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OSC, lanosterol synthase (LAS), for sterol biosynthesis. However, 

higher plants have several OSCs not only for sterol biosynthesis, 

such as cycloartenol synthase (CAS) and LAS (Ohyama et al., 2009), 

but also for triterpenoid biosynthesis. The molecular diversity of 

OSCs enables more than 100 skeletal variations of triterpenoids in 

plants (Xu et al., 2004). Until now, some dozens of OSC genes from 

not only model plants but also crops and medicinal plants have been 

cloned and functionally characterized (reviewed in Kushiro and 

Ebizuka, 2010). For example, the Arabidopsis thaliana genome has 

13 OSC genes, and the functional identification of these genes has 

been completed, at least, by in vitro experiments. Most of the OSCs 

from eudicots are phylogenetically classified into some groups, and 

the reaction products differ from group to group. The site-directed 

mutagenesis and homology modeling of plant OSCs have been 

carried out to investigate the reaction mechanisms regarding their 

product variety (reviewed in Kushiro and Ebizuka, 2010). Of OSCs 

from various organisms, the structure of human LAS protein was 

elucidated (Thoma et al., 2004).

After an OSC constructs the basic triterpenoid skeleton, the 

skeleton is modified to a hydrophobic aglycone called sapogenin. 

The first modification is oxidation catalyzed by cytochrome P450 

monooxygenase (P450), and this step enables further modifica-

tions such O-glycosylation. P450 is highly diverse and catalyzes 

several kinds of chemical reactions committed to the secondary 

metabolism (Kahn and Durst, 2000).

Glycosylation is essential for saponin biosynthesis. Glycosylation 

increases the water solubility and changes the biological activity 

of triterpenoid. Uridine diphosphate (UDP)-dependent glycosyl-

transferases (UGTs) recognize a wide range of natural products as 

acceptor molecules.

P450 species and UGTs belong to multigene families and are the 

key factors for explosive diversification of other natural products in 

plants. In the case of reported P450 species in saponin biosynthesis, 

those CYP families vary respecting not only the carbon skeletons of the 

triterpenoid substrates but also the target positions of the  reactions. 

INTRODUCTION

Triterpenoids including steroids are a highly diverse group of natu-

ral products widely distributed in plants (Vincken et al., 2007). 

Plants often accumulate these compounds in their glycosylated 

form – saponin. Saponins comprise hydrophobic triterpenoid agly-

cones called sapogenin and one or more hydrophilic sugar moieties.

Biologically, plant saponins are considered defensive com-

pounds against pathogenic microbes and herbivores (Osbourn, 

1996; Kuzina et al., 2009; Szakiel et al., 2011). These saponins 

also have beneficial properties for humans. For example, Panax 

and Glycyrrhiza plants are well-known traditional herbal medi-

cines containing saponins, ginsenosides, and glycyrrhizin, respec-

tively, with various pharmacological effects (Shibata, 2000, 2001). 

Saponins have a variety of other applications as well. They show 

foaming ability when mixed with water, as indicated by the word 

sapo, meaning soap in Latin. In fact, Saponaria officinalis (common 

soapwort) and Quillaja saponaria (soapbark) have been used as 

soap. The saponins of Q. saponaria are also used as emulsifiers in 

cosmetics and foods. Furthermore, glycyrrhizin is used as a natural 

sweetener, with 150 times the sweetness of sugar.

In this article, we summarize the genes involved in triterpe-

noid biosynthesis identified to date and the recent advances in the 

bioengineering production of useful plant terpenoids; finally, we 

provide a perspective on the bioengineering of plant triterpenoids.

