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Abstract

Overactivation of PI3K/Akt/mTOR is linked with carcinogenesis and serves a potential

molecular therapeutic target in treatment of various cancers. Herein, we report the synthesis

of trisubstituted-imidazoles and identified 2-chloro-3-(4, 5-diphenyl-1H-imidazol-2-yl) pyri-

dine (CIP) as lead cytotoxic agent. Naïve Base classifier model of in silico target prediction

revealed that CIP targets RAC-beta serine/threonine-protein kinase which comprises the

Akt. Furthermore, CIP downregulated the phosphorylation of Akt, PDK and mTOR proteins

and decreased expression of cyclin D1, Bcl-2, survivin, VEGF, procaspase-3 and increased

cleavage of PARP. In addition, CIP significantly downregulated the CXCL12 induced motil-

ity of breast cancer cells and molecular docking calculations revealed that all compounds

bind to Akt2 kinase with high docking scores compared to the library of previously reported

Akt2 inhibitors. In summary, we report the synthesis and biological evaluation of imidazoles

that induce apoptosis in breast cancer cells by negatively regulating PI3K/Akt/mTOR signal-

ing pathway.
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Introduction

PI3K/Akt/mTOR pathway is a major signaling cascade which operates downstream to the

receptor tyrosine kinases such as epidermal growth factor receptor (EGFR), platelet-derived

growth factor receptor (PDGFR) and insulin-like growth factor-1 receptor (IGF-1R) [1–3]. The

relay of signals from the aforementioned growth factor receptors leads to the activation of Phos-

phoinositide 3-kinase (PI3K) which catalyses the generation of phosphatidylinositol-3,4,5-tri-

phosphate (PIP3) from phosphatidylinositol-4,5-biphosphate [4]. In turn, PIP3 interacts with

pleckstrin homology (PH) domains of phosphoinositide-dependent kinase (PDK) and Akt

(Also called as Protein Kinase B) and activates them [5]. In addition, PDK contributes to activa-

tion of Akt. Among these two master kinases, Akt acts on wide array of substrates which are

involved in regulation of apoptosis, cell cycle, transcription and translation [6, 7]. Therefore, the

PI3K/Akt/mTOR pathway plays a central role in regulation of the cell proliferation, survival,

migration, angiogenesis and metabolism and extensively contributes to oncogenesis [8–11].

Overactivation of PI3K/Akt/mTOR pathway has been reported in many types of cancers offer-

ing a unique therapeutic target to design novel heterocycles against malignancies [12–15].

Imidazole-based compounds have been extensively studied and have been reported to pos-

sess good anticancer activity in various types of cancer cells [16, 17]. Previously, we reported

the synthesis and antiproliferative activity of imidazole derivatives in various tumor models

[18–20]. Studies have suggested that imidazole conjugates possess good PI3K inhibitory activ-

ity [21]. SB203580 is a pyridinyl imidazole reported to effectively inhibit PI3K indicate that

imidazole-based compounds are pharmacologically important scaffolds to target different type

of cancers [21]. Therefore, in continuation our effort to synthesize and explore the various

pharmacological properties of heterocycles [22–29], in the present study, we synthesized a

series of trisubstituted imidazole derivatives and evaluated their inhibitory efficacy against

PI3K/Akt/mTOR signaling pathway in breast cancer cell lines. An in silico target prediction

revealed that new compounds target RAC-beta serine/threonine-protein kinase which com-

prise the Akt and abrogates PI3K/Akt/mTOR pathway. The lead compound, 2-chloro-3-(4,

5-diphenyl-1H-imidazol-2-yl) pyridine (CIP) suppressed the proliferation of breast cancer

cells, decreased the phosphorylation of PDK, Akt, mTOR, downregulated the cellular invasion

and activated caspases and cleaved PARP to induce apoptosis.

Materials and Methods

All solvents used were of analytical grade and reagents used were purchased from Sigma-

Aldrich. 1H and 13C NMR spectra were recorded on a Agilent (400 MHz) spectrometer in

CDCl3 or DMSO-d6 as solvent, using TMS as an internal standard and chemical shifts are

expressed as ppm. Mass and purity were recorded on a LC-MSD-Trap-XCT. High resolution

mass spectra were determined on a Bruker Daltonics instrument. The progress of the reaction

was monitored by TLC pre-coated silica gel G plates. The breast cancer MCF-7 and MDA-MB-

231 cell lines were obtained from ATCC (Manassas, VA, USA).

