
Most of the cells in multicellular organisms contain 
the same genetic information, but differential spatio
temporal gene regulation gives each cell its own fate 
and identity. Therefore, cell fate choices require the 
establishment of specific gene expression patterns, 
which then will determine a specific cell lineage. A 
cellular memory system is needed to stably transmit 
these gene expression patterns during cell division 
and replication. This genome regulation is essential 
for homeostasis in multicellular organisms and is 
mainly achieved by epigenet ic mechanisms regulating 
chromatin structure.

For instance, the regulation of the expression patterns 
of Homeobox genes (HOX genes) in Drosophila melano
gaster is established during early embryogenesis by a 
cascad e of maternal and zygotic transcription factors (for 
a review, see REF. 1). These early acting factor s disappear 
at later developmental stages, and the memory of the 
transcriptional state of HOX genes is then maintained by 
two groups of proteins: Trithorax group (TrxG) proteins, 
which activate transcription, and Polycomb group (PcG) 
proteins, which repress transcription.

PcG genes were identified from mutations that 
induce HOX genes outside their usual expression 
domains, causing homeotic transformations2. A few years 
later, the founding member of the TrxG, TRX, was 
characterized as a positive regulator of HOX genes3,4. 
Interestingly, TRX function was not needed to initiate 
HOX gene expression, but rather to maintain it in the 
appropriat e body segments later in development. This 
finding was at the origin of the idea that, as in the case 
of PcG genes, Trx may be involved in the epigenetic 

inheritance of HOX gene expression states3,5. Other 
TrxG proteins have been subsequently identified based 
on mutant phenotypes that reflect the loss of function 
of HOX genes, or by genetic screens for suppressors of 
PcGdependent mutant phenotypes6, leading to the defi
nition of TrxG proteins as antagonists of PcGdependent 
silencing (BOX 1).

PcG proteins regulate many genes in addition 
to HOX genes (reviewed in REF. 7), and the same is 
true for TrxG proteins, which, through their roles in 
methylating histones and remodelling chromatin, are 
involved in the maintenance of active chromatin states 
(BOX 2), tumorigenesis and embryonic stem (ES) cell 
selfrenewal8, cell fate choice and proliferation9. TrxG 
proteins have also been implicated in Xchromosom e 
inactivation10, apoptosis11, cell cycle regulation12, 
growth plasticity and regeneration, as well as in the 
stress response, during which they activate sen escence 
and DNA damage checkpoints13,14. However, it is 
un clear whether they regulate these cellular processes 
mainly by antagonizing PcG function or by globall y 
activating gene expression (BOX 1). Indeed, TrxG pro
teins can play widespread parts in general transcrip
tional activity 15,16 and two TrxG genes have been 
shown to encode for subunits of the D. melanogaster 
Mediator complex, which is involved in general trans
criptional activation17. In this Review, we describe TrxG 
complexes and their enzymatic functions, and evalu
ate recent data aimed at understanding how they are 
recruited to their targets. Furthermore, we discuss the 
molecular mechanisms used by TrxG complexes to 
regulate genome function.
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Epigenetic

A form of gene expression 

maintenance in which the 

heritable state of gene activity 

neither requires the continuous 

presence of the initiating signal 

nor involves changes in the 

DNA sequence.

Homeobox genes

(HOX genes). A family of genes 

that encode transcription 

factors which are essential for 

patterning along the anterior–

posterior body axis.

Homeotic transformations

The consequences of 

mutations that lead to the 

transformation of the identity 

of one body segment into the 

identity of another.

Trithorax group proteins: switching 
genes on and keeping them active
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Abstract | Cellular memory is provided by two counteracting groups of chromatin proteins 

termed Trithorax group (TrxG) and Polycomb group (PcG) proteins. TrxG proteins activate 

transcription and are perhaps best known because of the involvement of the TrxG protein 

MLL in leukaemia. However, in terms of molecular analysis, they have lived in the shadow  

of their more famous counterparts, the PcG proteins. Recent advances have improved our 

understanding of TrxG protein function and demonstrated that the heterogeneous group  

of TrxG proteins is of critical importance in the epigenetic regulation of the cell cycle, 

senescence, DNA damage and stem cell biology.
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SET domain

(Su(var)3‑9, Enhancer of  

Zeste, Trithorax). A motif 

~130 amino acids in length  

that provides histone 

methyltransferase activity.  

It is found in many chromatin‑

associated proteins, including 

some Trithorax group and 

Polycomb group proteins.

Diversity of TrxG proteins

TrxG proteins are evolutionarily conserved chromati n 
regulators that can be divided into three classes based 
on their molecular function (FIG. 1a). One class includes 
SET  domaincontaining factors that can methylate 
histon e tails (for a review, see REF. 18). The second 
class contains ATPdependent chromatinremodelling 
factor s, including proteins that can ‘read’ the histone 
methylation marks that are laid down by the SET 
domain proteins. The third class includes TrxG proteins 
that can directly bind specific DNA sequences and is 
comprised of some histone modifiers and chromatin 
remodellers, as well as proteins that are not categor
ized within the first two classes. Most of these TrxG 
proteins exert their function as part of large multi
protein complexes that have either histonemodifying 
or nucleosomeremodelling activities which cooperate 
to regulate gene expression.

Histone-modifying complexes. Trimethylation of Lys4 
on histone H3 (H3K4me3) is a hallmark of active genes. 
Yeast SET domaincontaining 1 (Set1) was the first 
histon e methyltransferase (HMT) shown to specifically 
cata lyse the mono, di and trimethylation of H3K4 
within a protein complex called COMPASS (complex 
proteins associated with Set1). Mammalian homologues 
of Set1 were then found to form COMPASSlike com
plexes (FIG. 1b). The first mammalian COMPASSlike 
component to be identified was MLL1 (also known  
as HRX and ALL1), which was originally discovered as  
the gene inducing human leuk aemia caused by chromo
some band 11q23 translocations19,20. Multiple MLL 
homo logues exist in plants and animals, forming differ
ent COMPASSlike complexes that provide genespecific 
regulation (FIG. 1b). In mammals, six COMPASSrelated 
complexes with essential and nonredundant func
tions have been identified that can methylate H3K4 

Box 1 | The molecular function of PcG complexes and the antagonistic action of TrxG proteins

Polycomb group (PcG) proteins, which have 

functions that are generally antagonistic to 

Trithorax group (TrxG) proteins, play a pivotal 

part in the dynamic regulation of many key 

developmental genes to define cellular 

identities and regulate key biological processes 

(see the figure, part a). Biochemical and genetic 

studies demonstrated that PcG silencing in 

Drosophila melanogaster and vertebrates 

involves the activity of multiprotein complexes 

(reviewed in REF. 7). Among these, Pc repressive 

complex 2 (PRC2) has histone methyltransferase 
activity that is specific for the trimethylation of Lys27 
on histone H3 (H3K27me3), which is catalysed by the 
SET domain-containing protein Enhancer of zeste 
homologue 2 (EZH2; see the figure, part b). The H3K27me3 
mark is specifically recognized by the chromodomain of 
Pc, a subunit of PRC1-type complexes. These complexes 
can monoubiquitylate Lys119 on histone H2A 
(H2AK119ub), a process which is catalysed by RING finger 
protein 1B (RING1B) and contributes to gene silencing. 
In addition to these two major PcG complexes, several 
additional PcG complexes with different enzymatic 
activities contribute to the plethora of biological 

processes that are regulated by PcG proteins, including 

cell cycle control, proliferation and cellular senescence, 

X-chromosome inactivation, stem cell plasticity and 
cell fate determination, and cancer (reviewed in REF. 7).

PcG complexes are recruited to DNA via specific 
DNA elements, termed PcG response elements (PREs), 
and can use multiple mechanisms to repress target genes 

involved in a wide range of cellular processes (reviewed 

in REF. 185). PRC2-mediated methylation on H3K27 
might directly interfere with transcriptional activation 

by blocking the deposition of active histone marks 
(reviewed in REF. 185). PRC1-mediated ubiquitylation on 
H2A, which has been suggested to interfere with transcriptional elongation and the binding of the PRC1 complex  
to chromatin, can induce chromatin compaction, interfering with nucleosome-remodelling activities and RNA 
polymerase II recruitment (reviewed in REF. 186). PcG-mediated repression can be dynamic and is specifically 
counteracted by TrxG proteins via the histone modifications that they mediate, including acetylation of H3K27 
(H3K27ac), H3K4me3, dimethylation of Lys36 on histone H3 (H3K36me2) and/or nucleosome-remodelling activities. 
However, TrxG proteins have been also identified as part of the general transcription machinery, indicating that their 
antagonistic action towards PcG proteins is only one of their functions.
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MYST

A family of histone 

acetyltransferases that is 

defined by the founding 

members Moz, Ybf2 (Sas3), 

Sas2 and Tip60.

through their conserved SET domain (FIG. 1b). SET1A or 
SET1Bcontaining complexes are the ones most closely 
related to yeast COMPASS and include the unique WD 
repeatcontainin g 82 (WDR82) subunit. SET1containing 
COMPASS complexes mediate the bulk of H3K4 trimeth
ylation in mammalian cells21 and D. melanogaster cells, 
indicating that they are involved in global gene activation.

