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Abstract. Trivariate Cr macro-elements defined in terms of polynomials of
degree 8r + 1 on tetrahedra are analyzed. For r = 1, 2, these spaces reduce to
well-known macro-element spaces used in data fitting and in the finite-element
method. We determine the dimension of these spaces, and describe stable local
minimal determining sets and nodal minimal determining sets. We also show
that the spaces approximate smooth functions to optimal order.

§1. Introduction

Let △ be a tetrahedral partition of a set Ω ∈ IR3. We denote the sets of vertices,
edges, and faces of △, by V, E , and F , respectively. In this paper we study the
superspline space

Sr(△) := {s ∈ Cr(Ω) : s|T ∈ P8r+1, all tetrahedra T ∈ △,

s ∈ C4r(v), all v ∈ V,

s ∈ C2r(e), all e ∈ E},

(1.1)

where in general we write Pd for the
(
d+3
3

)
dimensional space of trivariate polyno-

mials of degree d. Here s ∈ Cρ(v) means that all polynomial pieces s|T associated
with tetrahedra T sharing the vertex v have common derivatives up to order ρ at
v. Similarly, s ∈ Cµ(e) means that all polynomial pieces s|T associated with tetra-
hedra T sharing the edge e have common derivatives up to order µ at all points
along the edge e.

For r = 1 this space corresponds to a macro-element space first introduced in
the finite-element literature in [23]. The analogous C2 macro-element was developed
in [16]. Both authors described their elements in terms of Hermite interpolation.
It is well known, see Remark 1, that in order to construct similar macro-element
spaces for higher values of r, we must work with splines of degree 8r + 1, and
we must enforce C4r supersmoothness at the vertices and C2r supersmoothness
around the edges of △. This suggest a natural set of Hermite data to associate
with the element. But it is a nontrivial problem to describe what additional data
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is needed to uniquely determine s ∈ Sr(△). To solve this problem, we first analyze
Sr(△) in terms of its Bernstein–Bézier representation. This allows us to identify
the dimension of Sr(△), and to show that the space has full approximation power
in all q-norms. We then go on to show how to parametrize Sr(△) nodally, i.e., in
terms of Hermite interpolation conditions.

The paper is organized as follows. In Sect. 2 we review Bernstein–Bézier meth-
ods and notation, and prove two useful lemmas about polynomial interpolation. In
the next section we compute the dimension of our macro-element space, and con-
struct a stable local minimal determining set for it. The approximation power of
the space is dealt with in Sect. 4, while the construction of a stable nodal basis for it
can be found in Sect. 5. In Sect. 6 we discuss a corresponding Hermite interpolation
method, and give an error bound for it. We conclude the paper with remarks and
references.

§2. Preliminaries

We will make extensive use of well-known Bernstein–Bézier methods, see e.g. [1–
8,11–15,17,18,21,22]. For convenience we review the notation and basic concepts.
As usual, given a tetrahedron T := 〈v1, v2, v3, v4〉 and a polynomial p of degree d,

we denote the B-coefficients of p by cT,d
ijkl and associate them with the domain points

ξT,d
ijkl := (iv1+jv2+kv3+lv4)

d , where i+ j + k + l = d. We write Dd,T for the set of all

domain points associated with T . We say that the domain point ξT,d
ijkl has distance

d− i from the vertex v1, with similar definitions for the other vertices. We say that
ξT,d
ijkl is at a distance i + j from the edge e := 〈v3, v4〉, with similar definitions for

the other edges of T . If △ is a tetrahedral partition of a set Ω, we write Dd,△ for
the collection of all domain points associated with tetrahedra in △, where common
points in neighboring tetrahedra are not repeated. Given ξ ∈ Dd,T , we denote the

associated Bernstein basis polynomial by BT,d
ξ .

Given ρ > 0, we refer to the set Dρ(v) of all domain points which are within
a distance ρ from v as the ball of radius ρ around v. Similarly, we refer to the set
Rρ(v) of all domain points which are at a distance ρ from v as the shell of radius ρ
around v. If e is an edge of △, we define the tube of radius µ around e to be the set
of domain points whose distance to e is at most µ.

