAFAC for Authority Ranking

The Semantic Web graph can be described by an adjacency matrix. For a network graph
matrix M the well known authority ranking methods like HITS [23] can be applied.
HITS defines the authority ranking problem through mutual reinforcement between so-
called hub and authority scores of graph nodes. The authority (relevance) score of each
node is defined as the sum of hub scores of its predecessors. Analogously, the hub
(connectivity) score of each node is defined as a sum of the authority scores of its
successors. By applying the Singular Value Decomposition (SVD) to the adjacency
matrix, we obtain hub and authority scores of graph nodes for each singular value of
M , which can be interpreted as rankings regarding different themes or latent topics of
interest. Formally, by this method, some arbitrary matrix M ∈ Rk×l is splitted into
three matrices U ∈ Rk×m, S ∈ Rm×m, V ∈ Rl×m. U and V represent the outlinks
and inlinks with respect to the principal factor contained in S. Corresponding to our

1 Throughout this paper we use the common Matlab-notation for addressing entries in tensors
and vectors



notation, M can be written as sum of rank-one-matrices by M =
∑m
k=1 S

k · Uk ◦ V k.
This 2-way decomposition yields authority and hub scores (cf. Fig. 2(a)) [25].

Modeling several link types by separate matrices results in very sparse and not con-
nected matrices. Instead, the tensor model applied by TripleRank enables the represen-
tation of all adjacency matrices including information about the connections between
link types. Tensor decomposition methods like PARAFAC can then detect further hid-
den dependencies.

These methods are regarded as higher-order equivalents to matrix decompositions.
The PARAFAC tensor decomposition has the advantage of robustness and computa-
tional efficiency. These advantages are due to its uniqueness up to scaling and per-
mutation of the produced component matrices [18]. By PARAFAC input tensors are
transformed to so called Kruskal tensors, a sum of rank-one-tensors. Consequently, in
TripleRank we derive authority and hub scores for particular latent aspects (topics) of
the analyzed data from particular rank-one-tensors of the decomposition. In the context
of this paper we focus on three-mode-tensors that represent connectivity between graph
nodes together with semantics of links (predicates).

Formally, a tensor T ∈ Rk×l×m is decomposed by n-Rank-PARAFAC into com-
ponents matrices U1 ∈ Rk×n, U2 ∈ Rl×n, U3 ∈ Rm×n and n principal fac-
tors (pf ) λi in descending order. Via these T can be written as a Kruskal tensor by
T≈

∑n
k=1 λk · Uk1 ◦ Uk2 ◦ Uk3 where λk denotes the kth principal factor, Uki the kth

column of Ui and ◦ the outer product [25]. Ui yields the ratio of the ith dimension to the
principal factors. So, similar to SVD, PARAFAC derives hidden dependencies related to
the pfs and expresses the dimensions of the tensor by relations to the pfs. Depending on
the number of pfs PARAFAC decomposition can be loss-free. For a third-mode-tensor
T∈ Rk×l×m a weak upper bound for this rank is known: rank(T) ≤ min{kl, lm, km}
[25]. There is no proper way for estimating the optimal number of pfs for an appropri-
ate decomposition but several indicators like residue analysis or core consistency exist
[2].

(a) Matrix Decomposition [25] (b) Tensor Decomposition [25]

The PARAFAC decomposition of a tensor derives authority and hub scores plus ad-
ditional scores for the relevance of link types (cf. Fig. 2(b)). The tensor T in section
3.1 combines information about who loves and hates who. So the PARAFAC decom-
position would yield U1 with subject-pf relation, U2 with object-pf relation and U3

with property-pf relation. In other words U1 keeps the hub scores as relevance of the
subjects to the pfs, U2 the authorities scores as relevance of the objects to the pfs and
U3 scores of the relevance of property types to the pfs. In line with HITS the largest
entry of U1

1 corresponds to the best hub for the first pf and the largest entry of U1
2 to

the best authority.
By the three matrices U1, U2 and U3, subjects, objects, and properties can be com-

pared in pairs regarding the pfs derived from all three dimensions. E.g. the relation of
a property to specific subjects or objects is derived by multiplying the corresponding
column of U3 with those of U1 or U2 respectively.