COMPASSlike complexes containing MLL1 or MLL2 
include the unique subunit menin (FIG. 1b), which can act 
as a tumour suppressor22 and is required for localiza
tion of the complex to chromatin23. MLL1 is required 
for H3K4 trimethylation at a small subset of mamma
lian genes, including HOX genes21, whereas menin is 
required for essentially all H3K4 trimethylation at HOX 
genes. In addition, knockout of Mll1 and Mll2 in mice 
confirmed that the proteins encoded by these genes 
have a nonredundant function24,25. Furthermore, MLL1 
has been purified with MOF, a MYST family histone 

acetyltransferase (HAT) that specifically acetylates 
H4K16, linking histone methylation and acetylation to 
gene activation26.

MLL3 and MLL4containing complexes are impor
tant for H3K4 methylation at retinoic acid target genes 
but are dispensable for H3K4 methylation at HOX 
loci27,28. They also contain the demethylase UTX (also 
known as KDM6A) (FIG. 1b), which can remove PcG
mediated repressive H3K27 methylation. These com
plexes might thus relieve PcGmediated repression in 
addition to sustaining transcription via their H3K4 
methyltransferase activity.

Homologues of mammalian MLL proteins have been 
characterized in Arabidopsis thaliana, Caenorhabditis  
elegans and flies, indicating that their function is widely 
conserved in plants and animals29–31. C. elegans contains 
one SET1 protein, SET2, and one MLLlike protein, 
SET16, which is most similar to MLL3 and MLL4 in 

Box 2 | Epigenetic inheritance of active chromatin states

The key question in the epigenetic 

inheritance of gene regulation is 

how chromatin signatures are 

stably transmitted during cell 

division. Surprisingly, a recent 

report revealed that histones at 

Trithorax group (TrxG) and 

Polycomb group (PcG) binding sites 

are exchanged multiple times 

during cell division187. Thus, histone 

modifications are erased and 

re-established several times during 
a cell cycle, questioning the ability 

of sharply localized histone marks 
to transmit epigenetic information.

In the case of PcG-mediated 
silencing, it has nevertheless been 

proposed that a self-perpetuating 
cycle of trimethylation of Lys27 on 
histone H3 (H3K27me3) performed 
by Pc repressive complex 2 (PRC2) 
is responsible for the propagation 

of silent chromatin marks. This 

involves the binding of PRC2 to its 
own H3K27me3 mark188,189, by virtue of which PRC2 may be able to bind back onto the chromatin template upon  
transient loss that might occur during DNA replication or mitosis (see the figure). This seems a plausible hypothesis, as 
PcG-associated histone marks are distributed over large chromatin domains, facilitating the re-establishment of these 
repressive histone marks.

By contrast, H3K4me3 is more sharply localized to promoter regions, making it unlikely that the histone mark alone  
can provide epigenetic inheritance. In addition, mutation of the histone methyltransferase (HMT) activity of MLL in mice 
results in only mild phenotypes, whereas MLL-null mice die during early embryogenesis, indicating a HMT-independent 
function to propagate active chromatin states24,190.

During mitotic chromosome condensation, gene expression is globally shut off, and most transcription factors 

dissociate from mitotic chromatin. Interestingly, unlike other HMTs (or PcG proteins), MLL1 remains associated with 
condensed mitotic chromosomes (see the figure)191. Genome-wide mapping of MLL1 in mitotic and interphase cells 
revealed that MLL1 binding sites change throughout the cell cycle. Some target sites are kept and others are lost during 
mitosis, whereas a subset are exclusively occupied in mitosis — these sites correspond to genes that are highly expressed 

in the subsequent interphase. By contrast, genes that are uniquely bound by MLL1 in interphase exhibit only moderate 
expression levels. Mitotic retention of MLL1 may thus serve as a ‘bookmark’ that accelerates the kinetics of gene 
reactivation after mitotic exit191. The precise mechanism for this mitotic bookmarking function remains unknown, but 

seems to be largely independent of H3K4 trimethylation. The fate of TrxG proteins during DNA replication, the other 
phase of the cell cycle in which erasure of chromatin-mediated memory is most likely to occur, is also unknown. 
Research in both areas will be critical for the understanding of epigenetic inheritance in eukaryotes.
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◀

RAS signalling

An intracellular signal 

transduction pathway involving 

RAS. RAS activates many 

signalling cascades involved in 

multiple developmental events 

controlling cell proliferation, 

migration and survival.

SWI/SNF

(Switch/sucrose 

nonfermentable). A chromatin‑

remodelling complex family 

that was first identified 

genetically in yeast as a group 

of genes required for mating 

type switching and growth on 

alternative sugar sources to 

sucrose. This complex is 

required for the transcriptional 

activation of ~7% of the 

genome.

Bromodomain

A conserved protein module, 

which was first identified in 

the Drosophila melanogaster 

protein Brahma and has 

subsequently been found in 

many chromatin‑associated 

proteins. This domain can 

recognize acetyl‑Lys motifs.

SANT domain

A conserved histone‑binding 

domain that takes its name 

from the proteins in which it 

was initially identified: Swi3, 

ADA2, N‑CoR and TFIIB.

mammals. Both SET2 and SET16 are required for global 
H3K4 methylation, but SET2 seems to have a domi
nant role14,32,33. The C. elegans COMPASSlike complex 
includes SET16, the demethylase UTX1, which attenu
ates RAS signalling, and the dumpy 30 (DPY30) subunit, 
which functions in dosage compensation34. D. melano
gaster possesses three COMPASSrelated complexes, 
which contain the SET domaincontaining proteins 
SET1, TRX and TRXrelated (TRR)35. In addition, the 
TAC1 complex contains TRX, the D. melanogaster 
homologue of MLL, and the HAT cyclic AMP response 
elemen tbinding protein (CBP), which can acetylate 
H3K27 for gene activation36–38.

An additional TrxG protein containing a SETdomain 
in D. melanogaster is Absent small and homeotic discs 1 
(ASH1), which was shown to associate with CBP39 and 
which may also be involved in the methylation of H3K36 
(REF. 40). Thus, analogous to the specification of the mam
malian TrxG MLL gene family, SET domaincontaining 
proteins have diverged developmental functions in 
D. melanogaster.

ATP-dependent chromatin-remodelling complexes. ATP
dependent chromatinremodelling complexes open up 
chromatin by inducing nucleosome sliding or eviction, as 
well as by mediating chromatin looping. They are widely 
conserved and can be subdivided into different families 
on the basis of the sequence and structure of the ATPase 
subunit. The yeast SWI/SNF (switch/sucrose nonferment
able) subfamily was the first chromatinremodelling 
complex to be discovered41. The TrxG member Brahma 
(BRM) is a bromodomaincontaining protein in D. mela
nogaster, homologous to yeast SWI/SNF and mammalian 

BRM and BRG1 (also known as SMARCA4), that was 
identified in screens for suppressors of PcGmediated 
homeotic transformations6. SWI/SNF complexes are 
vari able and nonredundant, and they regulate the 
chromatin structure of a large number of genes impli
cated in the cell cycle, cell signalling, proliferation and 
chromosom e segregation (reviewed in REF. 42).

The imitation switch (ISWI) family contains a unique 
SANT domain. D. melanogaster has a single ISWI ATPase, 
which forms the nucleosome‑remodelling factor (NURF) 
complex (reviewed in REF. 42). The chromodomain heli
case DNAbinding (CHD) family of chromatin modifiers 
is defined by the presence of chromodomains and can be 
divided into three subfamilies. CHD1 and CHD2 form 
the first subfamily and have important roles during devel
opment and ES cell maintenance43. CHD3 and CHD4 
make up the second subfamily and are part of the Mi2–
NuRD (Mi2–nucleosome remodelling and de acetylase) 
complex, which couples chromatin remodelling and 
histone deacetylation to mediate repressive functions 
involved in transcriptional regulation, replication, DNA 
repair and cell fate determination44,45. However, the plant 
CHD3 homologue PICKLE (PKL) counteracts PcG
mediated repression to regulate meristem activity in the 
A. thaliana root46. The third subfamily contains CHD6, 
CHD7 and CHD8 and includes the single D. melano
gaster TrxG protein Kismet long (KISL), which activates 
transcription and counteracts PcGdependent silencing 
by guiding ASH1 and TRX to their targets15.