TRITERPENOID BIOSYNTHESIS

Terpenoids are built up from C5 units, isopentenyl diphosphate 

(IPP). IPP is supplied from the cytosolic mevalonic acid (MVA) 

pathway and the plastidal methylerythritol phosphate (MEP) 

pathway. Triterpenoids and sesquiterpenoids are biosynthesized 

via the MVA pathway, whereas monoterpenoids, diterpenoid, and 

tetraterpenoids are biosynthesized via the MEP pathway. The first 

diversifying step in triterpenoid biosynthesis is the cyclization of 

2,3-oxidosqualene catalyzed by oxidosqualene cyclase (OSC; Abe 

et al., 1993; Figure 1). In general, animals and fungi have only one 
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The diversity of these enzymes makes identification of the genes for 

saponin biosynthesis difficult. The genes involved in triterpenoid bio-

synthesis identified in plants to date are presented as follows.

TRITERPENOIDS IN ARABIDOPSIS THALIANA

The first model plant A. thaliana has total 13 OSCs, 246 P450 spe-

cies (Werck-Reichhart et al., 2002) and 112 UGTs (Paquette et al., 

2003). The protein encoded by At5g48010, an OSC, was identified 

as thalianol synthase (Fazio et al., 2004). However, no tricyclic triter-

penoid including thalianol had been reported in Brassicales at that 

time. After that thalianol was detected at about 0.4% of total sterols 

in the root of A. thaliana, CYP708A2 and CYP705A5 were identi-

fied as P450 species in thalianol metabolism (Field and Osbourn, 

2008). Although the details of variety and content of saponins in 

A. thaliana have not been clarified, Warnecke et al. (1997) reported 

one UGT for sterol glycosylation.

SOYASAPONINS IN GLYCINE MAX

Glycine max mainly accumulates β-amyrin-derived oleanane-type 

triterpenoid saponins termed soyasaponins (Kitagawa et al., 1982, 

1988; Burrows et al., 1987; Taniyama et al., 1988; Shiraiwa et al., 

1991a,b; Kudou et al., 1992, 1993; Tsukamoto et al., 1993; Kikuchi 

et al., 1999). Soyasaponins are divided into two groups: 2,3-dihy-

dro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) saponins 

have soyasapogenol B as their aglycone and group A saponins have 

soyasapogenol A as their aglycone. Soyasapogenol B is a C-22- and 

C-24-hydroxylated β-amyrin, and soyasapogenol A has an addi-

tional hydroxyl group at C-21.

Although DDMP saponins and their derivatives have beneficial 

effects on human health, some group A saponins are unfavorable 

because of their astringent taste (Okubo et al., 1992). To reduce 

the astringent taste of soybean, transgenic soybean plants with sup-

pressing β-amyrin synthase (bAS), an OSC, gene by RNAi silencing 

were generated. The sapogenol levels of the transgenic seeds were 

reduced to below 500 µg g−1 or about 25% of the content in wild type 

(Maxwell et al., 2004). Only CYP93E1 C-24 hydroxylase was identi-

fied as an oxidase in soyasaponin biosynthesis (Shibuya et al., 2006). 

Soyasaponin βg, the main soyasaponin in G. max, is soyasapogenol 

B that attaches three sugar molecules, glucuronic acid, galactose, 

and rhamnose, at the C-3 hydroxyl group. UGT73P2 and UGT91H4 

attach the second and third sugars in the sugar chain, respectively 

(Shibuya et al., 2010). These UGTs were selected as G. max expressed 

FIGURE 1 | Triterpenoid biosynthetic pathway. After the cyclization of 2,3-oxidosqualene catalyzed by OSC, a triterpenoid undergoes various modifications 

including P450-catalyzed oxidation and UGT-catalyzed glycosylation. Blue arrows, OSC-catalyzed steps; red arrows, P450-catalyzed steps; green arrows, additional 

modifications including UGT-catalyzed steps.
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et al., 1999; Haralampidis et al., 2001; Qi et al., 2006; Mylona et al., 

2008; Mugford et al., 2009). Genetic analysis showed five Sad loci, 

Sad2, Sad3, Sad6, Sad7, and Sad8, are within 3.6 cM around the Sad1 

locus, and especially three Sad genes, Sad1, Sad3, and Sad7, clearly 

clustered in the genome (Qi et al., 2004). A cluster of such genes 

was also found in the A. thaliana genome for thalianol metabolism 

(Field and Osbourn, 2008). These clusters interest in the evolution-

ary process of triterpenoid biosynthesis in plants (Osbourn, 2010).

