
TRIPS: An Integrated Intelligent Problem-Solving Assistant

George Fergusonand James F. Allen
Department of Computer Science

University of Rochester
Rochester, NY 14627-0226

fferguson,james g@cs.rochester.edu

Abstract

We discuss what constitutes an integrated system in AI, and
why AI researchers should be interested in building and
studying them. Taking integrated systems to be ones that in-
tegrate a variety of components in order to perform some task
from start to finish, we believe that such systems (a) allow us
to better ground our theoretical work in actual tasks, and (b)
provide an opportunity for much-needed evaluation based on
task performance. We describe one particular integrated sys-
tem we have developed that supports spoken-language dia-
logue to collaboratively solve planning problems. We discuss
how the integrated system provides key advantages for help-
ing both our work in natural language dialogue processing
and in interactive planning and problem solving, and consider
the opportunities such an approach affords for the future.

Content areas:AI systems, natural language understanding,
planning and control, problem solving, user interfaces

Introduction
It is an interesting time to be an AI researcher. Computer
speeds and capacities have increased to the point that tasks
that used to take days can now be done in seconds. The per-
vasive role of computers in everyday life has emphasized the
need for people and computers to co-exist and, one hopes,
complement rather than hinder each other. Within the field
of AI itself, we now have a solid understanding of many of
the core issues. AI concepts like search, planning, learning,
natural language, and so on have mature theoretical under-
pinnings and extensive practical histories. In many cases
we understand just how hard some of these problems are to
solve, and in these cases we often have a good understand-
ing of how approximate solutions can be found and what the
tradeoffs are in using them.

Supported by these two trends, it is now possible to build
AI systems that actually perform tasks that people find diffi-
cult (and that require intelligence, however exactly you de-
fine it) in reasonable amounts of time. A good example is
Deep Blue (Hamilton & Garber 1997), which, despite some
controversy, certainly counts as a highly successful, working
AI system that leverages both of the trends described above.
But on a smaller scale, researchers are starting to report on
experiences with building AI systems that solve some task
from start to finish, whether it is answering questions using a

database, large-scale planning and scheduling of shipments,
or autonomous robots and robotic assistants.

This paper argues first for the utility of building end-to-
end systems that integrate a variety of capabilities in the per-
formance of some task. We discuss some of the dimensions
along which such integration can take place, and how the
different aspects of integrated systems interact in the design,
implementation, and operation of the system. We then de-
scribe in detail one particular implemented, integrated sys-
tem: TRIPS, the Rochester Interactive Planner System. This
system integrates speech recognition, natural language un-
derstanding, discourse processing, planning and plan recog-
nition, and much more in order to provide the human user
with an interactive, intelligent problem-solving assistant in
a transportation/logistics domain. TRIPS is fully functional
and will be demonstrated at AAAI in the Intelligent Systems
Demonstrations program.

Integrated Systems
We start with what it means to be an integrated AI system.
The AI part seems straightforward: the system should per-
form some task or tasks that people find to require intelli-
gence. As for integration, we feel that there are two impor-
tant dimensions to consider. First, the system can integrate
the functionality of multiple more specialized components
in the performance of the task. In an integrated AI system,
these components are things like planners, natural language
parsers, learning algorithms, speech recognizers, temporal
reasoners, logic engines, and so on. These are AI technolo-
gies that do not themselves solve a task, but that provide ser-
vices necessary to do so. The second, less obvious, dimen-
sion to consider is the integration between the AI system and
the person or people using it. Most, if not all, fielded AI sys-
tems have to interact with people at some time. It is in our
interests to make this interaction as natural for the people
as possible, both to increase the acceptance of the AI tech-
nology and to leverage people’s skills in the performance of
the task. So an integrated system, to us, is one that both inte-
grates multiple capabilities in service of a task and integrates
its functions with those of its human users.