TrxG proteins and sequence-specific DNA binding. In 
flies, TrxG complexes bind to DNA elements called 
TrxG response elements (TREs). These elements often 
co incide with PcG response elements (PREs), and an 
overlapping set of sequencespecific DNAbinding pro
teins (for example, the DNAbinding proteins Dorsal 
switch protein 1 (DSP1), GAGA factor (GAF) and Zeste) 
are involved in the recruitment of D. melanogaster PcG 
and TrxG complexes (reviewed in REF. 7). TRX has been 
shown to be recruited to its target genes independently of 
their activation status, whereas ASH1 is targeted to genes 
in an activationdependent manner, thereby facilitating 
transcriptional elongation47. Similarly, BRM was shown 
to be recruited to polytene chromosomes upon activation 
of a TREcontaining transgene48.

No mammalian TRE sequences have been identi
fied so far. In mammals, MLL1 and MLL2 have a CXXC 
domain, a type of zincfinger that can recognize unmeth
ylated CpG sequences and is absent in the D. melano
gaster homologue TRX. CpGrich sequences (CpG 
islands) have been suggested to recruit PcG complexes 
in mammals49, and they may also recruit TrxG com
plexes (FIG. 2a). Indeed, they recruit CXXC1 (also known 
as CFP1), a component of mammalian COMPASS50 
(FIG. 1b). Other DNAbinding proteins, such as nuclear 
factor Y (NFY) and NFE2, were shown to interact with 
ASH2L, inducing its recruitment and mediating H3K4 
trimethylation at target promoters51,52. Furthermore, 
ASH2like (ASH2L) itself binds CGrich DNA motifs, 
reinforcing the tethering of MLL complexes to their 
targe t chromatin53,54.

Figure 1 | Classes of TrxG proteins and TrxG-containing complexes across species.  

a | Trithorax group (TrxG) proteins bind to DNA in a sequence-specific manner, or act as 

large multimeric complexes that modify histones or contain ATP-dependent nucleosome- 

remodelling activity. DNA-binding proteins help to recruit chromatin-remodelling and 

histone-modifying complexes to regulate transcription, and chromatin-remodelling 

factors can ‘read’ the histone methylation marks that are laid down by histone-modifying 

complexes. b | Only TrxG members that have been biochemically characterized by the 

isolation of their multiprotein complexes are listed here. Components with enzymatic 

activities are shown in dark blue circles. Unique subunits in COMPASS (complex proteins 

associated with Set1) and COMPASS-like complexes are shown in light blue circles.  

Note that SWI/SNF (switch/sucrose nonfermentable) is a family of complexes, including 

Drosophila melanogaster BAP and PBAP and human BRG1-associated factor (BAF) and 

PBAF as well as embryonic stem (ES) BAF (esBAF). For simplicity, only the BAP and BAF 
complexes are shown here. The comment on each TrxG group member refers to 

mammals, if not otherwise specified. ASH, Absent, small and homeotic discs; 

ASH1L, ASH1-like; BPTF, bromodomain and PHD finger-containing transcription factor; 
BRD, Bromodomain-containing; BRM, Brahma; C. elegans, Caenorhabditis elegans; 

CBP, cyclic AMP response element-binding protein; CHD, chromodomain helicase 
DNA-binding; DPY, dumpy; HAT, histone acetyltransferase; HCF1, host cell factor 1; 
HDAC, histone deacetylase; HMT, histone methyltransferase; HOX, homeobox; 

ISWI, imitation switch; KIS-L, Kismet long; MBD, methyl-CpG-binding domain; 
MEP-1, MOG-interacting and ectopic P-granules 1; LET-418, lethal 418; MOR, 
Moira; NCOA6, nuclear receptor co-activator 6; NURF, nucleosome-remodelling factor; 
PA1, PTIP-associated 1; PcG, Polycomb group; PHD, plant homeodomain; PKL, PICKLE; 
PTIP, PAX transactivation activation domain-interacting protein; RBAP, retinoblastoma-

binding protein; RBBP5, retinoblastoma-binding protein 5; SAYP, Supporter of 
activation of yellow protein; SET, SET domain-containing; SNR1, Snf5-related 1; 
TRR, TRX-related; WDR, WD repeat-containing.
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Nucleosome-remodelling 

factor

(NURF). A chromatin‑

remodellin g complex identified 

in Drosophila melanogaster 

and belonging to the imitation 

switch subfamily.

Chromodomain

A motif of ~60 amino acids 

that is found in many chromatin‑ 

associated proteins and  

forms a binding pocket for 

methylated histone residues.

Bivalent chromatin domains

Domains that are characterized 

by the juxtaposition of active 

and inactive epigenetic histone 

marks.

Plant homeodomain finger

(PHD finger). A PHD‑linked 

zinc‑finger that chelates 

double zinc ions. This protein 

motif is found in many 

chromatin regulators and binds 

histones in a methylation‑

dependent or ‑independent 

manner.

Trans histone code

This term describes the  

fact that post‑translational 

modifications on one histone 

tail can influence those on 

another, even when they are 

located on different histones, 

resulting in a specific gene 

expression output.

Recently, bioinformatic analysis has shown that MYC 
binding motifs colocalize with Pc repressive complex 2 
(PRC2) components and the repressive H3K27me3 
mark55. In mouse ES cells, MYC binds to and regu
lates loci previously identified as PcG targets, includ
ing genes that contain bivalent chromatin domains56. 
Therefore, MYC may directly recruit PcG and TrxG 
complexes to genes controlling growth and prolifera
tion (see below). TrxG complexes can also be targeted 
via interaction with the polymeraseassociated factor 1 
(PAF1) elongating complex. PAF1 directly interacts 
with sequences flanking the CXXC domain of MLL 
proteins57, and functions as a binding platform for 
MLL and TRXcontaining complexes to elongating 
RNA polymeras e II58,59 (FIG. 2b).

Non-coding RNAs and TrxG recruitment

In addition to directly binding specific DNA sequences 
and interacting with other transcription factors, TrxG 
proteins can be recruited to their targets via their inter
action with noncoding RNAs (ncRNAs). ncRNAs play 
a central part in genesilencing mechanisms, whereas 
their role in gene activation is much less understood. 
Forced expression of ncRNAs through D. melanogaster 
PREs causes homeotic phenotypes, suggesting a role in 
gene activation via the displacement of PcG proteins60. 
Further evidence for an activating role of ncRNAs came 
from a study of the bithoraxoid (bxd) PRE and TRE, 
which encodes a ncRNA that alters Ultrabithorax (Ubx) 
gene expression. This study suggested that bxd ncRNA 
transcripts can recruit the methyltransferase ASH1 to 
Ubx in cis to induce its expression61. However, a con
flicting study reported that transcription through the 
bxd PRE and TRE prevents the expression of Ubx 38.  
The cause for this discrepancy is unclear62.

Although the above findings suggest that RNA mole
cules may interact with TrxG components at their site 
of transcription, more recent reports showed that long 
ncRNAs (lncRNAs) have an enhancerlike function, 
acting over long distances to activate gene expression63. 
The precise mechanism by which enhancerlike RNAs 
mediate gene activation is not known, but it is tempt
ing to speculate that transcription of ncRNAs from 
enhancer s facilitates the contact of the enhancer with its 
target promoter via chromatin looping. A recent report 
provided the first evidence that lncRNAs might function  
to activate transcription by recruiting TrxG complexes to 
chromatin: HOXA transcript at the distal tip (HOTTIP), 
a lncRNA from the 5′ end of HOXA locus, was shown to 
interact with WDR5, targeting WDR5–MLL complexes 
across HOXA to induce H3K4 trimethylation and gene 
activation. Chromosome looping brings HOTTIP RNA 
in close proximity to its target genes53 (FIG. 2c). Future 
work should clarify whether lncRNAs have a general role 
in recruiting TrxG proteins for gene activation.