VACCAROSIDES IN SAPONARIA VACCARIA

The seeds of S. vaccaria, used in traditional Chinese medicine, 

accumulate oleanane-type saponins called vaccarosides. The agly-

cone of vaccaroside B is a C-23 and C-28 carboxylated β-amyrin, 

gypsogenic acid. A bAS cDNA was cloned by homology-based PCR 

(Meesapyodsuk et al., 2007). UGT74M1, with sequence similar-

ity to other plant ester-forming glucosyltransferases, was cloned 

from the developing seed EST library and identified as an UDP-

glucosyltransferase to C-28 of gypsogenic acid in an ester linkage 

(Meesapyodsuk et al., 2007).

GINSENOSIDES IN PANAX GINSENG

Panax ginseng is a famous medicinal plant in Asia. The main phar-

macologically active compounds in the ginseng are saponins called 

ginsenosides (Shibata, 2001). Major ginsenosides have a damma-

rane skeleton constructed by an OSC, dammarenediol-II synthase 

(PNA). Ginsenoside R
0
, a minor ginsenoside, is derived only from 

β-amyrin. Ebizuka and coworkers identified CAS, two bAS, LAS, 

and PNA cDNAs from hairy root cultures of P. ginseng in the 

ginsenoside-accumulating period (Kushiro et al., 1998a,b; Suzuki 

et al., 2006; Tansakul et al., 2006). Han et al. (2006) also identified 

PNA from the flower-accumulated dammarane-type saponins. The 

genes encoding P450 and UGTs committed to ginsenoside biosyn-

thesis would be identifiable from such resources in the near future.

BIOTECHNOLOGICAL PRODUCTION OF USEFUL PLANT 

TERPENOIDS

Although almost all production of glycyrrhizin depends on the 

collection of wild licorice, its harvesting is restricted to prevent 

exhaustion and desertification in the main producing country, 

China. Similarly, ginseng requires 4–5 years of careful cultivation 

and prevention of injury by continuous cropping. Such problems 

occur not only for saponins but also for other natural plant prod-

ucts. To ensure their stable supply, environment-friendly, and 

lower-cost alternatives such as biotechnological production are 

necessary. In the following, we describe the recent advances in the 

biotechnological production of useful terpenoids.

ARTEMISININ

Artemisinin, a sesquiterpenoid originally sourced from Artemisia 

annua, is used in combination therapy for malaria. The cost of ther-

apy is too high for people in low-income countries where malaria is 

prevalent, and total synthesis of artemisinin (Schmid and Hofheinz, 

1983) is not easy at low cost. Semi-synthesis of artemisinin from 

artemisinic acid (Roth and Acton, 1989) derived by fermentation 

could be an alternative lower-cost supply method (White, 2008). 

Ro et al. (2006) genetically modified yeast to increased productivity 

of a sesquiterpenoid biosynthesis starter, farnesyl pyrophosphate 

sequence tags (ESTs) with homologous sequences in the EST data-

base of Medicago truncatula, which also produces a soyasaponin 

βg intermediate called soyasaponin I (Huhman et al., 2005). The 

activity of the first UGT, UDP-glucuronic acid:soyasapogenol 

B-glucuronyl transferase, was detected in the microsomal frac-

tion of G. max (Kurosawa et al., 2002). However, no gene encod-

ing the UGT has been cloned. Group A saponins with a terminal 

acetylated sugar in the C-22 sugar chain accumulate only in seed 

hypocotyls (Shimoyamada et al., 1990). A gene controlling the 

terminal sugar variety was mapped on soybean chromosome 7 

(Takada et al., 2010).