3.3 Ranking Example

Applying the above transformation and analysis to the graph illustrated by Fig. 1 yields
the results shown by the first four columns of Table 1. Two groups are identified, one
where the predicate hates has a high score, and one where loves is scored highly. The
authoritative resources for each group differ from each other. Bob and Chris have high
scores with respect to hates. Don and Alex are the top authorities with respect to loves.
The application of HITS results in the ranking shown by column 5 and 6. The HITS
ranking corresponds to a ranking based on the indegrees of the resources. Notably, the
rankings produced by the PARAFAC analysis are different from the HITS results as
they provide rankings with respect to different knowledge aspects in the data.

Table 1. PARAFAC vs HITS Results

PARAFAC HITS
Score Predicate Score Resource Score Resource

Group 1 0.62 Chris
1.00 hates 0.71 Bob 0.56 Bob

- - 0.70 Chris 0.50 Alex
Group 2 0.16 Don

1.00 loves 0.70 Don 0.16 Elly
0.001 hates 0.70 Alex

- - 0.10 Elly

4 Implementation

Having introduced the theoretical background behind TripleRank, we present the im-
plementation into an applicable system below. We describe the three core components
of the TripleRank architecture, which encapsulate a 3-step process, namely i) the col-
lection of data and its transformation to a tensor model, ii) its pre-processing, and iii)
analysis.

4.1 Data Collection and Transformation

The first process step for the ranking of Semantic Web data is its collection. The
TripleRank-collector requests RDF data from (linked open) data providers on the Se-
mantic Web as follows. For a given starting point, i.e. some uniform resource iden-
tifier (URI), it executes a breadth first exploration of the surrounding resources. The
exploration is parameterized by the maximal exploration depth, the maximal number
of statements, and the maximal number of links to follow for each resource and link
type. The collected data is then transformed into the tensor representation introduced in
Section 3.1.

4.2 Pre-Processing

The second component of the TripleRank architecture implements the pre-processing
step on the collected data. Pre-processing is applied for two reasons: First, to reduce



the amount of data to be analyzed. Second, to increase the quality of the collected data.
Information-theoretic notions ground the pre-processing as implemented by TripleR-
ank. Predicates linking the majority of resources are pruned as they convey little infor-
mation and dominate the data set. More precisely, for all of the results presented in this
paper, a threshold of 40% has been used, i.e. predicates that occur in more than 40%
of all statements are pruned. The predicate wikilink as used within the dbpedia.org [4]
data set is an example of such a dominating predicate. It corresponds to links between
pages of the Wikipedia encyclopedia, e.g. linking from a page describing a music band
to associated band members, producers, tracks and further different types of informa-
tion. Accordingly, the semantics of the relation established by this property are rather
unclear.

A further pre-processing step is the weighting of the collected data to further rem-
edy the negative effects of domination. We amplify statements based on their predicate
frequency so that statements with less frequent predicates are amplified stronger than
more common statements. As an effect, the adjacency indicators in the tensor have the
following property:

T(x, y, z) =

{
1 + log α

links(z) , if x points to y using property z

0, else

The value α denotes the number of statements in which the most dominant predicate
participates. The function links(v) (links : V → N0) returns the number of statements
linked by property v.

We remark that the implemented pre-processing steps are valuable for generat-
ing ranking analyses in general. Notably, simple methods for authority ranking, e.g.
the counting of inlink scores per resource and predicate, benefit more from such pre-
processing than more complex methods like PARAFAC.