For any tetrahedron T in a partition △, let star(T ) be the set of all tetrahedra
in △ that touch T . For any vertex v of △, we define star(v) similarly. We write
φ△ for the smallest face angle of △, i.e., the smallest angle in the triangular faces
of △. Similarly, we write θ△ for the smallest spherical angle (solid angle) in any
tetrahedron T ∈ △, where the spherical angle at a vertex v1 of a tetrahedron
T := 〈v1, v2, v3, v4〉 is the area of the intersection of a unit sphere centered at v1
with the extensions of the three faces of T meeting at v1.

Suppose S is a linear subspace of S0
d(△), and suppose M is a subset of Dd,△.

Then M is said to be a determining set for S provided that if s ∈ S and its B-
coefficients satisfy cξ = 0 for all ξ ∈ M, then s ≡ 0. It is called a minimal
determining set (MDS) for S provided there is no smaller determining set. It is well
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known that M is a MDS for S if and only if setting the coefficients {cξ}ξ∈M of
a spline in S uniquely determines all coefficients of s. It is also known that the
cardinality of any minimal determining set for S equals the dimension of S.

A minimal determining set M is called 1-local provided that for all ξ ∈ Dd,△ \
M, cξ depends only on coefficients corresponding to domain points in a set Γξ

contained in star(Tξ), where Tξ is the tetrahedron containing ξ. Throughout the
paper we shall simply say local instead of 1-local. We say that M is stable provided
that there exists a constant K depending on the smallest angles θ△ and φ△ such
that

|cξ| ≤ Kmax
η∈Γξ

|cη|. (2.1)

Suppose N is a collection of linear functionals λ, where λs is defined by a
linear combination of values or derivatives of s at a point ηλ in Ω. Then N is said
to be a nodal determining set (NDS) for S provided that if s ∈ S and λs = 0 for
all λ ∈ N , then s ≡ 0. It is called a nodal minimal determining set (NMDS) for S
provided that there is no smaller NDS, or equivalently, for each set of real numbers
{zλ}λ∈N , there exists a unique s ∈ S such that λs = zλ for all λ ∈ N . We say that
N is m-stable provided there exists a constant K depending on the smallest angles
θ△ and φ△ such that for every s ∈ S and every ξ ∈ Dd,△,

|cξ| ≤ K

m∑

ν=0

|Tξ|
ν |s|ν,∞,Tξ

, (2.2)

where Tξ is a tetrahedron containing ξ. Here

|f |ν,q,B :=





[ ∑
|α|=ν ‖D

αf‖q
q,B

]1/q

, if 1 ≤ q <∞,

max|α|=ν ‖D
αf‖ν,B, if q = ∞,

(2.3)

is the usual semi-norm defined on any subset B ⊆ Ω.

Lemma 2.1. Let vc be an arbitrary point in the interior of a tetrahedron T , and
let d ≥ 4r + 4. Suppose that the B-coefficients of a polynomial p of degree d are
known except for those corresponding to the domain points

Γ := {ξT,d
ijkl : i, j, k, l > r}.

Then the coefficients {cξ}ξ∈Γ of p are uniquely determined from the values
{Dαp(vc)}|α|≤d−4r−4.

Proof: The known coefficients are associated with domain points that lie on the
outer faces of T and on the r layers next to those outer faces. We are left with
N :=

(
d−4r−1

3

)
coefficients which are to be determined from the same number of

Hermite interpolation conditions. Enforcing these conditions leads to a N×N linear
system of equations. We need to show that the associated matrix M is nonsingular.
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It suffices to show that if the coefficients corresponding to Dd,T \Γ are all zero and
we set Dαp(vc) = 0 for |α| ≤ d− 4r− 4, then p ≡ 0. Now by Bezout’s theorem, we
can write

p = ℓr+1
1 ℓr+1

2 ℓr+1
3 ℓr+1

4 q,

where ℓi is a linear polynomial which vanishes on the the i-th face of T , and q is
a polynomial of degree d− 4r − 4. Since vc is inside of T , setting Dαp(vc) = 0 for
|α| ≤ d− 4r − 4 is equivalent to setting Dαq(vc) = 0 for |α| ≤ d− 4r− 4. But this
implies q ≡ 0, and it follows that p ≡ 0. We conclude that M is nonsingular and
the proof is complete.