Why then should AI researchers want to build integrated
AI systems? The first benefit is that it gets us to the “criti-
cal mass” of an end-to-end system, rather than toy programs
in toy domains. This has two huge advantages. First, the

From: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



task grounds the research. For example, natural language
understanding has to beaboutsomething, planning has to
be for something, and so on. Second, end-to-end perfor-
mance allows evaluation using task-based metrics. AI sys-
tems are notoriously difficult to evaluate in isolation—what
does it mean for an NLU system to “understand” a sen-
tence? Task-based metrics allow us to compare different ap-
proaches, components, or architectures. They also allow us
to compare the system’s performance to that of people on the
same task, which is surely the ultimate test of an intelligent
system.

The second benefit of building integrated AI systems is
less clearcut but just as significant. The need to integrate
disparate components often forces us to broaden our per-
spective, add functionality, increase robustness, and so on.
This makes one-off,ad hocsolutions less likely, since it is
unlikely that the same shortcuts will serve different com-
ponents equally well. For example, a planner might prefer
not to reason about time, but an NLU system might abso-
lutely require it. Integration requires a clear understanding
of the representations being used and clear specification of
component interfaces, both of which are issues that the AI
community is well-positioned to address.

Finally then, if integrated AI systems are desirable re-
search goals, how do we build them? We cannot be definitive
on this point, of course. But one methodological principle
has been useful in our research, to be described below. This
is the need to clearly define the task that the system is to per-
form. Without a crisp task definition and a definition of what
it means to “do better,” evaluation is impossible. Further,
the task should support a range of incrementally more diffi-
cult problems, allowing us to bootstrap the system-building
process by building a simple system for a simple task, then
increasing the complexity of the task and improving the sys-
tem. Task-based evaluation throughout provides a guide to
what is working and what isn’t. A corollary of this is that
we have to choose hard enough tasks and big enough prob-
lems. Integrated systems using current AI technologies are
already, in fact, capable of performing some very challeng-
ing tasks.

TRIPS: The Rochester Interactive Planning
System

We next describe a particular integrated AI system that we
have developed based on the previous observations. TRIPS,
the Rochester Interactive Planning System, is the latest in
a series of prototype collaborative planning assistants. Our
research plan is to design and build a series of progressively
more sophisticated systems working in progressively more
realistic domains. TRIPS builds on our experiences with the
TRAINS system (Fergusonet al. 1996; Allenet al. 1995;
Ferguson, Allen, & Miller 1996), but (a) functions in a more
complicated logistics domain compared to TRAINS’ sim-
ple route-planning domain, (b) supports the construction of
much more complex plans than TRAINS could produce or
understand, and (c) embodies a more complex model of col-
laborative problem-solving than TRAINS. All three of these
developments required significant analysis, redesign, and

Abyss

Barnacle

Calypso

Delta

Exodus

 

Forest Corners

High Junction

South Delta

Ocean Beach

Calypso Overlook

 

 

Figure 1: Map of Pacifica

reimplementation (the extension of the domainper sewas
perhaps the most straightforward part). TRIPS does build
directly on TRAINS, however, reusing many of the compo-
nents and all of the infrastructure directly.

TRIPS is an assistant to a human manager. The two of
them collaborate to construct plans in crisis situations. Our
example scenario involves the island of Pacifica (see Fig-
ure 1), which is in the path of an approaching hurricane. Be-
cause of the hurricane, the population must be evacuated to
one of the cities (the “safe” city) and from there presumably
to safety. The manager’s task is to plan the evacuation, using
a variety of vehicles (with varying capabilities) at his or her
disposal. There may be a variety of constraints placed on the
final plans, such as time, cost, weather-related factors, and
so on. The important features of this scenario as a research
environment are: (a) it is clear what the task is and when it is
completed (i.e., we can easily describe tasks to people, they
can know when they’re done, and we can verify that); (b) the
relative quality of the solution is easily measured (in terms
of time, violated constraints, or some measure of robustness,
for example); and (c) it is easy to vary the complexity of the
task from trivially solvable to problems that people would
have difficulty solving and, in fact, that TRIPS could not
solve on its own (e.g., increase numbers of people, change
numbers and types of vehicles, modify road network, and so
on). The first two aspects make evaluation possible, the final
aspect lets us work incrementally on progressively harder
problems.