4.3 Analysis

The analysis step implements the PARAFAC decomposition of the tensor, as modeled
and created by the previous process steps. We have integrated existing software pack-
ages [5] for this purpose. As indicated in Section 3.2, the number of factors for the
PARAFAC decomposition is crucial for the quality of the results of the analysis. The
determination of the optimal number of factors is a case of open research. However,
heuristics for determining a suitable number of factors have been published, e.g. the
core consistency diagnostic (CORCONDIA) [2]. The factor determination applied in
TripleRank builds upon such research.

The result of the analysis is a Kruskal (cf. Sect. 3.2) tensor [25] that approximates
the original tensor. As illustrated in Figure 2, the resulting vectors for the first (row),
second (column), and third dimension are represented by three matrices. The columns
of each of the matrices correspond to the scores calculated for the different factors
f1...fk. Analogue to the SVD, entries in the column vectors correspond to authority
scores, i.e. indicating the relevance of a resource with respect to its in-degree. Entries in
the row vectors correspond to hub scores, i.e. indicating the relevance of a resource with
respect to its out-degree. We refer to [23] for a thorough analysis of the correspondence
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Fig. 2. Result of the analysis

between SVD and its interpretation for link analysis. Entries of the vectors in the third
dimension indicate the relevance of a resource with respect to the hub and authority
resources. Based on this notion, we interpret hub scores as indicative for the relevance of
resource when occurring as subject. Vice versa, authority scores indicate the relevance
of a resource as object of a statement. As we modeled RDF properties by the third
dimension, their relevance can be looked up in the vectors of the third dimension.

5 Evaluation

We have applied the implementation of TripleRank to existing Semantic Web data to
investigate on the quality of the results and the runtime performance of the approach.
Moreover, we have evaluated TripleRank in a user study where we have exploited it to
support faceted navigation.

5.1 Data Sets

We have created an evaluation testbed by applying the extraction and transformation
procedure introduced before. The testbed consists of multiple extracts around resources
from dbpedia.org and the SWETO DBLP corpus, e.g. The Beatles and Semantic Web.

Table 2 describes the different data sets. Data sets created with a different parameter-
ization are separated by a horizontal rule. The table shows, for each data set, the number
of statements contained initially, the number of distinct properties, the top 3 properties
with respect to the number of statements they occur in (shown in parentheses), and the
number of triples after the pre-processing. The first group of data sets has been crawled
by restricting the number of links per resource to 500 and the maximum exploration
depth to 10. For the second group, containing the data sets on the SPARQL query lan-
guage and the James Bond movie, a limit per predicate and resource has been set. For
each resource, a maximum of 100 links per link type have been explored while the max-
imum exploration depth has been set to 8. The final two data sets have been created by
restricting only the exploration depth. Here we see significant differences between the
data sources dbpedia and dblp. The latter data set contains much less link types com-
pared to the first. Among all2 dbpedia data sets, we recognize the domination of the
predicate wiklink. The crawling parameterization used for the first group of data sets al-
ready alleviated the domination, however, for less restrictive crawling parameters there

2 The originally crawled data set on SPARQL has been accidently overwritten with the pre-
processed data set so that statements containing wikilink are missing.



Table 2. Description of Data Sets

Start Resource Triples Prop- Top 3 Link Types Triples
Before erties After

dbpr:The Beatles 5084 85 dbpp:wikilink(1719), dbpp:origin(509), dbpp:artist(315) 5084
dbpr:HITS algorithm 5145 70 dbpp:wikilink(2780), skos:subject(440), dbpp:wikiPageUsesTemplate(143) 5145
dbpr:Berlin 5044 82 dbpp:wikilink(1671), rdf:type(345), dbpp:birthplace(170) 5044
dbpr:The Lord of 5035 51 dbpp:wikiPageUsesTemplate(1234), skos:subject(1126), dbpp:wikilink(1063) 5035
the Rings
dbpr:SPARQL - 75 skos:subject(2640), rdf:type(426), owl:sameAs(288) 7853
dbpr:James Bond 18421 93 dbpp:wikilink(13257), rdf:type(182), skos:subject(121) 5164
dbpr:The Beatles 158608 421 dbpp:wikilink(105254), dbpo:birthPlace(11097), dbpp:countryofbirth(7067) 55354
dblp:semweb/2007 20421 7 rdf:type(9902), dc:publisher(5559), opus:in series(4849) 10519
Namespaces: dbpr:<http://dbpedia.org/resource/>, dbpp:<http://dbpedia.org/property/>,
skos:<http://www.w3.org/2004/02/skos/core#>, dblp:<http://dblp.uni-trier.de/rec/bibtex/>,
dc:<http://purl.org/dc/elements/1.1/>, opus:<http://lsdis.cs.uga.edu/projects/semdis/opus#>