If F := 〈v1, v2, v3〉 is a triangular face of a tetrahedron T , and p is a trivariate
polynomial of degree d, then the restriction of p to F is a bivariate polynomial of
degree d which can also be written in B-form. We write Dd,F := {ξF,d

ijk }i+j+k=d

for the set of domain points that lie on F , and {BF,d
ξ }ξ∈Dd,F

for the associated
bivariate Bernstein–Bézier basis polynomials. As usual, we call the set Dρ(v1) of
points in Dd,F within a distance ρ from v1 the disk of radius ρ around v1. Similarly,
the set Rρ(v1) of points in Dd,F at a distance ρ from v1 is called the ring of radius ρ
around v1. Although we use the same notation for disks/balls and shells/rings, the
meaning should be clear from the context.

In the analysis of the macro-elements in this paper, we need to solve certain
bivariate interpolation problems involving subsets of the Bernstein–Bézier basis
polynomials associated with a triangular face F . The following conjecture is due
to the second author, see e.g. [2].

Conjecture 2.2. The matrix

M :=
[
BF,d

ξ (η)
]
ξ,η∈Γ

(2.4)

is nonsingular for every nonempty subset Γ of Dd,F .

At this time, the full conjecture is still open, but several special cases have
been settled. The following special case is needed below.

Lemma 2.3. Let Γ := {ξF,d
ijk : i ≥ m1, j ≥ m2, k ≥ m3} ⊆ Dd,F for some

m1, m2, m3 > 0 with m := m1+m2+m3 < d. Then the matrix (2.4) is nonsingular.

Proof: In this case the set Γ is just the set of domain points such that for each
i = 1, 2, 3, their distance to the edge 〈vi, vi+1〉 of F is at least mi. This set has
cardinality n :=

(
d−m+2

2

)
. After multiplying the columns ofM by appropriate ratios

of factorials, and removing common factors of the form (ν
d )m1(µ

d )m2(κ
d )m3 from each

row of M , we find that M = aM̃ , where a is a nonzero constant depending on m
and d, and M̃ is the n×n matrix with entries BF,d−m

ijk (ξF,d
νµκ) where i+j+k = d−m

and (ν, µ, κ) run over Γ. But this set of points satisfies the conditions of Chung-Yao

[10], insuring that M̃ and thus M is nonsingular.
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§3. A Stable Local MDS for Sr(△)

For ease of notation, in the remainder of the paper we define d := 8r + 1, ρ := 4r,
and µ := 2r. To describe a stable local minimal determining set for Sr(△), we
introduce some notation for subsets of the set of domain points Dd,△ associated
with △:

1) For each vertex v of △, let Tv be some tetrahedron containing v, and let Mv :=
Dρ(v)∩Tv. This set has cardinality

(
ρ+3
3

)
=

(
4r+3

3

)
= (32r3+48r2+22r+3)/3.

2) For each edge e := 〈u, v〉 of △, we write Eµ(e) for the set of all domain points
which lie in the tube of radius µ around e, but which do not lie in either of the
balls Dρ(u) or Dρ(v). Since ρ ≥ 2µ, the sets Eµ(e) are disjoint. For each edge
e of △, let Te be some tetrahedron containing e, and let Me := Eµ(e) ∩ Te.

This set has cardinality (r+1)(2r+1)(4r)
3 = (8r3 + 12r2 + 4r)/3.

3) For each face F := 〈v1, v2, v3〉 of △, let Gr(F ) be the set of domain points
which are at a distance at most r from F , but which do not lie in any of the
sets Dρ(v) or Eµ(e). Suppose TF is a tetrahedron in △ which contains F , and
let MF := Gr(F ) ∩ TF . The cardinality of this set is (25r3 + 21r2 − 4r)/6.

4) For each tetrahedron T , let MT be the set of domain points in Dd,T which do
not lie in any of the previous sets. The cardinality of this set is

(
4r
3

)
− 4

(
r
3

)
=

10r3 − 6r2.

Let n
V
, n

E
, n

F
, n

T
be the number of vertices, edges, faces, and tetrahedra in △,

respectively.

Theorem 3.1. The set

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

F∈F

MF ∪
⋃

T∈△

MT (3.1)

is a stable local minimal determining set for Sr(△), and

dimSr(△) =
(32r3 + 48r2 + 22r + 3)

3
n

V
+

(8r3 + 12r2 + 4r)

3
n

E

+
(25r3 + 21r2 − 4r)

6
n

F
+ (10r3 − 6r2)n

T
.

(3.2)

Proof: To show that M is a minimal determining set for Sr(△), we need to show
that the coefficients {cξ}ξ∈M of a spline s ∈ S0

d(△) can be set to arbitrary values,
and that all other coefficients of s are determined in such a way that s satisfies all
smoothness conditions that are required for s to belong to Sr(△).