General procedure for the synthesis of the trisubstituted imidazoles

The reaction mixture of benzil (1.0 mmol), aldehydes (1.0 mmol), NH4OAc (4.0 mmol) and a

metal halide catalyst (0.10 mmol), followed by EtOH (4 ml) was stirred and gently refluxed for

5 h (Fig 1A). The completion of reaction was monitored by TLC and 4 ml of water was added

at the end of reaction. The solid was filtered, washed with a mixture of cold EtOH/H2O (1:1,

v:v). The crude product was recrystallized from acetone/water 9:1.

2-(3, 4-Dimethoxyphenyl)-4, 5-diphenyl-1H-imidazole (1). 1HNMR (CDCl3, 400 MHz)

δ: 12.454 (s, NH), 6.878–7.631 (m, 13H), 3.961 (s, 6H). 13C NMR: 149.7, 148.9, 147.9, 136.7,
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134.9, 131.4, 131.3, 129.9, 129.3, 129.1, 128.2, 126.6, 126.4, 123.7, 122.1, 113.2, 111.7, 55.7, 55.6.

(MM—ES + APCI) m/z: 357.12 [M+H] +. MP 218–219°C

2-Bromo-5-(4, 5-diphenyl-1H-imidazol-2-yl) pyridine (2). 1HNMR (CDCl3, 400 MHz)

δ: 13.205(s, NH), 8.777–8.761 (d, J = 4 Hz, 1H), 8.141–8.111 (dd, J1 = 4 Hz, J2 = 4 Hz, 1H),

7.483–7.318 (m, 5H), 7.314–7.241 (m, 6H). 13C NMR: 148.9, 145.3, 141.9, 134.9, 130.4, 130. 5,

129.9, 129. 5, 129.1, 128.2, 126. 9, 126. 3, 123.7, 122.2. (MM—ES + APCI) m/z: 377.04 [M+H] +,

HRMS (ESI–TOF) Calculated for C20H14N3Br [M + Na], 398.0263: found 398.0266. MP 248–

249°C

2-(4-(Methylsulfonyl) phenyl)-4, 5-diphenyl-1H-imidazole (3). 1HNMR (CDCl3, 400

MHz) δ: 13.092 (s, NH), 8.391–8.371 (d, J = 8 Hz, 2H), 8.095–8.075 (d, J = 8 Hz, 2H), 7.596–

7.377 (m, 10H), 3.391 (s, 3H). 13C NMR: 147.6, 146.9, 131.8, 131.7, 129.8, 129.7, 129.5, 128.9,

126.9, 126.8 123.7, 122.1, 113.2, 111.7, 55.4. (MM-ES+APCI) m/z: 375.11 [M+H] +, HRMS

(ESI–TOF) Calculated for C22H18N2O2S [M+Na], 397.0981: found 397.0983. MP 256–257°C

2-(4-Butoxyphenyl)-4, 5-diphenyl-1H-imidazole (4). 1HNMR (CDCl3, 400 MHz) δ:

13.20 (s, NH), 8.095–8.075 (d, J = 8 Hz, 2H), 7.923–7.765 (m, 2H) 7.483–7.324 (m, 10H),

3.941–3.867 (m, 2H), 2.171–1.322 (m, 6H). 13C NMR: 146.9, 137.6, 133.7, 129.5, 129.5, 129.4,

128.9, 126.5, 126.0, 124.7 122.7, 114.7, 65.6, 31.8, 24.1, 17.18. (MM—ES + APCI) m/z: 369.17

[M+H] +. MP 229–230°C

3-(4, 5-Diphenyl-1H-imidazol-2-yl)-1H-indole (5). 1HNMR (CDCl3, 400 MHz) δ: 12.4

(s, 1H), 11.404 (s, 1H), 8.461–8.441 (d, J = 8 Hz, 1H), 8.016–8.006 (d, J = 4 Hz, 1H), 7.587–