is a strong domination. For instance, statements containing wikilink make up about 72%
of all statements in the data set on James Bond. We provide download links for these
data sets online at http://isweb.uni-koblenz.de/Research/DataSets.

5.2 Performance

Applying TripleRank pre-processing and analysis steps to the data sets described above
has led to reasonable and interesting results that provide a rich description of the an-
alyzed data sets. As an example, Table 3 shows some of the results for the smaller
Beatles data set that contains 5048 triples. As explained above, the PARAFAC analysis
yields groupings of predicates and resources. A grouping corresponds to one box in
Table 3. The first two columns within a box show for each grouping, the highest ranked
predicates including their scores. The third and fourth column show the highest ranked
statement objects (authorities) and associated scores. Predicates with a score below 0.1
and resources with a score below 0.0001 have been omitted from the results. For in-
stance, the group on the top left shows the most authoritative resources for the topic de-
scribed by the predicates skos:subject, dbpo:label, dbpp:label, and dbpp:producer. The
top resources in this group are accordingly authoritative for the combination of these
predicates and do not necessarily have to be linked by the top predicate, skos:subject
for this group. For instance, the resource dbpr:Apple Records is contained as authority.
It describes a music label that produced songs of the Beatles.

As the quality of the results as illustrated by Table 3 seem sensible, we have also
measured the runtime performance of the analysis step. The data collection and trans-
formation steps have been excluded as these steps perform linear to the number of
statements. Specifically, the performance of the data collection depends heavily on net-
work bandwidth and the performance of the service providing the data. For all of the
data sets, the analysis execution times have been within 2 to 18 seconds on a standard
laptop computer with a dual core 2.0MHz processor and 2GB RAM.

5.3 User Evaluation: Faceted Browsing

We have evaluated TripleRank with 16 test persons to gather objective feedback on
the sensibility of its results. The fine-grained results produced by TripleRank can be

http://isweb.uni-koblenz.de/Research/DataSets


Table 3. TripleRank Results for the Beatles Data Set

Score Predicate Score Resource Score Predicate Score Resource
0.66 skos:subject 0.35 dbpr:Category:Songs produced-

by George Martin
0.70 dbpo:genre 0.73 dbpr:Rock and Roll

0.49 dbpo:label 0.32 dbpr:Category:1968 songs 0.70 dbpp:genre 0.45 dbpr:Beat music
0.48 dbpp:label 0.27 dbpr:Category:Jazz songs 0.16 dbpp:wikilink 0.23 dbpr:Psychedelic rock
0.11 dbpp:producer 0.27 dbpr:Category:Psychedelic songs - - 0.23 dbpr:Jazz waltz
- - 0.27 dbpr:Category:Folk songs - - 0.23 dbpr:Folk music
- - 0.27 dbpr:Category:The Beatles songs-

sung by George Harrison
- - 0.13 dbpr:Folk rock

- - 0.27 dbpr:Category:George Harrison-
songs

- - 0.12 dbpr:Rock music

- - 0.16 dbpr:Apple Records - - 0.09 dbpr:And I Love Her
- - 0.11 dbpr:Category:Apple Records-