SAPONINS IN MEDICAGO TRUNCATULA

Medicago truncatula, a leguminous model plant, accumulates over 

30 oleanane-type saponins (Huhman et al., 2005). A corresponding 

bAS cDNA was identified by EST database mining (Suzuki et al., 

2002) and homology-based PCR (Iturbe-Ormaetxe et al., 2003). 

UGT73K1 and UGT71G1 were characterized as triterpenoid gly-

cosyltransferases by integrated analysis of the transcriptome and 

metabolome of M. truncatula, but UGT71G1 preferred some flavo-

noids to triterpenoids as substrates in vitro (Achnine et al., 2005). 

Although the glycosylated positions by both UGTs were not clari-

fied in vitro, in silico docking simulation of the UGT71G1 crystal 

structure with UDP-glucose and medicagenic acid suggested that 

UGT71G1 can transfer a glucose molecule to the hydroxyl group 

at C-3 (Shao et al., 2005). UGT73F3 was identified as a glucosyl-

transferase of the hederagenin C-28 carboxyl group in an ester 

linkage by cluster analysis of transcription patterns and genetic 

loss-of-function analysis (Naoumkina et al., 2010).

GLYCYRRHIZIN IN LICORICE

Glycyrrhizin is an oleanane-type saponin present in the under-

ground parts of licorice (Glycyrrhiza). For use as a medicinal herb, 

the Japanese pharmacopia standard requires the root or stolon with 

2.5% or more glycyrrhizin content. The biosynthetic pathway of 

glycyrrhizin from β-amyrin involves hydroxylations at C-11 and 

C-30, and two steps of glucuronyl transfers to the hydroxyl group 

at C-3. A bAS was identified from G. glabra (Hayashi et al., 2001). 

Further, we identified CYP88D6 as a β-amyrin C-11 oxidase (Seki 

et al., 2008). For CYP88D6 cloning, we first constructed an EST 

library of the underground parts (Sudo et al., 2009). On the basis 

of the sequence similarities, we identified P450 genes and selected 

the candidate P450 gene expressed in glycyrrhizin-accumulating 

tissues. In addition, CYP93E3 was identified as a β-amyrin C-24 

oxidase in the secondary metabolism of glycyrrhizin. Further 

investigation is currently undertaken in our group for identify-

ing other candidate genes including another P450 responsible for 

C-30 oxygenation (Seki et al., submitted) and UGTs involved in 

the biosynthetic pathway of glycyrrhizin.

AVENACINS IN AVENA STRIGOSA

Avena spp. (oats) produce antimicrobial oleanane-type saponins 

called avenacins. Osbourn and coworkers generated saponin-defi-

cient (sad) mutants of A. strigosa; cloned Sad1, encoding bAS, Sad2, 

encoding CYP51H10 β-amyrin oxidase, and Sad7, encoding serine 

carboxypeptidase-like acyltransferase; and investigated sad3 and sad4 

mutants accumulating a monodeglucosyl avenacin (Papadopoulou 
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daffodil and crtI encoding phytoene desaturase from the bacterium 

Erwinia uredovora produced provitamin A, the content was not 

enough to meet the recommended daily allowance for children 

even in the regions where rice is a staple food. Therefore, Golden 

rice 2 was developed (Paine et al., 2005). The replacement of psy 

from daffodil by psy from maize improved the content adequately 

(>30 µg g−1).

Carotenoids are also popular targets in metabolically engineered 

microbial production. Alper et al. (2005) combined systematic 

and combinatorial gene knockout target identification methods 

in E. coli to increase the productivity of a well-known carotenoid 

pigment in tomato, lycopene. First, strain genotypes were system-

atically designed with gene knockouts reported to improve produc-

tivity. These strains then underwent deletions of unknown genes by 

a combinatorial transposon-based search. After the combination, 

the strain produced a high amount of lycopene (23 mg g−1 dry cell 

weight). Recently, an engineered E. coli with the MVA pathway 

genes from Enterococcus faecalis and Streptococcus pneumoniae and 

β-carotene biosynthesis genes produced β-carotene of 465 mg l−1 

(Yoon et al., 2009). Furthermore, improvement in the culture con-

dition of the recombinant E. coli increased the β-carotene titer to 

663 mg l−1 (Kim et al., 2009).