7.128 (m, 13H). 13C NMR: 144.1, 136.7, 128.9, 128.5, 127.6, 125.1, 124.5, 122.4, 121.9, 120.4,

112.1, 106.9. (MM-ES+APCI) m/z: 336.47 [M+H]+. MP 290–291°C

3-(4, 5-Diphenyl-1H-imidazol-2-yl)-2-methyl-1H-indole (6). 1H NMR (CDCl3, 400

MHz) δ: 11.553 (s, 1H, NH), 10.07 (s, 1H, NH), 8.147–7.484 (m, 4H), 7.419–7.102 (m, 10H),

2.214 (s, 3H). 13C NMR: 143.9, 136.7, 136.4, 134.98, 132.6, 128.8, 128.5, 127.6, 126.8, 126.4,

Fig 1. A, Schematic representation for the synthesis of imidazole based small molecules. B, Breast cancer
cells (2.5 X 104/mL, MCF-7 & MDA-MB-231) were plated in triplicate, treated with indicated concentrations (0,
10, 25 and 50 μM) of CIP, and then subjected to MTT assay after 24, 48 and 72 h to analyse proliferation of
cells. CIP suppresses the viability of various breast cancer cell lines in a dose- and time-dependent manner.

doi:10.1371/journal.pone.0153155.g001
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125.69, 125.31, 124.7, 122.6, 121.8, 120.7, 110.6, 102.8, 14.71. (MM-ES+APCI) m/z: 350.16

[M+H] +. MP 298–299°C.

4, 5-Diphenyl-2-(thiophen-2-yl)-1H-imidazole (7). 1HNMR (CDCl3, 400 MHz) δ: 12.79

(s, 1H, NH), 7.15–7.13 (dd, J1 = 4 Hz, J2 = 4 Hz, 1H), 7.69–7.68 (d, J = 4 Hz, 1H), 7.51–7.25

(m, 11H). 13C NMR: 141.5, 136.6, 134.7, 133.9, 130.8, 128.6, 128.1, 127.8, 127.0, 126.5, 124.1.

(MM-ES+APCI) m/z: 303.37 [M+H] +. MP 255–256°C

4, 5-Diphenyl-2-(thiophen-3-yl)-1H-imidazole (8). 1H NMR (CDCl3, 400 MHz) δ:

12.63 (s, 1H, NH), 8.04–8.02 (dd, J1 = 4 Hz, J2 = 4 Hz, 1H), 7.71–7.68 (dd, J1 = 4Hz, J2 = 4 Hz,

1H), 7.65–7.63 (dd, J1 = 4 Hz, J2 = 4 Hz, 1H), 7.31–7.53 (m, 10H), 13C NMR: 121.8, 124.2,

126.5, 127.0, 127.7, 128.1, 128.4, 130.8, 132.5, 134.7, 136.6, 142.7 (MM—ES + APCI) m/z:

303.37 [M+H] +. MP 257–259°C

2-Chloro-3-(4, 5-diphenyl-1H-imidazol-2-yl) pyridine (9, CIP). 1HNMR (CDCl3, 400

MHz) δ: 12.591 (1H, NH), 8.841–8.811 (dd, J1 = 4 Hz, J2 = 4 Hz, 1H), 8.390–8.370 (dd, J1 = 4

Hz, J2 = 4 Hz, 1H), 7.567–7.560 (m, 4H), 7.406–7.307 (m, 7H). 13C NMR: 148.7, 140.1, 139.9,

133.9, 130.4, 131. 0, 129.9, 122.2, 129. 5, 129.1, 128.2, 126. 9, 126. 3, 123.7, (MM-ES+APCI)

m/z: 332.09 [M+H]+, HRMS (ESI–TOF) Calculated for C20H14ClN3 [M + Na], 354.0768:

found 354.0766. MP 228–229°C

2-(4-Chloro-1, 3-dimethyl-2, 5-dihydro-1H-pyrazol-5-yl)-4, 5-diphenyl-1H-imidazole

(10). 1HNMR (CDCl3, 400 MHz) δ: 12.591(1H, NH), 7.571–7551 (m, 4H), 7.352–7.283 (m,