0:00 H: Hello.

0:02 S: Hi there.

0:03 H: Show me a map of Pacifica.

0:07 S: Ok. Displays large map of the island of Pacifica

0:08 H: Where are the people?

0:11 S: There are two groups of people at Exodus, two at Ca-
lypso, two at Barnacle, and one group of people at Abyss.
Displays a bar chart showing the numbers of people in the
cities. This chart is updated as the conversation progresses to
show the state of the world given the plan under considera-
tion.

0:17 H: And where are the transports?

0:19 S: There are two trucks and one helicopter at Delta.Dis-
plays a chart showing vehicle status and contents (also up-
dated through the conversation)

0:24 H: Use a truck to get the people from Calypso to Delta.

0:31 S: Your wish is my command.Displays a construction
window with a timeline view of the plan under development,
with the vehicles on the vertical axis and time horizontally.
The map is also updated to show the route taken to Calypso
and back.

0:34 H: How long will that take?

0:37 S: It will take six hours and forty-two minutes.

0:43 H: What if we went along the coast instead?

0:47 S: That option would take ten hours and twenty-seven
minutes.Displays another construction window showing the
option alongside the original plan.

0:53 H: Forget it.

0:55 S: Ok. Deletes second construction window from the dis-
play.

1:05 H: Use the other truck to get the people from Exodus to
Delta.

1:13 S: Ok. Adds the new task to the original construction
window, using a different color, and updates the map. In this
case, the task is clearly seen to take more than ten hours.

1:22 H: Let’s use the helicopter instead.

1:34 S: Ok. Changes the construction window view of this task
and updates the map display.

1:38 H: Now send truck one to Barnacle.

1:41 S: Your wish is my command.Adds a third task to the
construction window (in a third color) and updates the map.

1:44 H: Pick up the people there.

1:48 S: Ok. Updates displays

1:50 H: Go on to Abyss.

1:54 S: Ok. Updates displays

1:57 H: And take the people there to Delta.

2:05 S: Ok. Updates displays

2:10 H: That looks good.

2:12 S: Glad to be of service.

We now suppose that the manager learns of a change in road
status from an external source, and informs the system so that
the plan can be adjusted. Delta Bridge crosses the inlet between
Delta and South Delta.

2:18 H: Delta bridge is out.

2:21 S: Ok. The highlighted actions may need to be revised.
Flashes Delta Bridge in red, and highlights actions whose
routes use the bridge in red in the construction window.

2:37 H: Send truck two along the coast instead.

2:39 S: Ok. Displays new route (to Calypso and back) on the
map and updates the construction window (longer trips).

2:42 H: Have the other truck stop at South Delta instead.

3:02 S: Ok. Display new route (along coast to Barnacle, then
to Abyss, then to South Delta) and updates the construction
window.

3:06 H: Unload the people there.

3:13 S: Ok. Updates displays

3:18 H: And use the helicopter to get the people from South
Delta to Delta.

4:03 S: No problem. Multiple flights with the helicopter are
added to the third task in the construction window and the
map is updated to show them.

Figure 2: Example Dialogue

Example Dialogue

An example dialogue is presented in Figure 2. This is a ver-
batim transcript of an actual session, annotated to describe
the graphical displays generated by TRIPS. The times shown
are wall time—the actual time of each utterance. The exact
times are not important,1 but note that most utterances are
understood within a few seconds, including speech recog-
nition and all processing. This level of responsiveness is

1This session was run using two Sun Ultra 1 workstations with
167 MHz SPARC processors.

required to maintain an effective dialogue with the user.

TRIPS System Architecture

The organization of TRIPS is shown in Figure 3. Modules
communicate by exchanging KQML messages (Fininet al.
1993) using our own central message-passing Input Man-
ager (not shown in the figure). Most modules are in fact
separate Unix processes, and TRIPS can run on any combi-
nation of machines that can run the individual modules. The
TRIPS infrastructure allows any program that can read stan-
dard input and write standard output to exchange messages.