First for each vertex v ∈ V, we set the coefficients of s corresponding to domain
points in the set Mv to arbitrary values. Then using the Cρ smoothness at v, we
can compute all remaining coefficients corresponding to domain points in the ball
Dρ(v) from smoothness conditions. This is a stable local process, and in particular
for each ξ ∈ Dρ(v), (2.1) holds with Γξ = Mv. Since the balls Dρ(v) do not overlap,
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there are no smoothness conditions connecting coefficients associated with domain
points in two different balls.

For each edge e := 〈u, v〉 of △, we now set the coefficients of s corresponding
to domain points in Me. We can then use the Cµ supersmoothness around e to
determine all of the coefficients of s corresponding to the domain points in Eµ(e).
The computation of these coefficients is a stable local process, and (2.1) holds with
Γξ := Me ∪ Mu ∪ Mv. The sets Eµ(e) are disjoint from each other and from
all balls Dρ(v), and thus we can be sure that none of the smoothness conditions
defining Sr(△) have been violated.

Since the sets Gr(F ) are disjoint from each other, there are no smoothness
conditions connecting coefficients associated with domain points in two different
such sets. Thus, for each face F of △, we can set the coefficients {cξ}ξ∈MF

, where
MF := Gr(F ) ∩ TF . If F is an interior face, then the coefficients corresponding to

Gr(F ) ∩ T̃F are uniquely determined from the Cr smoothness across F , where T̃F

is the other tetrahedron in △ sharing the face F . This is a stable local process,
and (2.1) holds with Γξ equal to the union of MF with all Mv and Me such that
v and e are vertices and edges of F .

We have now determined all coefficients of s except for those corresponding to
domain points in the sets MT . These sets are disjoint from each other, and there
are no smoothness conditions connecting coefficients associated with domain points
in two such sets. Thus, for each T , the coefficients {cξ}ξ∈MT

can be set to arbitrary
values. Since all coefficients of s either have been fixed, or have been stably and
locally computed using smoothness conditions, we have shown that M is a stable
local MDS.

To finish the proof, we note that the dimension of Sr(△) is just the cardinality
of M, which is easily seen to be given by the formula (3.2).

Example 3.2. Let △ consist of a single tetrahedron.

Discussion: In this case n
V

= n
F

= 4, n
E

= 6, and n
T

= 1. Thus, (3.2) reduces
to dimSr(△) = (256r3 +288r2 +104r+12)/3. This is equal to dimP8r+1 =

(
8r+4

3

)
.

For r = 1, 2, the space Sr(△) is a classical finite-element space. In the liter-
ature, finite-element spaces have traditionally been paramerized in terms of nodal
functionals. We construct a stable nodal basis for Sr(△) for all r ≥ 1 in Sect. 5.

§4. Approximation Power of Sr(△)

Based on the fact that Sr(△) has a stable local MDS M, we can now show that it
has full approximation power. To this end, we now describe a quasi-interpolation
operator mapping L1(Ω) onto Sr(△). For each ξ ∈ M, let Tξ be a tetrahedron that
contains ξ. For any f ∈ L1(Ω), let Aξf be the averaged Taylor expansion of degree
8r+1 associated with the largest ball contained in Tξ, see [9]. Finally, let γξ be the
linear functional such that if p is a polynomial of degree d defined on Tξ, then γξp is
the B-coefficient of p associated with the domain point ξ. Set cξ(f) := γξAξf for all
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ξ ∈ M. Since M is a MDS for Sr(△), we can now determine all other coefficients
of a spline Qf in Sr(△) from smoothness conditions.

Clearly, Q is a linear operator mapping L1(Ω) into Sr(△). If f ∈ Sr(△), then
for each tetrahedron Tξ, f |Tξ

is a polynomial of degree 8r + 1, and Aξf = f . This
shows that Q is a projector onto Sr(△), and since P8r+1 ∈ Sr(△), it follows that
Qf = f for all f ∈ P8r+1.

Lemma 4.1. For every tetrahedron T ∈ △ and all 1 ≤ q ≤ ∞,

‖Qf‖q,T ≤ K‖f‖q,ΩT
, all f ∈ L1(ΩT ), (4.1)

where ΩT := star(T ). Here K depends only on r and the smallest angles θ△ and
φ△ of △.