6H), 4.348 (s, 1H), 3.829 (s, 3H), 2.609 (s, 3H), 2.254 (s, 1H). 13C NMR: 149.7, 140.3, 139.9,

134.9, 130.4, 131. 0, 129.9, 129. 5, 129.1, 128.2, 126. 9, 76. 3, 43.7, 12.2, (MM-ES+APCI) m/z:

351.17 [M+H]+, HRMS (ESI–TOF) Calculated for C20H19ClN4 [M+Na], 373.1190: found

373.1193. MP 218–219°C.

2-(Naphthalen-2-yl)-4, 5-diphenyl-1H-imidazole (11). 1H NMR (CDCl3, 400 MHz) δ:

12.71 (s, NH), 8.69 (s, 1H), 8.26–8.24 (d, J = 8 Hz, 2H), 7.967–7.501 (m, 7H), 7.498–7.284 (m,

7H). 13C NMR: 145.4, 137.9, 137.0, 135.2, 133.5, 130.9, 130.2, 129.4, 128.7, 128.4, 128.2,

128.0, 127.7, 127.5, 127.3, 127.0, 126.5, 126.4, 126.3, 125.9, 125.0 (MM—ES + APCI) m/z:

347.20 [M+H]+. MP 273–275°C.

Pharmacology

MTT Assay. The antiproliferative effect of newly synthesized compounds against breast

cancer cells was determined by the MTT dye uptake method as described previously [30]. The

breast cancer MCF-7 and MDA-MB-231 cell lines were obtained from ATCC (Manassas, VA,

USA). Briefly, breast cancer cells (2.5 X 104/ml) were incubated in triplicate in a 96-well plate,

in the presence of varying compound concentrations at a volume of 0.2 ml, for different time

intervals at 37°C. Thereafter, a 20 μl MTT solution (5 mg/ml in PBS) was added to each well.

After a 2 h incubation at 37°C, a 0.1 ml lysis buffer (20% SDS, 50% dimethylformamide) was

added; incubation was performed for 1 h at 37°C, and the optical density (OD) at 570 nm was

measured by Tecan plate reader. 0.01% DMSO was used as the negative control and 0.01%

MTT was used as a control agent.

Flow cytometric analysis. Flow cytometric analysis was performed to determine whether

CIP can induce apoptosis of tumor cells as described earlier [31]. Briefly, MDA-MB-231 breast

cancer cells (5 x 105) were plated in petri dish and 24 h later the cells were exposed to com-

pound CIP (50 μM) for 0, 24, 36 and 48 h. Thereafter cells were washed, fixed with 70% etha-

nol, and incubated for 30 min at 37°C with 0.1% RNase A in PBS. Cells were washed again,

resuspended, and stained with PBS containing 25 μg/ml propidium iodide (PI) for 15 min at

room temperature. The cell cycle distribution across the various phases was analyzed with a

CyAn ADP flow cytometer (Dako Cytomation).

Imidazoles Abrogate Oncogenic PI3K/Akt/mTOR Signaling Pathway
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Caspase 3/7 activity assay. MDA-MB-231 cells (5 x 105) were plated in 6-well plates and

allowed to adhere for 24 h. The cells were then exposed to CIP (50 μM) for 0, 24, 36 and 48 h.

Thereafter, the Caspase-3/7 activities were determined by a Caspase-Glo1 3/7 assay kit (Pro-

mega, Madison, USA) according to the manufacturer’s instructions.

Target prediction-based enrichment of Imidazole series. In order to understand the

mode-of-action of trisubstituted imidazoles towards the inhibition of human breast cancer

cells, we applied an in silico target prediction tool, which was developed using the Bernoulli

Naïve Bayes (BNB) algorithm, as implemented in Scikit-learn [32]. This method has been vali-

dated previously by Mervin et al [33]. Active compounds were extracted from ChEMBL [34],

using pChEMBL values larger than 5 (10 μM) and a confidence score cut-off of 5 to define

activity. Inactive data points were extracted from PubChem [35] for compounds declared inac-

tive from screens stored within BioAssay [36]. The BNB model was trained on these com-

pounds using the 2048 bit Morgan fingerprints, with a radius of 2, generated by RDKit [37].