Display
Manager

Speech
Recognition

Speech
Synthesis

Spelling
Correction

Mouse Menu
Map

DisplaysKeyboard

Natural Language
Parsing

Conversational
Agent

Problem-Solving
Manager

Microphone Speakers

Communicative
Acts (Input)

Communicative
Acts (Output)

Realization/
Generation

Discourse
Context

PS
Context

Domain
Planner

Route
Finder

Temporal
K B

Scheduler Simulator

M
od

al
it

y
Pr

oc
es

si
ng

D
ia

lo
gu

e
M

an
ag

em
en

t
S

p
ec

ia
li

ze
d

R
ea

so
ne

rs

Figure 3: TRIPS System Architecture

As shown in the figure, the components of TRIPS can be
divided into three groups:

1. Modality Processing: This includes speech recognition
and generation, graphical displays and gestures, typed in-
put, and so on. All modalities are treated uniformly. For
input, words and gestures are parsed into meaning repre-
sentations based on treating them as communicative acts.
For output, communicative acts generated by the system
are realized using speech or graphics.

2. Dialogue Management: These components are the core
of TRIPS, and are responsible for managing the ongoing
conversation, interpreting user communication in context,
requesting and coordinating specialized reasoners to ad-
dress the needs of the conversation, and selecting what
communicative actions to perform in response.

3. Specialized Reasoners: These components provide the
“brains” of TRIPS, in the sense of being able to solve hard
problems such as planning courses of actions, scheduling
sets of events, or simulating the execution of plans. The
goal here is to provide a form of plug-and-play interoper-
ability, where new or improved specialized reasoners (in-
cluding, for example, network-based sources or agents)
can be easily added to the suite of resources at TRIPS’
disposal.

Space obviously precludes discussing all these components
here. The robust speech recognition work is described in
(Ringger & Allen 1996b; 1996a). Descriptions of the ap-
proach to robust language understanding can be found in
(Allen et al. 1996). The approach to planning, which is in-
teresting for its emphasis on plan modification and its use of
an expressive, temporal world model, is described in (Fergu-
son & Allen 1998). The rest of this section will concentrate
on the dialogue management components of TRIPS, namely

the Conversational Agent and the Problem Solving Manager,
since it is these that really effect the integration in TRIPS.
In both cases, the contexts shown in the figure support the
incremental specification and development so necessary for
effective integration.

Interaction as Conversation
The Conversational Agent coordinates all system activity as
it interacts with the user. The key idea for integrating various
different input and output modalities is that all user interac-
tion is viewed ascommunicative acts, a generalization of
speech acts. As a consequence, all communication between
the Conversational Agent and the modality processing mod-
ules is in terms of possible communicative acts that have
been or should be performed. TRIPS supports a wide range
of speech acts, ranging from direct requests (e.g., show me
the map), questions (where are the transports?), assertions
(The bridge is out), suggestions (Let’s use a helicopter in-
stead), acceptances and rejections (ok, no), as well as a range
of social acts including thanks, apologies, and greetings. In
addition, there are a limited range of gestural acts such as
pointing and dragging screen objects using the mouse. The
modality processing modules typically produce a set of pos-
siblesurface actsbased on the form of the act. The Conver-
sational Agent then combines these interpretations with the
discourse context in order to determine theintended acts,
and then in coordination with the problem solving manager,
determines the system’s response, which again is expressed
in terms of communicative acts.

Since the task in TRIPS is interactive problem solving,
most of the acts that are performed relate to different prob-
lem solving operations. The operations most common in
TRIPS include introducing a new task or subtask to the plan,
modifying or deleting an existing task, defining all or part
of a solution for a task, modifying an existing solution, or
evaluating all or part of the plan. As well, as is common
in human-human problem-solving, either the person or the
system can create alternate solutions (options) for compari-
son purposes, remove an option from consideration, or adopt
a particular option. Note that the problem solving opera-
tion involved is orthogonal to the communicative act used to
communicate it. For example, one might request a modifi-
cation to a plan, suggest a modification, accept or reject a
modification, or promise to do a modification.