albums
- - 0.06 dbpr:Capitol Records

- - 0.11 dbpr:Category:Double albums - - 0.03 dbpr:Country rock
0.95 dbpp:tracks 0.36 dbpr:Cry Baby Cry 0.69 dbpo:label 0.5 dbpr:Apple Records
0.32 dbpp:wikilink 0.36 dbpr:Long 0.67 dbpp:label 0.26 dbpr:Capitol Records
- - 0.16 dbpr:Piggies 0.15 dbpp:wikilink 0.23 dbpr:EMI
- - 0.16 dbpr:Ob-La-Di - - 0.21 dbpo:Resource
- - 0.16 dbpr:I - - 0.18 dbpr:Template:infobox album
- - 0.16 dbpr:Rocky Raccoon - - 0.15 dbpo:MusicalWork
- - 0.16 dbpr:Good Night - - 0.15 dbpo:Work
- - 0.16 dbpr:While My Guitar Gently-

Weeps
- - 0.14 dbpr:Parlophone

- - 0.16 dbpr:Mother Nature - - 0.14 dbpr:Template:succession box
- - 0.16 dbpr:Julia - - 0.1 dbpo:Song
0.96 rdf:type 0.25 yago:TheBeatlesAlbums 0.70 dbpo:recordplace 0.93 dbpr:Abbey Road Studios
0.29 skos:subject 0.25 umbel:InstrumentalArtifact 0.70 dbpp:recorded 0.14 dbpr:1966
- - 0.25 umbel:Artifact 0.14 dbpp:wikilink 0.11 dbpr:9 May
- - 0.25 yago:AlbumsProducedBy-

GeorgeMartin
- - 0.11 dbpr:19 May

- - 0.25 dbpo:Album - - 0.11 dbpr:16 May
- - 0.25 yago:Album106591815 - - 0.09 dbpr:27 April
- - 0.12 yago:ParlophoneAlbums - - 0.09 dbpr:2 June
- - 0.12 yago:AppleRecordsAlbums - - 0.09 dbpr:27 February
- - 0.12 dbpo:Place - - 0.09 dbpr:1 July
- - 0.12 umbel:Place - - 0.09 dbpr:16 July
1.00 dbpp:origin 0.99 dbpr:England
- - 0.11 dbpr:Liverpool

exploited for a number of applications ranging from similarity search for triples to facet
identification in RDF data. We have chosen the scenario of faceted browsing for the
user evaluation as we believe this scenario is well comprehensible for the participants
of the study.

Faceted browsing is a common means to ease the navigation in data by structur-
ing associated data into so called facets [20]. For some resource, e.g. as viewed in
a RDF browser, facets correspond to collections of associated resources. Resources
within these collections have a commonality with respect to the currently viewed re-
source, e.g. the facet band-members for the resource The Beatles should contain only
resources describing members of this band, e.g. John Lennon and Paul McCartney.

We have applied TripleRank to automatically select and order resources for given
facets. Accordingly, the evaluation has been centered around the following question:
Given a currently viewed resource (subject) and a predicate (facet) associated to it,
what are the most interesting, most related, most useful resources (objects) for the facet?

We have created 10 of such queries using the data sets explained above and pre-
sented each of the 10 queries to each of the 16 test persons. As subject and predicate
instances we have used the start URIs from the collected data sets (cf. Table 2) and as-
sociated properties. Test persons have been presented with candidate resources as pro-



Fig. 3. Screenshot of the User Evaluation

duced by the randomly ordered union of the top 10 results from the TripleRank method
and a baseline method. For each resource, they could indicate whether it is a good or
bad match for the query, or whether they are undecided. Figure 3 illustrates how queries
have been presented to test persons by the evaluation tool. Please note that the shown
resources (subject, predicate, objects) have been presented as hyperlinks to the service
providing the data. Test persons could use these links to investigate on the resource by
its complete description. For instance, the resource The Beatles links to the web page
http://dbpedia.org/resource/The_Beatles.