Histone marks and TrxG recruitment

Preexisting histone modifications may recruit TrxG 
complexes by providing docking sites for specific ‘reader’ 
modules. The third plant homeodomain finger (PHD 

finge r) of MLL binds directly to dimethylated Lys4 on 
histone H3 (H3K4me2) and H3K4me3 and is neces
sary for MLL1 recruitment to the HOX9A gene locus64 
(FIG. 2d). The NURF complex can also read H3K4me3 via 
the PHD finger of its largest subunit, NURF301–BPTF 
(bromodomai n and PHD fingercontaining transcrip
tion factor), thereby linking H3K4me3mediated gene 
activation with nucleosome remodelling65. The chromo
domains of human CHD1, CHD7 and CHD8 interact 
with methylated H3K4, and SWI/SNF complexes bind 
to acetylated histones via their bromodomain sub
units66,67. Furthermore, additional acetylation of H4K16 
by the MOF acetyltransferase increases the affinity of 
BPTF for nucleosomes via the PHDadjacent bromo
domain68. However, the precise molecular mechanism 
of this trans histone code remains elusive.

One further example of this histone crosstalk in 
TrxGmediated gene activation is the requirement of 
H2B monoubiquitylation for proper H3K4 methyla
tion and the interplay between the methylation of Arg2  
on H3 (H3R2), H3K4 methylation, H3K9 acetylation and 
H3K14 acetylation. The human PAF complex recruits 
the H2B ubiquitylation machinery, BRE1–RAD6, which 
ubiquitylates the H2B tail; this modification enhances 
H3K4 dimethylation and trimethylation by inducing the 
catalytic activity of COMPASS69 (FIG. 3a). Acetylation of 
H3K9 and H3K14 can also stimulate H3K4me3 (REF. 70) 
(FIG. 3a), whereas asymmetric H3R2 methylation by pro
tein Arg Nmethyltransferase 6 (PRMT6) antagonizes 
H3K4 methylation71,72 (FIG. 3b). One key player in this 
crosstalk might be WDR5, which participates in both 
reading and ‘writing’ of the H3K4 methylation mark73. 
WDR5 recognizes H3K4 tails independently of their 
methylation status but is blocked by methylation of 
H3R2 (REF. 74). Knockdown of WDR5 results in reduced 
levels of histone H3K9 and H4K16 acetylation at a 

Figure 2 | Multiple mechanisms recruit TrxG complexes to their target sites.  

a | MLL can directly interact with CpG-rich sequences via its CXXC domain. 

b | Alternatively, MLL can be targeted to DNA by interacting with sequence-specific 
transcription factors or the polymerase-associated factor 1 (PAF1) elongation complex. 

Similarly, in flies, Trithorax group (TrxG) complexes can be recruited to TrxG response 

elements (TREs) via their interaction with sequence-specific DNA-binding proteins. 

Note that TREs have not been identified in mammals so far. c | RNAs, such as HOXA 

transcript at the distal tip (HOTTIP), can recruit MLL via their interaction with the adaptor 

protein WD repeat-containing 5 (WDR5). d | The plant homeodomain (PHD) finger 

domain of MLL can bind to trimethylated Lys4 on histone H3 (H3K4me3), helping to 
target MLL to chromatin. RNAPII, RNA polymerase II.
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subset of silent genes marked by H3K4me3, suggesting a 
crosstalk between H3K4 methylation and histone acety
lation75. However, as WDR5 is also part of complexes 
that include the HAT MOF, which mediates H4K16 
acetylatio n26, this crosstalk needs further validation76.

TrxG-mediated gene activation

The relative roles of the various TrxG complexes in regu
lating global gene activation versus specifically counter
acting PcGdependent gene silencing are still illdefined. 
In yeast, H3K4me3 occurs after the establishment of the 
basal transcription machinery and might boost trans
cription by facilitating elongation and helping to release 
RNA polymerase II from the promoter. Similarly, the 
main function of TrxG proteins in higher eukaryotes 
seems to be to activate transcription downstream of tran
scriptional initiation. D. melanogaster TAC1 has been 
reported to be essential for the recruitment of the FACT 
(facilitates chromatin transcription) elongation com
plex to the Ubx gene38. TRX and ASH1 bind the coding 
regions of the active Ubx gene47,77, and their recruitment 
was suggested to maintain a nonrepressive chromatin 
state in order to prevent PcG gene silencing78. Finally, 
KISL acts downstream of Positive transcription elon
gation factor b (PTEFb) recruitment to promote early 
elongation15. In addition to transcriptional elongation, 
ASH2 can regulate transcriptional pausing by affecting 
the phosphorylation status of RNA polymerase II79, and 
H3K4me3 mediated by COMPASSlike complexes can 
promote transcriptional initiation by directly recruiting 
the PHD finger of the transcription factor IID (TFIID) 
subunit TBPassociated factor 3 (TAF3)80.

Mammalian MLL1 and D. melanogaster TRX are pro
teolytically cleaved by the Thr aspartase Taspase 1 into 
a SET domaincontaining carboxyterminal domain 
and an aminoterminal part81. Genomewide mapping 

studies revealed that the Nterminal fragment of TRX 
associates with promoters like general transcription 
cofactors38,82 and that it also coats the whole coding 
region of active genes, supporting a role for it in tran
scriptional elongation77. By contrast, the Cterminal 
fragment of TRX colocalizes strongly with PcG proteins, 
suggesting a more specific antisilencing function62,77.

In addition to H3K4 trimethylation, other his
tone modifications contribute to TrxG function. The 
D. melanogaster HAT CBP associates with ASH1 and 
was found in the TAC1 complex, which can acetylate 
H3K27 in a TRXdependent manner. H3K27 acetylation 
was shown to be associated with PcG target genes when 
they are active77. This modification is incompatible with 
H3K27me3, as these modifications occur on the same 
amino acid, suggesting that TRX and ASH1associated 
CBP might be a key player in counteracting PcG
dependent gene silencing37. Similarly, ASH1mediated 
methylation of H3K36 antagonizes PcGmediated 
H3K27 methylation40 (FIG. 3c).

TrxG-mediated cell cycle regulation

Although TrxG complexes are known to mediate stable 
epigenetic inheritance, they also regulate gene expres
sion in dynamic processes, such as the cell cycle. Thus, 
their deregulation may contribute to human leukaemia.

TrxG-dependent control of cell cycle regulators. 
Leukaemogenic MLL translocations can fuse the com
mon 1,440 Nterminal amino acids of MLL in frame 
with more than 60 partners. The resulting fusion pro
teins lose the SET domain. Therefore, they must activate 
their target genes independently of H3K4 methylation. 
Recently, it has been proposed that leukaemogenic 
fusion proteins aberrantly activate MLL targets by con
stitutively recruiting elongation factors of transcription 

Figure 3 | Histone crosstalk in TrxG-mediated gene activation. a | Monoubiquitylation of Lys123 on histone H2B 
(H2BK123ub) by BRE–RAD6 enhances trimethylation of Lys4 on histone H3 (H3K4me3) by inducing the catalytic activity  
of COMPASS (complex proteins associated with Set1). Acetylation of Lys9 and Lys14 on histone H3 (H3K9ac and H4K14ac)  
are also required for maximal H3K4me3 levels. b | Asymmetric dimethylation of Arg2 on histone H3 (H3R2me2) by protein 
Arg N-methyltransferase 6 (PRMT6) interferes with binding of WD repeat-containing 5 (WDR5) to tails on histone H3. This 
results in impaired recruitment of MLL–COMPASS-like complexes, leading to decreased H3K4me3 levels and a subsequent 
decrease in transcription. c | Modification with the H3K27ac mark by Trithorax group (TrxG) complexes containing the 
histone acetyltransferase cyclic AMP response element-binding protein (CBP) can interfere with trimethylation of the same 

Lys residue by Polycomb repressive complex 2 (PRC2), thereby blocking Polycomb group (PcG)-mediated gene silencing. 
In addition, H3K36me2 negatively regulates H3K27me3 levels, helping to keep genes active. 
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CDKI

(Cyclin‑dependent kinase 

inhibitor). Members of the 

CIP and KIP family of CDKIs 

(p21, p27 and p57) inhibit 

CDK2‑ and CDK1‑containing 

complexes, and members of 

the INK4 family (p15, p16, 

p18 and p19) inhibit 

cyclin D‑containing complexes. 

Expression of CDKIs generally 

causes growth arrest and, 

when CDKIs are acting as 

tumour suppressors, may 

cause cell cycle arrest and 

apoptosis.

SCF and APC/C

(Skp–cullin–F box and 

anaphase‑promoting complex 

(also known as the cyclosome)). 