Proof: We establish (4.1) in the case 1 ≤ q < ∞. The case q = ∞ is similar
and simpler. Given ξ ∈ M, let Tξ be a tetrahedron containing ξ. Then using the
stability of the B-form, the equivalence of norms of polynomials of a fixed degree,
and the fact that the averaged Taylor operator is bounded (see Corollary 4.1.15 in
[9]), we have

|cξ| = |γξAξf | ≤ K1 ‖Aξf‖∞,Tξ

≤ K2 vol (Tξ)
−1/q ‖Aξf‖q,Tξ

≤ K3 vol (Tξ)
−1/q ‖f‖q,Tξ

,

where vol (Tξ) is the volume of Tξ. Here K1 is a constant depending only on r, and
the constants K2 and K3 depend only on r and θ△ and φ△. Now fix T ∈ △. Since
M is stable and 1-local, it follows that

|cη| ≤ K4vol (T̃ )−1/q‖f‖q,ΩT
, all η ∈ Dd,T , (4.2)

where T̃ is the tetrahedron in star(T ) with smallest volume. Then using the fact
that the Bernstein basis polynomials form a partition of unity,

‖Qf‖q,T =

[ ∫

T

∣∣∣
∑

η∈Dd,T

cηB
T
η

∣∣∣
q
]1/q

≤ vol (T )1/q max
η∈Dd,T

|cη|. (4.3)

To complete the proof, we insert (4.2) in (4.3) and use the fact that vol (T )/vol (T̃ )
is bounded by a constant also depending on the angles, see [15].

We now give a local approximation result for Q. For the proof we need the following
Markov inequality, see [15,20]. Suppose T is a tetrahedron, and let ρ

T
be the radius

of the largest ball that can be inscribed in T . Then for every polynomial p ∈ Pd,

|p|k,q,T ≤
K

ρk
T

‖p‖q,T , (4.4)

for all 0 ≤ k ≤ d and all 1 ≤ q ≤ ∞. Here K is a constant depending only on d.
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Theorem 4.2. Given a tetrahedron T ∈ △, let ΩT := star(T ), and suppose
f ∈Wm+1

q (ΩT ) for some 0 ≤ m ≤ 8r + 1 and 1 ≤ q ≤ ∞. Then

‖Dα(f −Qf)‖q,T ≤ K |T |m+1−|α| |f |m+1,q,ΩT
, (4.5)

for all 0 ≤ |α| ≤ m. If ΩT is convex, the constant K depends only on r and the
smallest angles θ△ and φ△ associated with △. If ΩT is not convex, K also depends
on the Lipschitz constant of the boundary of ΩT .

Proof: We recall that the linear operator Q reproduces polynomials of degree
d := 8r+ 1, and that for any function g, the restriction of Qg to T is a polynomial
of degree d. Thus, using (4.1) and the Markov inequality (4.4), it follows that for
any p ∈ Pm,

‖Dα(f −Qf)‖q,T ≤ ‖Dα(f − p)‖q,T + ‖DαQ(f − p)‖q,T

≤ ‖Dα(f − p)‖q,T +
K1

ρ
|α|
T

‖Q(f − p)‖q,T

≤ ‖Dα(f − p)‖q,T +
K2

ρ
|α|
T

‖f − p‖q,ΩT
.

(4.6)

Assume for the moment that ΩT is convex. Then by Lemma 4.3.8 in [9], there
exists a polynomial p ∈ Pm depending on f so that

‖Dβ(f − p)‖q,ΩT
≤ K3|ΩT |

m+1−|β||f |m+1,q,ΩT
, (4.7)

for all 0 ≤ |β| ≤ d, where the constantK3 depends on r, θ△, and φ△. It is easy to see
that |ΩT | ≤ K4|T | and |T | ≤ K5ρT

, where K4, K5 are constants depending on the
smallest angles in ΩT . Combining these facts with (4.6) and (4.7), we immediately
get (4.5). If ΩT is not convex, we first use the Stein extension theorem [19] to
extend f to the convex hull of ΩT , and then proceed as above. In this case the final
constant also depends on the Lipschitz constant of the boundary of ΩT .

We can now give the corresponding global approximation result which shows
that Sr(△) has full approximation power. Let |△| be the mesh size of △, i.e., the
length of the longest edge in △.