BIOENGINEERING OF PLANT TRITERPENOIDS

In plants, overexpression of 3-hydroxy-3-methylgulutaryl-CoA 

reductase (HMGR), FPP synthase (FPS), and squalene synthase 

in the isoprenoid pathway has been attempted to increase triter-

penoid productivity (Chappell et al., 1995; Schaller et al., 1995; 

Harker et al., 2003; Lee et al., 2004; Seo et al., 2005; Hey et al., 2006; 

Muñoz-Bertomeu et al., 2007; Lu et al., 2008; Kim et al., 2010). 

Despite the improved productivities per unit weight, the trans-

genic plants sometimes showed growth inhibition (Masferrer et al., 

2002; Manzano et al., 2004; Shim et al., 2010), probably caused by 

metabolic imbalances. In fact, co-overexpression of FPS and the 

HMGR catalytic domain alleviated the growth inhibition caused 

by the individual overexpression of FPS or the HMGR catalytic 

domain (Manzano et al., 2004). Further elucidation of isoprenoid 

biosynthetic mechanisms is required to improve triterpenoid pro-

ductivity in plants.

Furthermore, future challenging targets to elucidate for bioen-

gineering of plant triterpenoids should be the regulatory mecha-

nisms of the biosynthetic gene expressions and the accumulation 

mechanisms of triterpenoids. Saponins are frequently accumulated 

in specific tissues and organs. Glycyrrhizin and ginsenosides are 

accumulated in xylems of roots of licorice and ginseng, respec-

tively (Shan et al., 2001; Fukuda et al., 2006). Genes for saponin 

biosynthesis also express in specific tissues and organs. In avena, 

Sad genes are expressed in the root epidermal cells accumulating 

avenacin A-1 (Haralampidis et al., 2001; Qi et al., 2006; Mylona 

et al., 2008; Mugford et al., 2009). In addition, metabolomic and 

transcriptomic analyses showed good correlations between expres-

sions of the biosynthetic genes and the accumulations (Matsuda 

et al., 2010). In fact, recent successes for identification of sapo-

nin biosynthetic genes are based on such correlation analysis as 

described above. Those observations indicate that saponin pro-

ductions are regulated most likely at the transcription level and 

thus implying the existence of specific transcription factor(s) for 

(FPP), and expressed cDNAs encoding an amorphadiene synthase 

(ADS), CYP71AV1, and a cytochrome P450 reductase (CPR) from 

A. annua in the yeast. The recombinant yeast produced a large 

amount of artemisinic acid (115 mg l−1). Subsequent improvement 

in the fermentation process increased the artemisinic acid titer to 

2.5 g l−1 (Lenihan et al., 2008). On the other hand, an engineered 

Escherichia coli-integrated yeast MEV pathway to supply a large 

amount of FPP (Martin et al., 2003), modified CYP71AV1 at the 

N-terminus, and CPR produced 105 mg l−1 of artemisinic acid 

(Chang et al., 2007). Further improvement in the MEV pathway 

achieved an amorphadiene titer of 27.4 g l−1 (Tsuruta et al., 2009).

TAXOL (PACLITAXEL)

Taxol (paclitaxel) is a diterpenoid used against numerous cancers. 