Multiprotein E3 ubiquitin ligase 

complexes that are involved 

in the recognition and 

ubiquitylation of specific 

cell cycle target proteins for 

proteasomal degradation.

E3 ubiquitin ligases

Enzymes that target specific 

proteins for degradation by  

the proteasome by causing the 

attachment of ubiquitin to Lys 

residues on their substrates.

Cellular transformation

A change undergone by  

animal cells, caused by escape 

from control mechanisms  

(for example, upon infection  

by a cancer‑causing virus). 

Transformed cells have 

increased growth potential, 

alterations in cell surface, 

karyotypic abnormalities  

and the ability to invade  

and metastasize.

to their promoters83–85, resulting in their inappropriate 
expression. Moreover, it has also been demonstrated that 
mouse acute myeloid leukaemia (AML) tumours gener
ated by expression of an inducible MLL–AF9 fusion can 
be reverted by conditional MLL–AF9 removal. This 
addiction of AML tumours to MLL–AF9 expression is 
predominantly associated with enforcement of a MYB
regulated transcriptional programme that is required for 
the maintenance of leukaemia86.

The overexpression of one of two common MLL 
fusions, MLL–AF4 and MLL–AF9, which are respec
tively responsible for AML and acute lymphoid leukae
mia (ALL), was shown to modify the normal cell cycle in 
D. melanogaster87 and mammals88. In mammals, MLL–
AF4 and MLL–AF9 bind the promoter of the p27 (also 
known as KIP1 and CDKN1B) CDKI (cyclindependent 
kinase (CDK) inhibitor). However, the outcome of p27 
regulation by MLL–AF4 depends on the cell type. When 
inducible MLL–AF4 is expressed in an epithelial cell 
background, MLL–AF4 downregulates the transcription 
of p27, but not of other CDKIs, such as p21 (also known 
as CIP1, CDKN1A and WAF1) or p16 (also known as 
INK4A and CDKN2A)88. Conversely, in a lymphoid cell 
background or in primary bone marrow progenitor cells, 
MLL–AF4 upregulates p27 expression88.

The expression of individual cell cycle regula
tory INK4 genes (p16, p15 (also known as INK4B and 
CDKN2B), p18 (also known as INK4C and CDKN2C) 
and p19 (also known as INK4D and CDKN2D)) is tran
scriptionally regulated in a tissue and developmental 
stagespecific manner89,90 that involves several TrxG 
members. In particular, the menincontaining MLL 
complex transcriptionally activates the p27 and p18 loci 
in murine embryonic fibroblasts91,92. Meninknockout 
mice develop multiple endocrine tumours93–95, cor
relating with the repression of CDKI in the pancreas, 
acceler ated S phase entry and enhanced cell prolifera
tion in pancreatic islets95. Moreover, menin interacts 
with activator of S phase kinase (ASK; also known as 
DBF4) and represses ASKinduced cell proliferation96. 
Intriguingly, knocking down MLL1 or retinoblastoma
binding protein 5 (RBBP5; a subunit of the COMPASS 
complex, see FIG. 1b) in human fibroblasts reduces the 
expression of a different subset of CDKIs97,92. Together 
with the only partial genome colocalization of menin, 
MLL1 and RBBP5 (REF. 98), these results open the 
perspective of contextdependency and differential 
regulatio n of CDKIs by different MLL complexes.

MLL5 is a mammalian TrxG gene that is distantly 
related to the human augmenter of liver regeneration 
(ALR) and ASH1like (ASH1L) proteins and D. mela
nogaster ASH1 (REF. 99). MLL5 has been recently shown 
to be a quiescenceinduced gene in undifferentiated sat
ellite mouse myoblasts100, where it both suppresses inap
propriate expression of S phasepromoting genes and 
maintains the expression of fatedetermination genes101. 
The proliferation effects of MLL5 may be due to its  
direct and indirect roles in cyclin A repression101. MLL1, 
MLL2 and SET1 directly associate with E2F to control 
G1 phase cell cycle genes102. Different E2F proteins act as 
either transcriptional activators or repressors, and MLL1 

interacts with E2Fs that are partially different from 
those of MLL2, suggesting unique, yet redundant, parts 
played by individual MLLs in cellular division (FIG. 4a). 
The combinatorial inter actions between MLL complexes 
and E2F proteins may thus contribute to the activation 
or repression of different E2F target genes in addition 
to cyclins and CDKIs. Taspase 1mediated proteolytic 
cleavage of MLL also regulates cell cycle progression103. 
Taspase 1null mice are small because of impaired cell 
proliferation, which is associated with transcriptional 
downregulation of a subset of cyclins. Finally, the proto
oncogene ASH2 forms a ternary complex with E2F1 and 
host cell factor 1 (HCF1) on E2Fresponsive promoter s 
during the G1–S phase transition, thereby inducing 
transcriptiona l activation and cell proliferation102.

Regulation of TrxG components by the cell cycle. The 
TrxG–cell cycle connection is not a oneway process. 
The SWI/SNF chromatinremodelling complex is itself 
regulated by the cell cycle, with reduced levels during 
mitosis and loss of binding to mitotic chromosomes 
after its dephosphorylation104,105. MLL is periodically 
degraded during the cell cycle (FIG. 4a) by the action of 
the SCF and APC/C complexes, involving the cell cycle 
E3 ubiquitin ligases SCFSKP2 (SCF bound to S phase 
kinaseassociated protein 2) in S phase and APC/CCDC20 
(APC/C bound to its coactivator CDC20) during mito
sis12. Perturbation of this cyclic MLL expression results 
in cell cycle aberrations, suggesting that the period
icity in MLL expression might be one determinant of 
the periodicity of cyclins106. Remarkably, whereas MLL 
degradation is initiated in its N terminus, the prevalent 
MLL fusions exhibit resistance to degradation. This 
protein stabilization may ultimately result in constant 
activation of MLL target genes, which could explain the 
universal consequence of MLL fusions.

Taken together, these data suggest that the differen
tial phenotypes of individual TrxG mutations on cell 
proliferation may depend on the relative levels of TrxG 
components, of their cofactors and of the components 
of the cell cycle machinery in the particular cells, tissues 
or developmental times under study.

Senescence and DNA damage checkpoints

Owing to their ability to control CDKI levels, MLL 
famil y proteins are an integrative element of the 
senescence and DNA damage checkpoints. The cell
ular senescence checkpoint acts as a barrier to cellular 

transformatio n107,108. During this process, the checkpoint 
component p16 is activated by MLL complexes that 
counteract PcG activity97. In young cells, the p16 locus 
recruits PcG proteins via the tumour suppressor retino
blastoma protein (RB)109,110. In the absence of RB activity 
in primary human fibroblasts, H3K4me3 levels increase 
at the p16 locus, which correlates with transcriptional 
activation97, suggesting a balanced action of PcG and 
TrxG complexe s during ageing.

MLL1 could also regulate the p16 gene after DNA 
damage and oncogene activation. The ultraviolet 
damage d DNAbinding protein DDB1 is able to bind the 
WD40 proteins RBBP5 and WDR5, and its depletion 
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Figure 4 | Role of MLL proteins in cell cycle control. a | Under normal conditions, wild-type MLL is unstable and 

present as peaks of expression at the G1–S and G2–M transitions. The cell cycle E3 ubiquitin ligases SCFSKP2 (SCF bound to 

S phase kinase-associated protein 2) and APC/CCDC20 (APC/C bound to its co-activator CDC20) target MLL for degradation 

during S phase and mitosis, respectively. During G1, MLL1 or MLL2 and SET-domain containing 1 (SET1) directly associate 
with E2F to control G1 phase cell cycle genes102. E2F1, E2F2 and E2F3A activate transcription, whereas E2F3B, E2F4, E2F5 
and E2F6 repress it. MLL1 interacts with E2F2, E2F4 and E2F6, and MLL2 associates with E2F2, E2F3, E2F5 and E2F6, 
suggesting unique, yet redundant, roles for individual MLLs in cellular division. The interactions between MLL complexes 

and E2F proteins may activate or repress E2F cell cycle target genes in addition to cyclins and cyclin-dependent kinase 

(CDK) inhibitors (CDKIs). During S phase, MLL degradation results in decreased trimethylation of Lys4 on histone H3 
(H3K4me3) on late replication origins, which permits the initiation of DNA replication by the accumulation of CDC45 
on DNA. During mitosis, the MLL complex is retained on chromatin, which could facilitate the inheritance of active gene 
expression during cell division (see BOX 2). In leukaemia, MLL fusions exhibit resistance to degradation and therefore 

remain at a constant level12. b | MLL is implicated in the ATR (ataxia-telangiectasia- and RAD3-related)-dependent 
checkpoint. Under baseline conditions, wild-type MLL protein is degraded during S phase and replication is fired. 
After genotoxic stress, ATR phosphorylates MLL at Ser516, disrupting the interaction of MLL with SCFSKP2 and therefore 

preventing SCFSKP2-mediated MLL degradation. Consequently, MLL accumulates on S phase chromatin at DNA breaks, 

where it methylates H3K4 and diminishes CDC45 loading to block replication. c | MLL dysfunction results in S phase 

checkpoint defects. In this model, even in the absence of genotoxic stress, levels of MLL fusions might be stabilized owing 

to the inability of chimeric proteins to bind SCFSKP2. Therefore, they could compete with wild-type MLL for loading onto 

chromatin. MLL fusions that have a SET domain deletion (MLLΔSET) cannot trimethylate H3K4. As a result, CDC45 might 
load aberrantly at late replication origins. This mechanism could also occur under genotoxic conditions, where MLL 

fusions would act as a dominant-negative form of wild-type MLL.
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ATR

(Ataxia‑telangiectasia‑ and 

RAD3‑related). A caffeine‑

sensitive, DNA‑activated 

protein kinase that is involved 

in DNA damage checkpoints.