Theorem 4.3. There exists a constant K such that if f ∈ Wm+1
q (Ω) for some

0 ≤ m ≤ 8r + 1 and 1 ≤ q ≤ ∞, then

‖Dα(f −Qf)‖q,Ω ≤ K |△|m+1−|α| |f |m+1,q,Ω, (4.8)

for all 0 ≤ |α| ≤ m. If Ω is convex, the constant K depends only on r, θ△, and
φ△. If Ω is not convex, K also depends on the Lipschitz constant of the boundary
of △.

Proof: For q = ∞, (4.8) follows immediately from (4.5) by taking the maximum
over all tetrahedra T in △. To get the result for q < ∞, we take the q-th power
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of both sides of (4.5) and sum over all tetrahedra in △. Since ΩT contains other
tetrahedra besides T , some tetrahedra appear more than once in the sum on the
right. However, a given tetrahedron TR appears on the right only if it is associated
with a tetrahedron TL on the left which lies in star(TR). But it is not hard to see
(cf. [15]) that there is a constant K1 depending only on θ△ such that TR enters at
most K1 times on the right, and (4.8) follows.

§5. A Stable Nodal Basis for Sr(△)

To describe a nodal basis for Sr(△), we need some notation for directional deriva-
tives. Suppose T := 〈v1, v2, v3, v4〉 is a tetrahedron in △. Then corresponding to the
edge e := 〈v1, v2〉 we define DT,e,1 to be the directional derivative associated with a
unit vector perpendicular to e and lying in the face 〈v1, v2, v3〉. Similarly, we define
DT,e,2 to be the directional derivative associated with a unit vector perpendicular
to e and lying in the face 〈v1, v2, v4〉. For each triangular face F of △, we write DF

for the directional derivative associated with a unit vector that is perpendicular to
F . For each e of F , let DF,e be the directional derivative associated with a unit
vector that lies in F and is perpendicular to e.

We also need some notation for certain sets of points lying on faces and edges
of tetrahedra in △. Given any face F := 〈v1, v2, v3〉 and integer m > 0, let

Dm,F :=
{
ξF,m
ijk :=

iv1 + jv2 + kv3
m

}
i+j+k=m

.

For any ℓ ≥ 0, let

AF,ℓ := {ξF,8r+1−ℓ
ijk : i, j, k ≥ 2r + 1 − ℓ+ ⌊ℓ/2⌋}.

These sets depend on r, but for ease of notation we do not write this dependence
explicitly. For r = 3, we have marked the points in the sets AF,ℓ for ℓ = 0, . . . , 4
with · in Figs. 1–3. For any i > 0, we define equally spaced points in the interior
of e := 〈v1, v2〉 as follows:

ηi
e,j :=

(i− j + 1)v1 + jv2
i+ 1

, j = 1, . . . , i. (5.1)

For each tetrahedron T of △, let v
T

be its barycenter, ET its set of edges, and
FT its set of faces. For each face F of △, let EF be its set of edges. For each edge
e of △, pick some tetrahedron Te containing e. For any point t ∈ IR3, let εt be the
point-evaluation functional at t.

Theorem 5.1. Given r > 0, let n := ⌊ r
3
⌋. Then

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

F∈F

[
N 1

F ∪N 2
F

]
∪

⋃

T∈△

[
N 1

T ∪ N 2
T ∪N 3

T ∪N 4
T

]
,
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is a stable nodal minimal determining set for Sr(△), where

1) Nv := {εvD
α}|α|≤4r,

2) Ne :=
2r⋃

ℓ=1

ℓ⋃

m=0

{εηℓ
e,k
Dm

Te,e,1D
ℓ−m
Te,e,2}

ℓ
k=1,

3) N 1
F :=

r⋃

ℓ=0

{εξD
ℓ
F }ξ∈AF,ℓ

,

4) N 2
F :=

⋃

e∈EF

r⋃

ℓ=2

⌊ℓ/2⌋⋃

m=1

{εη2r+m

e,k

Dℓ
FD

2r−ℓ+m
F,e }2r+m

k=1 ,

5) N 1
T :=

⋃

e∈ET

r+n⋃

ℓ=r+1

{εη2ℓ
e,k
Dℓ

T,e,1D
ℓ
T,e,2}

2ℓ
k=1,

6) N 2
T :=

⋃

F∈FT

⋃

e∈EF

r+n⋃

ℓ=r+1

2r−2ℓ+⌊ℓ/2⌋⋃

m=1

{εη2ℓ+m

e,k

Dℓ
FD

ℓ+m
F,e }2ℓ+m

k=1 ,

7) N 3
T :=

⋃

F∈FT

r+n⋃

ℓ=r+1

{εξD
ℓ
F }ξ∈AF,ℓ

,

8) N 4
T := {εv

T
Dα}|α|≤4r−4n−3.