5.4 Baseline Method

The evaluation scenario requires to rank resources with respect to their authority for a
given subject and facet. The baseline methods implement a straightforward strategy for
computing scores for ranking using the tensor T as follows.

Baseline I The straightforward and obvious baseline method for computing such a
ranking given T follows a simple procedure:

1. Select statements matching the subject and predicate (facet) and project the objects.
2. Rank selected objects by their number of inlinks as known from the data set as

inlinks indicate authority [23].

For data sets that are available completely and that contain little or no noise, this pro-
cedure performs very well with respect to runtime and the quality of results. It will
select the relevant objects with high precision. The dbpedia and DBLP data sets obvi-
ously contain very little noise. Dbpedia data relies on the careful authoring by numerous
users, whereas DBLP data maps to settled and rigid structures maintained by a database
system. However, due to the fact that our data sets have been crawled from online ser-
vices, they are incomplete and represent only a small portion of these large data sets.

http://dbpedia.org/resource/The_Beatles


Accordingly, when applying this baseline method to our data sets, we have experienced
no or very little recall due to the sparsity of the data. For instance, applying this base-
line for answering the query “What are relevant subjects for James Bond?” it returns
only one resource while the enhanced Baseline II method we present in the following
returns 6 relevant resources. Nevertheless, we imagine that every method for ranking
facet objects will include this baseline method as it produces high precision when data
sets are complete and without noise.

Baseline II We modified the Baseline I method in order to improve its competitive-
ness, i.e. improving its recall for incomplete data sets. Instead of considering only exact
matches of subject-predicate patterns, we extended this criteria to consider also predi-
cate matches only. As the data sets have been created around a URI that is central within
the data sets, this extended baseline method turned out to produce more competitive
results, specifically an increased recall. This method is also closer to the PARAFAC
analysis as used by TripleRank as it corresponds to the authority ranking based on the
in-degree (number of incoming links) of resources. In fact, this method can be seen
as an approximation of authority scores in HITS, which are highly correlated with in-
degrees of nodes [14] (see also the example given in Sect. 3.3). Accordingly, we have
evaluated TripleRank against this improved Baseline II method.

5.5 TripleRank Method

The TripleRank method is similar to the Baseline II method with the exception that
it builds upon the results of the PARAFAC decomposition of T instead of plain link-
counting using T. First, the top factors for the predicate (facet) in question are selected.
They are looked up from the matrix containing the predicate scores (cf. Figure 2). Those
factors are selected where the predicate is ranked first or has a score of at least 0.6.
Afterwards, the resource vectors of these factors, as given by the object-score matrix,
are considered for the selection of the ten resources with the highest scores.

5.6 Results

We have received 1387 answers by 16 test persons. On average, the union of the results
produced by the BaselineII and TripleRank method led to 8.669 candidate objects per
query. While we asked for the top 10 results by each method, the average number of
results is lower, as for several questions both methods produced less than 10 results.

We calculated the agreement among test persons using the index raw agreement
[17]. It represents the ratio between the measured inter-rater agreement and the best
possible agreement. Accordingly, a value of 1 corresponds to the maximal agreement,
while 0 corresponds to no agreement. As expected, the evaluation shows a high inter-
rater agreement. Considering the specific agreement on the relevance of results, test
persons showed a higher agreement rate on positive candidates (agreement-ratio: 0.68)
than on negative candidates (agreement-ratio: 0.57). For the overall agreement, we have
measured an even higher ratio of 0.70 among the test persons.