Radioresistant DNA 

synthesis

(RDS). When mutant cells fail  

to repress the firing of DNA 

replication origins in the 

presence of ionizing 

radiation‑induced 

DNA damage.

Notch signalling

This pathway is a highly 

conserved intercellular 

signalling mechanism that  

is essential not only for 

cell proliferation but also  

for numerous cell fate‑ 

specification events.

reduces p16 expression concomitantly with a decrease 
in H3K4me3 on the p16 promoter. After transduction of 
the oncogenic form of HRAS, in which Gly12 is replaced 
with Val (HRASG12V), into human primary fibroblasts, 
PcG binding to p16 is disrupted and p16 mRNA levels 
increase97. In the same context, deletion of MLL1 or 
DDB1 reverts the HRASG12Vmediated induction of 
p16, identifying these proteins as critical components 
of oncogeneinduced p16 activation97. In conclusion, 
MLL1 and WDR5–RBBP5–DDB1 complexes drive 
oncogeneinduced p16 activation. Furthermore, the 
SWI/SNF complex was shown to evict PcG complexes 
and recruit MLL1 at the p16 gene in malignant rhabdoid 
tumour (MRT)derived cells111, illustrating how multi
ple TrxG complexes can cooperate to switch genes from 
repressed to active states.

MLL1 also has a direct role in the control of the 
S phase checkpoint, which senses DNA damage, inhib
its the firing of late replication origins and recruits 
repair machineries in order to maintain genome 
integrity112 (FIG. 4b). After DNA damage, MLL is phos
phorylated on Ser516 by the checkpoint kinase ATR 

(ataxiatelangiectasi a and RAD3related), reducing 
S phasedependent MLL degradation112. MLL thus 
accumulates on chromatin and increases the levels of 
H3K4me3 on late replication origins, thereby inhibit
ing chromatin loading of CDC45, an essential com
ponent of the prereplication complex necessary for 
initiation of DNA replication. MLL mutations impair 
H3K4 trimethylation and allow CDC45 to load onto 
damaged chromatin, inducing radioresistant DNA 

synthesi s (RDS). In leukaemias, MLL fusion proteins 
may act in a dominantnegative manner. For instance, 
the severity of the RDS partial phenotype of a hetero
zygote MLL+/MLLex7(stop)–CBP mutant, expressing only 
the Nterminal part of MLL, is increased by genera
tion of an MLL fusion with CBP (MLLex7–CBP) after 
conditional excision of the transcriptional stop cas
sette113. Furthermore, the expression of MLL–AF4 or 
MLL–AF9 fusion protein results in a RDS phenotype 
despite the cells harbouring two wildtype copies of 
MLL113. The dominantnegative effect of MLL fusion 
proteins involves their insensitivity to inhibition by 
ATRdependent MLL phosphorylation. The chimeric 
proteins are stabilized even in baseline conditions owing 
to their diminished interaction with SCFSKP2. They thus 
compete with wildtype MLL for loading onto chro
matin and their lack of a catalytic SET domain allows 
increased CDC45 loading and RDS112 (FIG. 4c).

A further TrxG contribution to the DNA damage 
response depends on menin. Menindeficient D. mela
nogaster strains and mouse embryonic fibroblasts are 
hypersensitive to crosslinking agents and ionizing 
radiation114,115 and continue to synthesize DNA after 
exposure to doses of ionizing radiation that normally 
causes S phase arrest in wildtype cells114,116. Menin is 
implicated both in the intraS checkpoint and in the 
G1–S transition checkpoint. In meninmutant cells, 
the upregulation of p21, the primary target of acti
vated p53 in the DNA damage checkpoint response, is 
impaired even though p53 binding is retained. Menin 

binds and recruits MLL to the p21 promoter in a DNA 
damagedependent manner. Of note, the MLL–menin 
complex targets p21 only in the DNA damage check
point, whereas in the absence of damage it targets  
the p18 and p27 CDKI genes91, further highlighting the  
contextdependency of MLL targeting. Menin also 
interacts with proteins involved in DNA repair, such 
as replication protein A, CHK1 and the Fanconi anae
mia protein FANCD2, suggesting that, in addition to 
regulating RDS and the expression of DNA damage
dependent CDKIs, it might play a direct part in DNA 
repair mechanisms115,117,118.

TrxG proteins in signalling to chromatin

Similarly to DNA damageinduced signalling to MLL 
through ATRmediated phosphorylation, TrxG compo
nents respond to and regulate major signalling pathways 
linked to developmental and physiological cues.

TrxG and Notch signalling. Research in D. melanogaster 
and mammals suggests that regulation of the Notch 

signalling pathway engages the antagonistic functions 
of TrxG and PcG complexes (FIG. 5a). The SWI/ SNF 
complex has been linked to the Notch–Delta transduc
tion pathway119,120. In mammals, the inter action of the 
human SWI/SNF protein BRM with the intracellular 
domain of the activated form of Notch might pro
mote the transcriptional induction of Notch targets120. 
D. melanogaster TRX was also shown to collaborate 
with Notch in gene activation, although the underlying 
molecular mechanism is not known121; and, intrigu
ingly, one of the leukaemogenic MLL fusion proteins 
links MLL with the Notch coactivator mastermind 
like 2 (MAML2)122,123.

The histone demethylase UTX, which specifically 
demethylates H3K27me3, is a tumour suppressor in 
flies and mammals124,125. In D. melanogaster, UTX 
inhibits cellular growth by suppressing the Notch path
way in a RB familydependent manner125. Importantly, 
mutations in D. melanogaster Enhancer of zeste or in 
Pc, respectively affecting a subunit of the PRC2 and 
the PRC1 complexes, revert the growth defect of UTX
mutant cells, suggesting that UTX suppresses tumours 
through regulation of PcG target genes, possibly 
including Notch pathway components. Considering 
that Notch, as well as several upstream and down
stream elements of the Notch signalling pathway, has 
recently been shown to be directly repressed by the 
PRC1 protein Polyhomeotic126,127, D. melanogaster UTX 
may affect Notch signalling via the downregulation of 
a Notch inhibitor. Indeed, a decrease in the mRNA 
levels of known negative regulators of Notch, such as 
numb and roughened eye (roe), was observed in UTX 
mutants125. Therefore, histone modifiers and chromatin 
remodellers coordinately orchestrate the transcriptional 
programme underlying the Notch signal transduction 
pathway (FIG. 5a). A remarkable fact emerging from these 
results is that both PcG and TrxG members can either 
repress or induce Notch signalling, suggesting that a 
fine regulatory balance ultimately determines the Notch 
signalling output.
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Extracellular 

signal-regulated kinase

(ERK). A protein involved in  

a mitogen‑activated protein 

kinase signal transduction 

pathway that functions in 

cellular proliferation, 

differentiation and survival.  

Its inappropriate activation  

is a common occurrence in  

the human cancers.