The Conversational Agent is driven by a set of rules
that identify possible interpretations intended by the user
and plan a system response for each. These interpreta-
tion/response pairs are then ranked and the system’s re-
sponse is selected. Currently, this selection process is based
on a static ranking of the strength and reliability of the rules.
In the future, more complex deliberation processes will be
introduced that allow the system to generate a wider range
of responses, including taking the initiative in the conversa-
tion if desired.

Integration as Collaborative Problem-Solving
While the Conversational Agent coordinates the interpreta-
tion of communicative acts and chooses system responses, it
does not have direct knowledge of the task or current state of



the problem solving process. This information is handled by
the Problem Solving Manager, which maintains an abstract
representation of the task and the current solution (or solu-
tions) under consideration, and coordinates reasoning by the
specialized reasoners when necessary. The key idea support-
ing the PSM in this is a very general representation of plan-
related information, including a hierarchical task structure,
explicit representation of the possible solutions under con-
sideration, and a temporal knowledge base that represents
the world over time relative to different solutions.

The abstract plan representation is general purpose and
is used for a wide range of purposes including: providing
the context for recognition of the user’s intentions, driving
displays that summarize the state of the world and/or plan,
answering queries about the plan, building the commands
and context required by the specialized reasoners, and in-
tegrating and managing the results from all the specialized
reasoners. Note that while it supports a wide range of pur-
poses, this representation is not typically used directly in any
planning process. Rather the PSM converts the general rep-
resentation into specific commands to each specialized rea-
soner using a representation that that reasoner understands.
It then converts the results returned back into the general
representation for use by other components. A key feature
of this representation is that it allows the system to represent
and reason about plans that it could not have generated on
its own. This allows the user to incrementally develop plans
that are more complex than the TRIPS planner can generate.

To support the interpretation processes in the conversa-
tional agent, the PSM and conversational agent interact us-
ing a propose-evaluate-confirmprotocol. The conversational
agent suggests a possible problem solving action, say to
modify a certain subtask by using a different vehicle. The
PSM then evaluates this interpretation based oncoherence
(i.e., did this operation make sense in the current problem
solving context) andfeasibility(i.e., could the requested op-
eration be performed). Based on these evaluations, the CA
chooses a particular set of interpretations and then informs
the PSM so it can update its context for the next interaction.
In order to evaluate each interpretation, the PSM may invoke
the specialized reasoners as necessary to perform the actual
reasoning required.

Consider a brief example from the sample dialogue, when
the user saysLet’s use the helicopter instead. From its sur-
face form, this utterance is interpreted as a suggestion to
use the helicopter in some unspecified part of the plan in-
stead of some other (also unspecified) vehicle. The CA uses
coherence heuristics to explore the most likely possibility:
that the modification should apply to the last subtask be-
ing discussed, namely getting the people from Exodus to
Delta. It asks the PSM to evaluate modifying this plan by
replacing something with the helicopter. The PSM uses its
abstract representation of the plan to find likely objects that
the helicopter could replace in this task, in this case the truck
mentioned in the previous interaction. It then calls the Plan-
ner with the task to replace this truck with the helicopter in
this task. The Planner performs this operation and returns
a revised plan. This plan, however, is quite different from
the previous solution. Rather than making one trip with the

truck, the plan now involves making two trips with the he-
licopter (due to different vehicle capacities). The PSM then
calls the Router to instantiate routes for the helicopter for its
two trips, and then invokes the Scheduler to produce a nom-
inal plan that can be used to generate a display. Since all
these operations were performed successfully, the PSM re-
turns to the CA an evaluation saying that this interpretation
ranks high on both coherence and feasibility. The CA has no
other viable options, and so notifies the PSM that this is the
interpretation selected. The PSM updates its problem solv-
ing state to reflect the new plan, and updates the world model
used to drive the plan display. The CA executes the response
corresponding to this interpretation, causing display updates
and a spoken confirmation.