Stringent class-specific thresholds were applied to binarize predictions for the Imidazole series.

In order to improve the statistical significance of this analysis, predictions for the imidazole

sets are compared to predictions generated by chance for 1,000 sets of randomly selected com-

pounds from the PubChem repository. An Average Ratio enrichment metric is calculated from

this analysis (Eq 1), which reflects the average of the series of predictions in the background

(Ri), divided by the frequency of predictions in the imidazole series (Fimidazole). A lower score

represents targets that are more enriched, and hence found to be significant for the imidazole

series.

Average Ratio ¼
1

1; 000

X
1;000

i¼1

Ri

Fimidazole
ð1Þ

Western blotting. Western blotting analysis was performed as described earlier [38].

Briefly, For detection of various proteins, CIP-treated whole-cell extracts were lysed in a lysis

buffer (20 mM Tris (pH 7.4), 250 mM NaCl, 2 mM EDTA (pH 8.0), 0.1% TritonX-100, 0.01

mg/ml aprotinin, 0.005 mg/ml leupeptin, 0.4 mM PMSF,and 4 mM NaVO4). Lysates were

then spun at 14,000 rpm for 10 mins to remove insoluble material, and then resolved on a

7.5% SDS gel. After electrophoresis, the proteins were electrotransferred to a nitrocellulose

membrane, blocked with 5% non-fat milk, and probed with various antibodies (1:1000) over-

night at 4°C. The blot was washed, exposed to HRP-conjugated secondary antibodies for 1 h,

and finally examined by chemiluminescence (ECL; GE Healthcare, Little Chalfont, Bucking-

hamshire, UK).

Invasion Assay. A BD Biocoat™Matrigel™ invasion chamber with 8-μm pores in the light-

tight polyethylene terephthalate membrane and was coated with a reconstituted basement

membrane gel (BD Biosciences). 2 X 105 cells were suspended in serum-free DMEM and

seeded into the Matrigel transwell chambers. The cells were incubated with CIP for 8 h. After

incubation, the outer surfaces of the transwell chambers were wiped with cotton swabs, and the

invading cells were fixed and stained with crystal violet solution. The invading cells were then

counted in five randomly selected areas under microscopic observation.

Molecular docking analysis. The trisubstituted imidazoles were docked to the crystal

structure of human RAC-Beta Serine/Threonine-Protein Kinase (Akt2) complexed with an

inhibitor (PDB: 2JDR) [39] using MOE [40]. Protonation states of amino acids were assigned

using protonate3D in MOE [41]. Ligands were ionized at physiological pH using MOE. The

binding site was defined by the position of the co-crystalized ligand. Docking calculations were

carried out using MOE’s induced fit protocol that treats amino acid side-chains near the bind-

ing site as flexible.
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Results and Discussion

Chemical synthesis of trisubstituted imidazoles

We previously reported the microwave assisted synthesis and crystal structure studies of

2-butyl-4-chloro-imidazole-5-carbaldehyde [19, 20, 42]. In addition, solvent free and micro-

wave-assisted synthesis of 4,5-disubstituted imidazoles have been reported using 1,2-diketones

and urotropine in the presence of ammonium acetate [43]. In this report, we prepared 1,2,4-tri-

substituted-1H-imidazoles by heating a mixture of benzil, an aldehyde and ammonium acetate

using ethanol as solvent. The obtained imidazoles (3a-k) were characterized by melting point,

LC-MS, 1HNMR, and 13C NMR analysis. The appearance of a 1HNMR peak at δ value of 12.5–

12.7 for the HN-proton of imidazole confirms the ring formation. Detailed physical parameters

of all the compounds synthesized is provided as supplemental information (S1 Table).

Trisubstituted imidazoles elicit an antiproliferative effect against human
breast cancer cells

Imidazole derivatives are known for their antiproliferative effect towards various cancer models.