Originally, Taxol was isolated from the bark of pacific yew (Taxus 

brevifolia) at low content (Wani et al., 1971). The complex struc-

ture of this drug limits its commercial chemical synthesis (Holton 

et al., 1994a,b; Nicolaou et al., 1994). Therefore, semi-synthesis 

from more accessible biosynthetic intermediates such 10-deacetylb-

accatin III and production in Taxus plant cell cultures have been 

developed as alternative supply methods (Kingston, 2007), which 

still depend on plant sources. For further improvement in pro-

ductivity and reduction in the therapeutic cost, biosynthetic pro-

duction has been attempted. Introduction of several biosynthetic 

enzyme genes for Taxol in yeast resulted in the production of only 

trace amounts of the first hydroxylated intermediate, taxadien-

5α-ol (Dejong et al., 2006).

On the other hand, Ajikumar et al. (2010) presented an optimi-

zation termed multivariate modular pathway engineering for taxa-

diene production in E. coli. They divided the taxadiene-producing 

pathway into two modules at the isopentenyl pyrophosphate step 

and searched for the optimal balance of the expression strength 

of each module for taxadiene production. The optimization ena-

bled over 1 g l−1 of taxadiene production in E. coli, and subsequent 

expression of a chimeric protein from CYP725A4, a taxadien-5α-

hydroxylase, and Taxus CPR resulted in 58 mg l−1 of taxadien-5α-ol 

production. The researchers (Ajikumar et al., 2010) indicated that 

re-optimization including the chimeric protein would improve the 

taxadien-5α-ol productivity.

CAROTENOIDS

Carotenoids are well-known tetraterpenoid pigments in plants and 

microorganisms. They are used not only as natural colorants in 

food and feed but also in nutraceutical, cosmetic, and pharmaceuti-

cal products because of their antioxidant property. Vitamin A is 

converted from some carotenoids collectively called provitamin 

A in human body. Deficiency of vitamin A causes blindness and 

mortality due to weakening of the immune system in children of 

the developing world. Therefore, carotenoids have received much 

attention as metabolic engineering targets (reviewed in Das et al., 

2007; Misawa, 2010). The engineered host organisms vary from 

microorganisms to plants. Here are two examples of the hosts – one 

for a plant (rice) and one for microorganism (E. coli). “Golden rice” 

is one of the most successful metabolically engineered plants (Ye 

et al., 2000). To increase provitamin A intake from rice, a provitamin 

A biosynthetic pathway was constructed in the endosperm of rice. 

Although Golden rice with psy encoding phytoene synthase from 
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and achieved 6 mg l−1 of β-amyrin production in yeast expressing 

an N-terminal-truncated HMGR and restricting the expression 

of a native OSC, LAS. A large amount of squalene accumulated in 

yeast means that the yeast can produce even more β-amyrin. In 

addition to the efforts to improve the common isoprenoid path-

way, as already described, enhancement of the catalytic proper-

ties of enzymes in triterpenoid biosynthesis should be effective. In 

Solanaceae, CYP71Ds are involved in sesquiterpenoid phytoalexin 

biosynthesis. Protein engineering of CYP71Ds based on sequence 

alignment analysis with phylogenetically related P450 species and 

homology modeling successfully enhanced the catalytic efficiencies 

of the enzymes (Takahashi et al., 2007). In Glycyrrhiza, not only 

glycyrrhizin-producing species but also non-producing species can 

produce other oleanane-type triterpenoid saponins (Hayashi et al., 

2000). The saponin diversity in Glycyrrhiza spp. could be derived 

from the variation in homologous P450 species and UGTs in sapo-

nin biosynthesis. Evaluation of the differences in these enzymes 

would be useful to improve their activities.