Related Work
Few integrated systems have been constructed that have the
robustness and depth of TRIPS. In most other work, either
the interface to the system is highly constrained, or the task
that the system performs is highly constrained. For example,
most speech-based query systems (such as the ATIS systems
(DARPA 1989–1991))may handle a wide range of questions
but only do one thing—answer queries about a trip. The sys-
tem does not have to explicitly reason about what needs to
be done as the task is fixed in advance, and remains con-
stant during the interaction. Nevertheless, such systems do
fit the criteria we laid out for an integrated system to the ex-
tent that they truly handle a task that a person would have in
obtaining travel information.

Other systems provide a richer back end task but limit the
interface. The Circuit Fix-it Shop (Smith, Hipp, & Biermann
1995), for instance, handles a complex task of diagnosing
and repairing circuits, but the user must use one of a fixed
set of sentences. The COLLAGEN system (Rich & Sidner
1997) involves an architecture with some strong similarities
to our approach, but the interface is quite constraining and
cumbersome for a person to use as it does not support natural
language, and only supports plan modification by chrono-
logical backtracking. In both of these systems however, as
in TRIPS, treating the interaction as adialoguebetween the
system and the user provides thecontextrequired to inte-
grate system functions and coordinate system behaviours.

In fact, one of the earliest integrated systems is still one
of richest to date. This is the Basic Agent (Vere & Bickmore
1990), in which a person could interact in natural language
with a submarine robot in a simulated world. This system
lacked a compelling task to be accomplished, however, and
the interactions were more of the flavor of demonstrating
the capabilities of the system. Nonetheless, the Basic Agent
integrated a wide range of capabilities within a system that
could be used effectively by a person.

Conclusions and Future Work
Integrated systems like TRIPS take time and effort to build.
What have we gained from the experience?

First, we can evaluate performance by having people
solve problems. In work on TRIPS’ predecessor TRAINS,
we developed a methodology for testing groups of naive



users solving a set of predefined problems (Sikorski & Allen
1996; Stent & Allen 1997). The results were encourag-
ing (90% of sessions resulting in success), but these were
mostly a reflection of the simplicity of the TRAINS task.
We have not yet evaluated TRIPS on its more complex task
and domain, but applying the same methodology, we expect
to be able to show that people can solve problems faster with
TRIPS than with another person. We hope to report those re-
sults in the near future. The point for this paper, however, is
that this experiment could not even be conceived without an
integrated, end-to-end system with which to work.

Second, the emphasis on integrating multiple specialized
reasoners at the problem-solving level has had several ben-
efits. The drive towards integration has resulted in a very
general shared representation of plans, objectives, domain
objects, and the like. This representation is used by a range
of components from natural language understanding to plan-
ning and simulation. And of course, the integration of multi-
ple specialized reasoners allows us to plug new technologies
into TRIPS or interact with external agents. The key to mak-
ing this more generally effective is the specification of com-
ponent or agentcapabilitiesso that meta-reasoners like the
TRIPS PSM can task them and understand their responses.
Specifying and using such capabilities is an active area of
our current research.

Finally, the close, intuitive integration between person
and computer in TRIPS has several benefits. Viewing the in-
teraction as a conversation is far more natural for the person
than learning arcane command languages or GUIs. This will
translate into more effective performance with less training
(as we hope to show in our evaluation experiments). The
closely-integrated, mixed-initiative interaction is also easier
for the computer, since it is possible for it to indicate when
it can’t solve a problem and literally ask for help. The gen-
erality of the representations described above ensures that
the system can understand and use suggestions that it would
never have come up with by itself. The emphasis for the spe-
cialized reasoners then changes from complete but impracti-
cal reasoning, to flexible and expressive but almost certainly
incomplete forms of reasoning.