We initially evaluated the effect of novel trisubstituted imidazoles against MDA-MB-231 cells

using MTT assay as described earlier [44, 45]. Among the newly synthesized structures, com-

pound 1, 2 and CIP displayed antiproliferative effect with the IC50 values of 21.1, 17.8 and

24.1 μM respectively. Further investigation of the compound 1, 2 and CIP against mammary epi-

thelial cells (MCF-10A) revealed that, CIP selectively induce cytotoxicity in breast cancer cells

and did not exhibit significant cytotoxicity against normal cells. To confirm the antiproliferative

potential of the trisubstituted imidazoles, we further investigated the effect of compounds on

hepatocellular carcinoma (HepG2) and normal (LO2) cells and found CIP as a lead anticancer

compound with minimal cytotoxicity towards non-cancerous cells. The cytotoxicity profile of all

the compounds is provided as supplementary information (S1 Table). Thereafter, we investigated

the effect of CIP onMCF-7 and MDA-MB-231 breast cancer cells at different doses (0, 10, 25 &

50 μM) and time-points (24, 48 & 72 h). Upon treatment with CIP, we observed a significant

decline in the viability of both the cell lines in a dose and time dependent manner (Fig 1B).

Investigation of structure-activity relationship (SAR) of the tested molecules suggests that

introducing small sized and electron withdrawing atom containing heterocyclic groups at the

position 2 in the imidazole ring would favour the specificity for cancer cells. Molecules having

these SAR features better match the polarity of the Akt2 binding surface, since polar region in

the Akt2 binding pocket is small.

CIP significantly accumulates MDA-MB-231 cells in sub-G1 phase and
increases the activity of executioner caspases

We next investigated the potential of CIP to induce apoptosis in breast cancer MDA-MB-231

cells. We first observed that CIP induced significant apoptosis in a time dependent manner as

evidenced by increased accumulation of cells in Sub-G1 phase of the cell cycle (Fig 2A). We

further noted that exposure of the CIP also caused a significant increase in the activity of effec-

tor caspases -3 and -7 (Fig 2B), thereby indicating the apoptotic potential of CIP against breast

cancer cells.

In silico mode-of-action analysis for CIP that inhibits the growth of
human breast cancer cells

In order to understand the molecular mechanism of CIP responsible for the antiproliferative

effect in human breast cancer cells, we carried out an in silico target prediction analysis.

Imidazoles Abrogate Oncogenic PI3K/Akt/mTOR Signaling Pathway
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Enrichment for the targets from the in silico target prediction analysis are shown in supple-

mentary table (S2 Table). The top 20 targets from the 1,080 models are shown. “RAC-Beta Ser-

ine/Threonine-Protein Kinase” (Ranked 2nd) and “RAC-Alpha Serine/Threonine-Protein

Kinase” (Ranked 8th), comprise the Akt protein, relevant for this study due to its involvement

in the PI3K/Akt/mTOR pathway, and are highly enriched in this analysis.

CIP downregulates phosphorylation of PDK, Akt and mTOR in breast
cancer cells

Based on the in silico prediction, we next analysed whether CIP modulates phosphorylation of

Akt, PDK and mTOR in MDA-MB-231 cells using western blotting as described previously

[46, 47]. As observed by western blot analysis, we found that, CIP downregulated the phos-

phorylation of Akt, PDK and mTOR in a dose-dependent manner (Fig 3) and at the same time

Akt, PDK and mTOR protein expression remained unaltered.

Fig 2. A, The analysis of cell cycle distribution following treatment with CIP was performed using flow
cytometry. MDA-MB-231 cells were exposed to compound CIP (50 μM) for indicated time intervals (0, 24, 36
and 48 h), after which the cells were harvested and stained with PI. The cell distribution across the various
phases of the cell cycle was analyzed with a flow cytometer. We observed that CIP induced significant
apoptosis in a time dependent manner as evidenced by increased accumulation of cells in Sub-G1 phase of
the cell cycle. B, MDA-MB-231 cells were exposed to compound CIP (50 μM) at indicated time intervals (0,
24, 36 and 48 h), after which they were harvested and caspase3/7 activity was measured using Caspase-
Glo1 3/7 assay kit. We found that treatment of MDA-MB-231 cells with CIP caused the significant increase in
the caspases-3/7 activity. * for p<0.05, ** for p<0.005.