Proof: First we show that N is a nodal determining set for Sr(△). We show
later that it is minimal and stable. Suppose s ∈ Sr(△) and that we have assigned
values for {λs}λ∈N . We show how to compute all B-coefficients of s from this
derivative data. For each v ∈ V, we can immediately compute all of the coefficients
{cξ}ξ∈D4r(v) from {Dαs(v)}|α|≤4r, which corresponds to Nv. Similarly, for each
edge e of △, using the derivative information associated with Ne, we can compute
all coefficients cξ associated with points ξ ∈ E2r(e).

Now fix a tetrahedron T := 〈v1, v2, v3, v4〉 in △. We show how to com-
pute the remaining coefficients of s associated with domain points in Dd,T . We
start with domain points on the outer faces of T and work our way inward. Let
F := 〈v1, v2, v3〉 be one of the faces of T . We already know the coefficients of s|F
corresponding to domain points in the disks D4r(vi) for i = 1, 2, 3. We also know
the coefficients of s|F corresponding to domain points within a distance of 2r of
any edge of F . This leaves only the coefficients associated with domain points in
the set {ξT,8r+1

ijk0 : i, j, k ≥ 2r + 1}. The coefficients corresponding to these do-
main points can be computed from the values of s at the points of AF,0, which is
part of the data corresponding to N 1

F . This leads to a linear system with matrix

M0 := [BF,8r+1
ξ (η)]ξ,η∈AF,0

. This matrix is independent of the size and shape of
F since the entries depend only on barycentric coordinates. It is nonsingular by
Lemma 2.3. Fig. 1 (top) shows the domain points of s on F for the case r = 3.
Points corresponding to coefficients that are determined from the sets Nv (i.e.,

10



Fig. 1. Domain points on layers ℓ = 0 (top) and ℓ = 1 (bottom) for r = 3.

those in the disks D12(vi)) are marked with dots, while those corresponding to
coefficients determined by the sets Ne (i.e. those within a distance 6 of edges) are
marked with triangles. Points corresponding to coefficients determined by the set
N 1

F are marked with a · .

We now compute the coefficients associated with domain points on the first
layer inward from an outer face F of T . Let F1 be a triangular face in the first layer
next to F . We have determined the coefficients of s corresponding to the balls of
radius 4r around the vertices of T which correspond to disks of radius 4r−1 around
the vertices of F1. In addition, we know the coefficients of s corresponding to tubes
of radius 2r around the edges of T which gives us the points within a distance

11



2r − 1 of the edges of F1. It remains to compute the coefficients corresponding
to domain points on F1 with indices i, j, k ≥ 2r. We compute these coefficients
from the values of {DF s(ξ)}ξ∈AF,1

, which is part of the data associated with N 1
F .

This involves solving a linear system with matrix M1 := [BF,8r
ξ (η)]ξ,η∈AF,1

. This
matrix is independent of the size and shape of F , and is nonsingular by Lemma 2.3.
Fig. 1 (bottom) shows the domain points on this layer for the case r = 3. Points
corresponding to coefficients that are determined from the sets Nv (i.e., those in
the disks of radius 11 around the vertices of F1) are marked with small dots, while
those corresponding to coefficients that are determined from the sets Ne (i.e., those
within a distance 5 of edges of F1) are marked with triangles. Points corresponding
to coefficients that are determined from N 1

F are marked with a · .

We continue with layers that are a distance ℓ = 2, . . . , r from the faces of T .
The analysis of these layers is a little different from layers 0 and 1 since now we have
to make use of the data associated with the functionals in the sets N 2

F . Let Fℓ be
a triangular face of layer ℓ. We have determined the coefficients of s corresponding
to the balls of radius 4r around the vertices of T which correspond to disks of
radius 4r − ℓ around the vertices of Fℓ. In addition, we know the coefficients of
s corresponding to tubes of radius 2r around the edges of T which gives us the
points within a distance 2r − ℓ of the edges of Fℓ. To compute the remaining
coefficients on Fℓ, we first use the data associated with the sets N 2

F to compute the
remaining unknown coefficients of s corresponding to domain points at a distance
2r − ℓ + m from the edges of Fℓ for m = 1, . . . , ⌊ℓ/2⌋. Then we use the values
{Dℓ

F s(ξ)}ξ∈AF,ℓ
(which correspond to functionals in N 1

F ) to solve for the coefficients

of s corresponding to the domain points {ξT,8r+1
ijkℓ : i, j, k ≥ 2r + 1 − ℓ + ⌊ℓ/2⌋}.