TrxG and MYC regulation. Another case of interplay 
between TrxG and PcG proteins concerns the regula
tion of MYC function (for a review, see REF. 128). In 
D. melanogaster, Little imaginal discs (LID) acts as a co
activator of MYC129. LID is an atypical TrxG component, 
as it carries an H3K4 demethylase activity. MYC binds 
LID and inhibits its demethylase activity, and LID asso
ciation is required for MYCdependent transcriptional 
activation. This suggests that the H3K4 demethylase 
is not responsible for the TrxG function of LID. The 
LID–MYC relationship is most likely evolutionarily 

conserved, because the mammalian LID orthologues, 
jumonji and ARID domaincontaining 1A (JARID1A; 
also known as KDM5A and RBP2) and JARID1B (also 
known as KDM5B and PLU1), also bind MYC. MYC 
also interacts with other TrxG complexes, such as the 
SNF5 component of the SWI/SNF complex130 and ASH2 
(REF. 129). Intriguingly, however, MYC might also interact 
with PcG complexes131. In D. melanogaster, a set of MYC 
target genes is repressed by Pc in the presence of the  
TrxG protein ASH1, whereas a second set of MYC 
targets is coactivated by ASH1 (REF. 132). MYC might 
therefore use PcG and TrxG proteins to drive its target 
genes into a repressed or an active mode, and it is con
ceivable that the modulation of MYC interactions with 
PcG or TrxG members may enable MYC to control genes 
involved in growth and proliferation (FIG. 5b).

TrxG and MAPK signalling. Although much about the 
molecular roles of TrxG proteins in Notch signalling and 
MYC function remains to be learned, recent work has 
paved the way for the elucidation of TrxG and PcG func
tion in regulating cellular commitment to the muscle line
age. The p38 mitogenactivated protein kinase (MAPK) 
signalling pathway activates musclespecific genes during 
the commitment of myoblasts into multinucleated myo
tubes. In growing myoblasts, musclespecific genes are epi
genetically marked for repression by H3K27me3 (REF. 133). 
During differentiation, the myocytespecific enhancer 
factor  2D (MEF2D) isoform of the MEF2 muscle 
specific transcription factor is phosphorylated by the 
MAPK p38α (also known as MAPK14), stimulating its 
interaction with the MLL2 complex134. This promotes 
targeting of the MLL2 complex to musclespecific genes, 
such as myogenin (MYOG) and creatine kinase Mtype 
(CKM), leading to their H3K4 trimethylation and 
activation134.

In addition to stimulating H3K4 trimethylation, the 
extracellular signal‑regulated kinase (ERK) and p38 MAPK 
pathways are also involved in recruiting SWI/SNF  
chromatinremodelling complexes to the MYOG 
and CKM promoters135. PcG binding is also affected 
by this MAPKdependent chromatin remodelling. 
Phosphorylation of histone H3 Ser28 (H3S28P) by 
nuclear mitogen and stressactivated kinase 1 (MSK1) 
and MSK2, which transduce MAPK signalling, results 
in the eviction of PcG complexes from chromatin136,137. 
Subsequent to this MSK1mediated nucleosomal response, 
BRG1 can be recruited to the H3S28P mark via its asso
ciation with the 1433 phosphobinding protein138, thus 
enabling the binding of transcription factors. Together, 
these data suggest a scenario in which MAPK induc
tion can simultaneously remove PcG components 
and induce the recruitment of H3K4methylating and 
chromati nremodelling complexe s to induce gene 
expression (FIG. 5c).

TrxG components regulate, and are regulated by, the 
other main signalling pathways in mammals, flies and 
C. elegans, including RAS signalling32, steroid hormone
mediated signalling (reviewed in REF. 139) and signalling 
by the WNT–β‑catenin pathway140–142. Remarkably, signal
ling pathways can act upstream as well as downstream 

Figure 5 | Cell signalling and MLL. Three examples illustrate the subtle interplays existing 

between the antagonistic functions of the Polycomb group (PcG) and Trithorax group 

(TrxG) complexes and major signalling pathways. Signalling pathways can act downstream 

of PcG–TrxG control mechanisms, can help the recruitment of PcG–TrxG complexes to 
their target genes or can themselves regulate PcG–TrxG activities. a | A model for PcG- 

and TrxG-dependent control of the Notch signalling pathway. Pc repressive complex 1 
(PRC1) regulates cell cycle progression via direct repression of the Notch signalling 

pathway at all levels of its hierarchy. Among the TrxG complexes, the UTX histone-
demethylase complex is able to activate inhibitors of the Notch receptor, whereas the 

SWI/SNF (switch/sucrose nonfermentable) chromatin-remodellin g complex associates 

and collaborates with the activated Notch intracellular domain (ICD) to activate Notch 

targets. The Notch ICD is recruited to chromatin via CBF1.  b | MYC-dependent targeting 

of PcG and TrxG complexes controls MYC-induced growth. On the one hand, MYC binds 

to components of the PRC1 complex and shares common targets, among which is MYC 

itself. On the other hand, MYC associates with TrxG complexes, like Absent small and 

homeotic discs 1 (ASH1) and ASH2-containing complexes, and trimethylates Lys4 on 
histone H3 (H3K4me3). MYC target gene promoters also reveal a strong dependency on 
the H3K4me3 status for E box-dependent MYC binding. Interestingly, the TrxG protein 
ASH1 can at the same time assist the PcG-dependent repression of a subset of MYC 

targets and participate in the TrxG-dependent activation of another subgroup of  

MYC targets. c | Mitogen-activated protein kinase (MAPK) signalling acts upstream of  
PcG and TrxG to coordinate their antagonistic functions on immediate early genes.  

MAPK signalling cascades induce a nucleosomal response by a chromatin-remodelling 
mechanism, which is dependent on phosphorylation of Ser28 on histone H3 (H3S28P). 
This phosphorylation triggers eviction of PcG complexes from chromatin and, 

concomitantly, transcriptional activation of immediate early genes. The H3S28 
phosphorylation could cause an epigenetic switch from the repressed H3K27me3  
mark to the active mark, acetylation of Lys27 on histone H3 (H3K27ac).
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Nucleosomal response

The rapid phosphorylation  

of histone H3 that occurs 

concomitantly with the 

induction of immediate early 

genes, which is mediated 

through alternative 

mitogen‑activated protein 

kinase cascades.

WNT–β-catenin pathway

A signalling pathway involving 

widely conserved secreted 

signalling molecules of the 

Wingless family, which regulate 

many processes during animal 

development.

JAK–STAT

(Janus kinase–signal 

transducer and activator of 

transcription). A rapid signal 

transduction pathway used 

by a range of cytokines and 

growth factors. Binding of 

a cytokine or growth factor 

to its receptor activates 

cytoplasmic JAK, which then 

phosphorylates STAT and 

triggers its translocation into 

the nucleus, where it induces 

the transcription of specific 

genes.

Neural progenitor cells

(NPCs). A stem cell type found 

in adult neural tissue that 

can give rise to neuron and 

supporting cells (glia). During 

development, NPCs produce 

the enormous diversity of 

neurons and glia in the 

developing central nervous 

system, and they have been 

also shown to engage in the 

replacement of dying neurons.

Long-term HSCs

(LT‑HSCs). Haematopoietic 

stem cells that have long‑term 

regeneration capacities and 

can restore the haematopoietic 

system of an irradiated mouse 

over months.

Short-term HSCs

(ST‑HSCs). Haematopoietic 

stem cells that, under normal 

circumstances, cannot renew 

themselves over a long term. 

They are also referred to as 

progenitor or precursor cells, 

as they are relatively immature 

cells that are precursors to a 

fully differentiated cell of the 

same tissue type.

of TrxG complexes. For instance, D. melanogaster NURF 
is a negative regulator of the JAK–STAT (Janus kinase–
signal transducer and activator of transcription) signal 
transduction pathway143,144 and, reciprocally, signal
ling mediated by inositol polyphosphate second mes
sengers regulates D. melanogaster NURF and yeast 
SWI/ SNF145,146. The regulatory position of TrxG and PcG 
components at the crossroad between cell proliferation 
and differentiation may actually require global control 
of their activities and targeting properties by signalling 
pathways to allow the appropriate functional switches to 
be correctly specified.

TrxG proteins and stem cells

TrxG proteins and their repressive PcG counterparts 
have important roles in gene regulation during the 
maintenance and differentiation of ES cells, which can 
generat e all different cell types during development147. 
ES cell pluripotency and selfrenewal are maintained by 
a core regulatory circuitry, which depends on a limited 
number of transcription factors, including OCT4 (also 
known as POU5F1), SOX2, NANOG, oestrogenrelated 
receptorβ (ESRRB), T box 3 (TBX3) and transcrip
tion factor 3 (TCF3)148–151. These factors work by either 
repressing lineagespecific genes or activating genes that 
maintain pluripotency. To do so, they co operate with 
chromatin regulatory proteins, including TrxG and PcG 
components, to reprogramme cell states.