doi:10.1371/journal.pone.0153155.g002
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CIP induces apoptosis of human breast cancer cells

Cell shrinkage, formation of apoptotic bodies, activation of caspases, and cleavage of chromo-

somal DNAmediated by caspase dependent nucleases are the major events in the cells undergoing

apoptosis [48]. In the event of cell committed to apoptosis, cascade of reactions occurs ultimately

leading to the activation of caspase-3 which further cleaves full length PARP into fragments [49,

50]. Therefore, we first investigated the effect of CIP on procaspase-3 and found the activation of

procaspase-3 in a time time-dependent manner (Fig 4A). Similarly, we observed the subsequent

decrease in full length PARP with increase in cleaved fragment. We further determined the effect

of CIP on the expression of various proliferative and survival proteins such as cyclin D1, VEGF,

survivin and Bcl-2 inMDA-MB-231 cells. Fig 4B demonstrates a substantial decline in the expres-

sion of cyclin D1, VEGF, survivin and Bcl-2 proteins in the time-dependent manner.

CIP suppresses CXCL12-induced MDA-MB-231 Cell invasion

Akt-targeted gene products are known to be involved in motility of cancer cells [5]. Therefore,

we evaluated potential of CIP to modulate on cellular invasion according to the method

described previously [51]. In addition, several studies have demonstrated the critical role and

interaction of CXCL12 with CXCR4 in cancer cells which contributes largely to tumor metasta-

sis [52]. Fig 5 indicates the movement of the cells in the presence and absence of CIP and

CXCL12. CIP was found to significantly suppress the invasion of MDA-MB-231 cells by nearly

50%, both in the presence and absence of CXCL12, compared with the respective controls, sug-

gesting that CIP interferes with invasive ability of breast cancer cells.

Molecular docking analysis

Based on the in silico and in vitro results, we investigated the binding of the imidazole series

compounds to the RAC-Beta Serine/Threonine-Protein Kinase (Akt2 kinase) using MOE

Fig 3. MDA-MB-231 cells were treated with CIP at indicated concentrations (0, 10, 15, 25 and 50 μM) for
8 h and levels of phospho-PDK, phospho-Akt, phospho-mTOR and PDK, Akt, mTORwas analysed
using western blotting.We found that, CIP downregulated the phosphorylation of Akt, PDK and mTOR in a
dose-dependent manner without any change in the expression levels of Akt, PDK and mTOR proteins.

doi:10.1371/journal.pone.0153155.g003
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platform. Our docking calculations revealed that trisubstituted imidazoles bind with high

docking scores:the average of the MOE scores for the compounds is found to be -8.38. To vali-

date our in silico docking results, we have docked previously reported compounds that have

low micro molar affinity for Akt2 Kinase (92 molecules having IC50 value of 1–50 μM extracted

from ChEMBL database) using the same docking protocol. The average of the docking scores

for this data is -8.62 which is very close to the average score for the imidazole series.

Docking of the trisubstituted imidazoles reveal common binding modes as shown in Fig 6.

Phenyl moieties at positions 4 and 5 perfectly fit in the hydrophobic profile of the surface of

the deep binding pocket (Fig 6A and 6B). Fragments at position 2, which contain electronega-

tive atoms, match to the polar surface of the binding pocket (Fig 6A and 6B).

Statistical analysis

Student t-test was used to analyze the data. � for p<0.05 was considered statistical significant. �

for p<0.05; �� for p<0.005.

Fig 4. A and B, MDA-MB-231 cells were treated with CIP (25 μM) for indicated time intervals (0, 12, 24,
36 and 48 h) and expression of apoptotic markers (PARP, Procaspase-3), antiapoptotic proteins (Bcl-
2, Survivin, VEGF), cell cycle regulator (Cyclin D1) was profiled using western blot analysis.We
observed the significant decline in the expression of PARP, procaspase-3, cyclin D1, VEGF, survivin and Bcl-
2 proteins in the time-dependent manner without alteration in the levels of beta actin.

doi:10.1371/journal.pone.0153155.g004
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Discussion

The present report demonstrates the anticancer activity of trisubstituted imidazole that targets