In the end, the whole, integrated system is greater than the
sum of its parts. TRIPS allows the human and the system
to collaboratively solve harder problems than either could
solve on their own.

Acknowledgements

The TRIPS development team includes Eric K. Ringger, Lu-
cian Galescu, Donna Byron, Amanda Stent, and Myroslava
Dzikovska, in addition to the authors. Neal Lesh developed
the TRIPS simulator. Further thanks are due to the “Big Pic-
ture” group at Rochester, especially Len Schubert, and to the
members of the original TRAINS group from which TRIPS
emerged.

TRIPS is funded in part by ARPA/Rome Laboratory con-
tract no. F30602-95-I-1088, ONR grant no. N00014-95-I-
1088, and NSF grant no. IRI-9623665.

References
Allen, J. F.; Schubert, L. K.; Ferguson, G.; Heeman, P.;
Hwang, C. H.; Kato, T.; Light, M.; Martin, N. G.; Miller,
B. W.; Poesio, M.; and Traum, D. R. 1995. The TRAINS
project: A case study in defining a conversational planning
agent.Journal of Experimental and Theoretical AI7:7–48.
Allen, J. F.; Miller, B. W.; Ringger, E. K.; ; and Sikorski,
T. 1996. A robust system for natural spoken dialogue. In
Proceedings of the 1996 Annual Meeting of the Association
for Computational Linguistics (ACL-96), 62–70.
DARPA. 1989–1991.Proceedings of the DARPA Speech
and Natural Language Workshops, San Mateo, CA: Mor-
gan Kaufmann.
Ferguson, G., and Allen, J. F. 1998. From planners to plan
management via a hybrid planning architecture. To appear
as a University of Rochester CS Dept. Technical Report.
Ferguson, G.; Allen, J.; and Miller, B. 1996. TRAINS-95:
Towards a mixed-initiative planning assistant. In Drabble,
B., ed.,Proceedings of the Third Conference on Artificial
Intelligence Planning Systems (AIPS-96), 70–77.
Ferguson, G.; Allen, J. F.; Miller, B. W.; and Ringger, E. K.
1996. The design and implementation of the TRAINS-96
system: A prototype mixed-initiative planning assistant.
TRAINS Technical Note 96-5, Department of Computer
Science, University of Rochester, Rochester, NY.
Finin, T.; Weber, J.; Wiederhold, G.; Genesereth, M.; Fritz-
son, R.; McKay, D.; McGuire, J.; Pelavin, R.; Shapiro, S.;
and Beck, C. 1993. Specification of the KQML agent-
communication language. Draft.
Hamilton, S., and Garber, L. 1997. Deep blue’s hardware-
software synergy.IEEE Computer30(10).
Rich, C., and Sidner, C. L. 1997. COLLAGEN: When
agents collaborate with people. InFirst International Con-
ference on Autonomous Agents, 284–291.
Ringger, E. K., and Allen, J. F. 1996a. Error correction
via a post-processor for continuous speech recognition. In
Proceedings of the 1996 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP-96).
Ringger, E. K., and Allen, J. F. 1996b. A fertility chan-
nel model for post-correction of continuous speech recog-
nition. In Proceedings of the 1996 International Confer-
ence on Speech and Language Processing (ICSLP-96).
Sikorski, T., and Allen, J. 1996. A task-based evaluation
of the TRAINS-95 dialogue system. InProceedings of the
ECAI Workshop on Dialogue Processing in Spoken Lan-
guage Systems.
Smith, R. W.; Hipp, D. R.; and Biermann, A. W.
1995. An architecture for voice dialog systems based on
prolog-styletheorem proving.Computational Linguistics
21(3):281–320.
Stent, A. J., and Allen, J. F. 1997. TRAINS-96 system
evaluation. TRAINS Technical Note 97-1, Department
of Computer Science, University of Rochester, Rochester,
NY.
Vere, S., and Bickmore, T. 1990. A basic agent.Computa-
tional Intelligence6(1):41–60.