TrxG and bivalent chromatin domains in ES cells. A 
striking feature of ES cells is that PcGrepressed genes 
also contain active histone marks, such as H3K4me3, 
giving rise to socalled bivalent chromatin domains 
(reviewed in REF. 152). These can then be resolved during 
lineage commitment and either lose the H3K4me3 mark 
to become stably silenced or lose the H3K27me3 mark for  
transcriptional activation153,154. MLL proteins have an 
important role in stem cell functions8,155–159. However, 
as mammals have at least six H3K4 methyl transferases 
(FIG. 1b), the study of their individual roles in stem cell 
maintenance and differentiation is a challenging task. 
For instance, MLL2depleted ES cells showed no obvious 
defect in their selfrenewal capabilities, although they 
had an enhanced rate of apoptosis and growth impair
ment in the undifferentiated state and during the first 
days of differentiation25,155. However, the depletion of 
essential and nonredundant MLLcomplex compo
nents has been very informative in this respect8,156. In 
particular, WDR5 was shown to be required for ES cell 
selfrenewal8 by physically interacting and strongly 
colocalizing with OCT4 in the genome, including at the 
promoters of selfrenewal genes, where it is necessary to 
maintain high levels of H3K4me3 and transcriptional 
activation7.

TrxG proteins and adult stem cells. After embryonic 
development, several types of adult stem cells (such as 
haematopoietic stem cells (HSCs), germline stem cells 
(GSCs) and neuronal progenitor cells (NPCs)) prolifer
ate to replenish dying cells and regenerate damaged 
tissues. Using ES cellderived in vitro culture systems, 

it is possible to trigger neuronal differentiation and 
therefore investigate the neuronal differentiation pro
cess160. This showed that the promoters of neural genes 
are bivalent and repressed in ES cells. During differ
entiation into NPCs, they lose the H3K27me3 modi
fications and retain the H3K4me3 marks, resulting in 
increased expression161. The resolution of bivalency is 
achieved by active H3K27me3specific demethylation, 
downregulation of the methyltransferase Enhancer of 
zeste homologue 2 (EZH2) and dynamic switches in Pc 
targets162–166. In addition, RBBP5 and DPY30, two com
ponents of COMPASSlike complexes, are necessary for 
differentiation of ES cells into NPCs. DPY30 or RBBP5
knockdown in ES cells prevents the differentiation 
of ES cells into neurons. Depleted cells show a strong 
reduction in H3K4me3 levels and a reduction in the 
transcriptional upregulation of the vast majority of genes 
normally induced in NPCs156. These results confirm that 
core subunits of MLL complexes have an important role 
in modulating the gene expression programme during 
the ES cell fate transitions to neurons.

The role of TrxG components extends to other stem 
cells and, in particular, much has been learned from the 
study of the haematopoietic system. Most of the promot
ers of genes involved in the regulation of haematopoietic 
cell maturation are bivalent and, upon normal differen
tiation, only a few promoters retain bivalency, whereas 
on average 15% lose H3K27me3, 50% lose H3K4me3 
and the rest lose both marks167,168. The massive loss of 
H3K4me3 suggests that TrxG complexes may have a 
role in the maintenance of HSCs and their differentia
tion. Indeed, Mll1knockout mice die at early embryonic 
stages, and their fetal livers show reduced numbers of 
long‑term HSCs (LTHSCs), short‑term HSCs (STHSCs) 
and quiescent HSCs. Moreover, HSCs of adult mice 
depleted of MLL1 in the haematopoietic system show 
proliferation and selfrenewal defects, as well as multi
lineage impairment in haematopoiesis169,170. Mutations 
in Mll2 are also embryonic lethal in mice, but adult 
mice lacking MLL2 appear normal and do not show any 
defects in blood profiles, although males and females are 
sterile155,171. Sterility is also observed in flies when tem
peraturesensitive Trxmutant flies grown at permissive 
temperature are shifted to nonpermissive temperature 
as adults. In this case, TRX is required during spermato
genesis to maintain H3K4me3 and transcription acti
vation at the promoters of genes coding for tTAFs, 
testisspecific transcription factors that are required for 
sperm differentiation172. MLL2mutant mice are also 
sterile owing to a block of spermatogenesis155, and oocyte 
death in females is associated with loss of H3K4me3 
(REF. 171); therefore, this mark may be generally required 
for germ cell development. Indeed, H3K4me3 was 
detected by immunostaining in all germ nuclei in the 
mitotic and meiotic regions and was strongly reduced 
in the germ line of mutant animals173,174.

TrxG-dependent nucleosome remodelling in stem cells. 
Inactivation of BRG1 in mice results in embryonic 
lethality and a failure to form pluripotent cells175,176. 
Inactivation of other SWI/SNF complex subunits, 
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including BRG1associated factor 47 (BAF47), BAF57, 
BAF60, BAF155, BAF180 and BAF250A, also leads to 
embryonic lethality, whereas inactivation of BRM does 
not affect viability175–180. Intriguingly, ES cells have a 
unique subunit composition of SWI/SNF complexes, 
the esBAF complex, which was reported to interact with 
proteins expressed in the pluripotent state181. esBAF 
BRG1 has been shown to interact with OCT4, suggest
ing that esBAF might collaborate with master regula
tors, such as OCT4 and SOX2, to regulate the ES cell 
transcriptional circuitry181. Genomewide mapping of 
BRG1 showed 6,000 binding sites. Most of them are 
highly correlated with H3K4me, H3K27 acetylation 
and H3K27me3 (REF. 182), and some of them physically 
overlap with OCT4, SOX2 and NANOG occupancy181. 
Transcriptome analysis upon BRG1 depletion in ES cells 
showed that BRG1 has a mainly repressive function, in 
agreement with recent findings in which BRG1 has been 
mapped to promoter distal regions that are enriched 
for H3K27me3, a modification that is associated with  
PcGmediate d silencing182.

NURF components have also been shown to play 
a part in ES cell differentiation. Knockout mice for 
the BPTF component of the NURF complex die early 
in embryogenesis. Genetic and molecular analyses in  
ES cells showed that BPTF is not required for cell 
viability but is essential for endoderm differentiation. 
Transcriptome analyses of wildtype and Bptfknockout 
ES cells grown under pluripotency versus differentiation 
conditions suggest that BPTF may have both repres
sive and activating functions, even though it is unclear 
whether these effects are direct183. RNA interference
mediated downregulation of CHD1 leads to loss of 
primitive endoderm and abnormally high levels of  
neural differentiation. Furthermore, genomewide map
ping of CHD1 showed strong correlation with binding 
sites of RNA polymerase II and H3K4me3, whereas biva
lent domains were largely devoid of CHD1. These data 
indicate that CHD1 is mostly linked to gene activation 
required for the establishment of ES cell pluripotency 
and differentiation43.

Conclusions

The role of TrxG components in biology is pervasive. 
However, different TrxG components have specific 
and sometimes opposing roles. The main tasks for 
future research will be to better understand how TrxG 
complexes are recruited to the whole set of their target 
genes and to clearly discriminate which TrxG proteins 
and complexes perform which functions in which cell 
types and developmental stages. For instance, one essen
tial point will be to separate the general transcription 
coactivator function of TrxGs from the more specific 
function in opposing PcGmediated gene silencing. For 
this, a systematic genetic study of individual and double 
mutants will be required, as well as quantitative genome
wide data analyses of the effects of these mutations. 
Moreover, the signals that induce the specific removal 
of epigenetic marks during differentiation remain to be 
identified, as do the mechanisms by which these signals 
can simultaneously induce repression at certain genes 
while activating others.

It is still unclear whether the action of TrxG com
plexes is continuously required during development, or 
whether there are stages at which cell fate choices may 
become irreversible and thus no longer require TrxG pro
teins for their maintenance. The ongoing intense research 
in this field is likely to lead to a much deeper understand
ing of these issues in the coming years. This will not only 
increase our general understanding of epigenetic regu
lation in eukaryotic organisms but also help refine stem 
cell and induced pluri potent cell technologies, as well as 
provide new tools for diagnostics and therapeutic targets 
for haematopoietic malignancies.

Finally, as TrxG proteins have pleiotropic gene con
trol functions, they are emerging as new players in novel 
physiological phenomena. For instance, tissue regenera
tion, longevity and the environmental stress response 
have been shown to involve the function of TrxG mem
bers13,184,185. As research progresses, insight into the 
molecular mechanisms at the base of these functions, and 
new links to unexpected phenomena, are likely to open 
avenues in the TrxG and epigenetics field.
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