PI3K/Akt/mTOR pathway. CIP, the lead molecule among the synthesized imidazole deriva-

tives supressed the proliferation of breast cancer (MDA-MB-231, MCF-7) and hepatocellular

carcinoma (HepG2) cells and did not induce significant cytotoxicity against normal (MCF-

10A, LO2) cells. CIP caused the accumulation of breast cancer cells in Sub-G1 phase, increased

the executioner caspase-3/7 activity, downregulated the phosphorylation of PDK, Akt and

Fig 5. MDA-MB-231 cells were suspended in serum-free DMEM and seeded into the Matrigel transwell
chambers and were incubated with CIP (25 μM) for 8 h. The invading cells were fixed and stained with
crystal violet solution and invaded cells were counted in five randomly selected areas. CIP significantly
suppressed the cell invasion both in the presence and absence of CXCL12 suggesting that CIP interferes
with invasive potential of breast cancer cells.

doi:10.1371/journal.pone.0153155.g005

Fig 6. In silicomolecular docking studies of trisubstituted imidazoles against kinase domain of Akt2:
Common binding poses of trisubstituted imidazoles towards the Akt2 kinase domain. The molecular surface
of the protein is represented based on the surface polarity; green, pink and red colours show hydrophobic,
polar and solvent exposed regions, respectively. For the sake of better visualisation of the binding pocket
surface of Akt2, molecular surface was rendered in two panels (A and B) in which ligands were rotated 180
degrees.

doi:10.1371/journal.pone.0153155.g006
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mTOR in breast cancer cells. Further, it modulated the levels of various proteins involved in

cell cycle regulation (Cyclin D1), angiogenesis (VEGF), apoptosis (Caspase-3, PARP), and sur-

vival (Survivin, Bcl-2). Further, CIP inhibited the cell invasion indicating its inhibitory role in

cell motility.

One of the major events in apoptosis is the activation of caspases thereby cleavage of PARP

and activation of caspase-activated deoxyribonuclease (CAD). In the event of cell undergoing

apoptosis, caspase-3 activates CAD, and CAD in turn degrades genomic DNA into oligomers

[53, 54]. The cells with lesser DNA content are often termed as hypodiploid cells which are

detected as Sub-G1 cell population. The lead compound CIP caused the accumulation of cells

in Sub-G1 phase demonstrating that CIP induce caspase mediated apoptosis. These results

were confirmed and correlated by the cleavage of PARP, a prominent DNA repair enzyme and

activation of executioner caspase-3 and caspase-7.

We performed cheminformatics-based target enrichment studies to predict the probable

molecular therapeutic target of the lead compound and found a number of targets to be

enriched, including Akt protein, and other proteins belonging to the MAPK pathway.

Although, the results of the study presented multiple targets, we analysed the effect of CIP on

PI3K/Akt/mTOR signalling pathway, because, previous studies have highlighted imidazole

derivatives as inhibitors of PI3K/Akt/mTOR proteins [55–57]. In silico predicted target was

experimentally validated by in vitro investigation in breast cancer cell lines. Several studies

have showed that Akt pathway plays pivotal role in cell survival, growth and proliferation [58].

In order to demonstrate the effect of CIP on Akt signalling pathway, we investigated the effect

of CIP on the phosphorylation of Akt pathway proteins including PDK1 (Ser-241), Akt (Ser-

473) and mTOR. We observed the downregulation in the phosphorylation of proteins involved

in Akt signalling cascade. Therefore, it is evident that, CIP mediates its anticancer activity at

least partly via blockade of PI3K/Akt/mTOR signalling pathway. This finding opens an avenue

for the development of novel trisubstituted imidazole based small molecules as therapeutic

agents that target PI3K/Akt/mTOR signalling pathway in human diseases.

Conclusion

In conclusion, we synthesized trisubstituted imidazoles, identified the bioactive cytotoxic lead

structure, predicted the likely target and demonstrated in vitro efficacy of lead compound to

abrogate the activation of the PI3K/Akt/mTOR pathway in human breast cancer cells. There-

fore, designing of CIP-based small molecule inhibitors to abrogate PI3K/Akt/mTOR pathway

may serve as an effective therapeutic strategy to fight against various types of cancer.
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