The evaluation results presented in Table 4 built on these user ratings and give in-
sight into the constitution of the union of the results. Table 4 lists the average num-
ber of results found exclusively by each method (BaselineII−TripleRank, TripleRank



−BaselineII), and the average number of results suggested by both of the methods,
namely the intersection of their results (BaselineII∩TripleRank). In addition, Table 4

Table 4. Results of the User Evaluation

Avg Number of Results Avg Precision
Total Positive Negative Undecided Macro Micro

BaselineII−TripleRank 1.075 0.273 0.444 0.344 0.478 0.393
TripleRank−BaselineII 4.731 1.913 1.650 1.169 0.521 0.537
BaselineII∩TripleRank 2.863 1.338 0.763 0.763 0.659 0.637
BaselineII 3.948 1.626 1.207 1.107 0.607 0.574
TripleRank 7.594 3.251 2.413 1.932 0.557 0.574

also presents the average numbers of ratings received for the results. Here, we notice
that the TripleRank method succeeds in suggesting more positively rated results than
negative ones. Comparing the total number of results produced by each method, the
TripleRank approach nearly doubles the number of results (3.948 vs 7.594). For the
number of results considered relevant by users, TripleRank achieves an increase from
1.626 to 3.251, i.e. the recall is increased by the factor of 1.999. For these results, we
have also calculated additional confidence intervals with confidence degree 0.9. In most
of the cases, TripleRank outperforms the baseline with statistical significance.

Table 4 also lists the precision of each approach. For a fine-grained analysis, we
have calculated the macro precision, reflecting the users’ perspective on the perfor-
mance of the methods, and the micro precision, reflecting the systems view [11]. For
the results produced exclusively by each method, TripleRank has higher precision than
the baseline approach. Considering the overall results, the baseline method has equal
precision on the micro-level and higher precision on the macro-level. Significance tests
with confidence degree 0.9, however, have shown that all measured differences in pre-
cision are not statistically significant. Accordingly, we conclude that the TripleRank
approach results in a substantially increased recall without loss of precision.

5.7 Lessons Learned: TripleRank Advantages

By further analysis of the evaluation results, we have investigated why the TripleR-
ank approach outperforms the baseline method. Among the findings, we identified
that the results of the analysis step implicate similarities among properties. For in-
stance, it turned out that the dbpedia data sets contain predicates with similar semantics,
e.g. the predicate http://dbpedia.org/property/genre and the predicate
http://dbpedia.org/ontology/genre (cf. Table 3). Both properties asso-
ciate bands or songs to a genre. The analysis step identified this similarity producing a
factor where both properties are among the top two properties. The most authoritative
resources for that factor are accordingly those resources having both or either one of
these properties as inlink. As an effect, both precision and recall are increased when
compared to baseline approaches that cannot identify the similarities of links. The ad-
vantage of TripleRank, however, is not only given when properties are directly grouped

http://dbpedia.org/property/genre
http://dbpedia.org/ontology/genre


into one factor. The results of the tensor analysis also enable to increase recall by con-
sidering multiple factors where a predicate is ranked high. Within our experiments such
increase of recall has been achieved without a loss of precision.

6 Conclusion and Future Work

In this paper we presented TripleRank, a novel approach for authority ranking in Se-
mantic Web applications. Conceptually, TripleRank is a Semantic Web correspondent to
authority ranking methods known from Web retrieval, such as PageRank or HITS. Our
approach exploits the novel representational model for semantic RDF graphs, based on
3-dimensional tensors. This allows us to exploit in the natural way the available seman-
tics of RDF predicates. By applying the PARAFAC tensor decomposition we identify
authoritative sources in the knowledge base as well as groups of semantically coherent
predicates and resources. The systematic evaluation shows the viability of TripleRank
for a wide range of search/browsing applications in the Semantic Web, such as seman-
tic faceted navigation and ranked retrieval. Therefore, TripleRank can be seen as a next
step towards efficient and effective search/retrieval technology for Semantic Web.

As next steps for this research, we persue the integration of TripleRank into exist-
ing Linked Open Data browsers, e.g. our own Semantic Web browser LENA [24], to
investigate on further enhancements of the method. We also envision the addition of se-
mantic relations that go beyond link semantics. For instance, we consider the modeling
of resource similarity based on the similarity of the types of resources.
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