Although the number of identified genes has increased in the last 

decade, yet there is no saponin biosynthetic pathway of which all 

genes encoding the proteins involved in the biosynthetic steps have 

been identified. In fact only one CYP88D6 has been identified in 

glycyrrhizin biosynthetic pathway that requires two P450 species and 

two UGTs. The recent transcriptomic and metabolomic approaches 

have accelerated the elucidation of plant secondary metabolisms 

(Ziegler et al., 2006; Hirai et al., 2007; Yonekura-Sakakibara et al., 

2007, 2008; Liscombe et al., 2009; Okazaki et al., 2009; Matsuda et al., 

2010; Saito and Matsuda, 2010), and some saponin biosynthetic 

genes were identified by such strategies (Achnine et al., 2005; Seki 

et al., 2008; Naoumkina et al., 2010). Introduction of the current 

advanced DNA sequence technology in the omics strategies should 

enhance gene discovery (Li et al., 2010; Sun et al., 2010). In addition 

to the efforts to discover the proteins for the lacking biosynthetic 

steps, understanding the regulatory mechanisms of the expression 

of biosynthetic genes and the accumulation mechanisms of triterpe-

noids in plant and microbial hosts should enable further promising 

application for the production of useful triterpenoids.

ACKNOWLEDGMENTS

This work was supported by the Program for Promotion of Basic 

and Applied Researches for Innovations in Bio-oriented Industry 

(BRAIN). The authors thank Dr. Hikaru Seki (Osaka University) 

for his comments on the manuscript.

saponin  biosynthesis. The engineering of transcription factor is a 

promising way to modify the biosynthetic pathway in addition to 

an introduction of multiple biosynthetic enzyme genes (Borevitz 

et al., 2000; Hirai et al., 2007; Gonzalez et al., 2008). The discovery 

of novel structural genes involved in the pathway can be achieved 

by an analysis of overexpressing lines of a transcription factor 

(Tohge et al., 2005; Luo et al., 2007). Furthermore, the control by 

the transcription factor would be a useful reference to improve the 

productivity by the optimization of the expression levels of multiple 

pathway genes introduced in a heterologous host.

At the subcellular level, saponins are accumulated in vacuoles 

(Kesselmeier and Urban, 1983; Mylona et al., 2008). However 

OSCs, P450s and some UGTs for saponin biosynthesis are known 

as microsomal enzymes (Hayashi et al., 1996; Kurosawa et al., 2002). 

These facts suggest the presence of a vacuolar transporter of sapo-

nin. The transporter is also a target of engineering to improve the 

accumulation of the target compounds. So far, as a plant terpe-

noid transporter, an ATP-binding cassette transporter, NpPDR1, 

involved in secretion of an antifungal diterpenoid, sclareol, in 

tobacco plant was reported (Jasiński et al., 2001). A homolog of 

human sterol carrier protein-2 in A. thaliana was identified as a 

lipid transfer protein (Edqvist et al., 2004). There is, however, no 

report to identify a triterpenoid transporter in a plant to date. To 

narrow down the transcription factor and transporter candidates in 

plant secondary metabolism, omics analyses are also useful strate-

gies (Goossens et al., 2003; Hirai et al., 2007; Morita et al., 2009; 

Sawada et al., 2009).

Noteworthily, almost all OSCs, catalyzing the first triterpenoid 

diversification step, cloned from plants have been heterologously 

expressed in yeast for functional identification (reviewed in Kushiro 

and Ebizuka, 2010), because OSCs are membrane binding-type 

proteins and require eukaryotic developed intracellular membrane 

systems for their heterologous expression. Furthermore, yeast has a 

sterol biosynthetic pathway for producing the membrane constitu-

ent, and this pathway could be converted to a useful triterpenoid-

producing pathway.

Previously, we developed a recombinant yeast system for the 

mechanistic investigation of P450 species in glycyrrhizin biosynthe-

sis (Seki et al., 2008). To supply β-amyrin as the CYP88D6 substrate 

endogenously, a bAS was constitutively expressed. After the accu-

mulation of β-amyrin in the yeast, CYP88D6 was co-expressed with 

a CPR as the redox partner. The final yields of 11-oxo-β-amyrin 

and 11α-hydroxy-β-amyrin at 2 days of culture after the induction 

were approximately 1.6 and 0.2 mg l−1, respectively. Although we 

employed Lotus bAS and CPR at that time, G. uralensis bAS and 

CPR would be more suitable to improve the production.
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