This involves solving a linear system with matrix Mℓ := [BF,8r−ℓ+1
ξ (η)]ξ,η∈AF,ℓ

.
This matrix is independent of the size and shape of F , and is nonsingular by
Lemma 2.3. Fig. 2 shows the domain points on layers ℓ = 2, 3 for the case r = 3.
Points corresponding to coefficients that are determined from the sets Nv and Ne

(i.e., those that lie in the disks of radius 12 − ℓ around vertices of Fℓ or within a
distance 6 − ℓ of an edge of Fℓ are marked with dots and triangles, respectively.
Points marked with ⊕ indicate coefficients that are computed from the sets N 2

F .
Points corresponding to coefficients that are determined from N 1

F are marked with
a · .

We now proceed to compute unknown coefficients on layers ℓ = r+1, . . . , r+n.
Let Fℓ be a triangular face on layer ℓ. We already know the coefficients correspond-
ing to domain points in disks of radius 4r − ℓ around the vertices of Fℓ. We also
know the coefficient associated with all domain points within a distance ℓ−1 of the
edges of F . We now use the data associated with N 1

T to compute the remaining
unknown coefficients of s corresponding to domain points at a distance ℓ from the
edges of Fℓ. Similarly, we use the data associated with N 2

T to compute the coeffi-
cients of s corresponding to domain points at a distance ℓ + 1, . . . , 2r − ℓ + ⌊ℓ/2⌋
from the edges of Fℓ. Finally, we use the values {Dℓ

F s(ξ)}ξ∈AF,ℓ
(which correspond

to functionals in N 3
T ) to solve for the coefficients of s corresponding to the domain

12



Fig. 2. Domain points on layers ℓ = 2 (top) and ℓ = 3 (bottom) for r = 3.

points {ξT,8r+1
ijkℓ : i, j, k ≥ 2r + 1 − ℓ + ⌊ℓ/2⌋}. This involves solving a linear sys-

tem with matrix Mℓ := [BF,8r−ℓ+1
ξ (η)]ξ,η∈AF,ℓ

. This matrix is independent of the
size and shape of F , and is nonsingular by Lemma 2.3. Fig. 3 shows the domain
points on layer ℓ = 4 for the case r = 3. Points corresponding to coefficients that
are determined from the sets Nv or Ne (i.e., those that lie in the disks of radius
8 around the vertices of F4 or within a distance 2 of the edges of F4) are marked
with dots and triangles, respectively. Points marked with ∗ indicate coefficients
that were computed in previous steps, while those marked with squares correspond
to coefficients that are determined from the data of N 1

T . N 2
T is empty for r = 3.

Points on F4 corresponding to coefficients that are determined from N 3
T are marked

13



Fig. 3. Domain points on layer ℓ = 4 for r = 3.

with a · .
After completing the above steps for layers 0, . . . , r+n, it remains to compute

the coefficients of s corresponding to the domain points whose distance to the
boundary of T are greater than or equal to r + n+ 1, i.e., coefficients of the form
cTijkl with i, j, k, l ≥ r+ n+ 1. Lemma 2.1 shows how to compute these coefficients

from the data corresponding to N 4
T .

We have shown that N is a nodal determining set. We claim it is m-stable
in the sense of (2.2) with m = 4r. This follows from the fact that all coeffi-
cients are computed directly from derivatives using well-known formulae from the
Bernstein–Bézier theory, or by solving linear systems of equations whose matrices
are nonsingular and whose determinants depend only on the smallest angles in △.
The highest derivative involved is of order 4r.

To show that N is minimal, we have to show that its cardinality is equal to
the dimension of Sr(△) as given in (3.2). It is clear that for every v ∈ V,

#Nv = #Mv =

(
4r + 3

3

)
=

32r3 + 48r2 + 22r + 3

3
.

and for every e ∈ E ,

#Ne = #Me =
(r + 1)(2r + 1)(4r)

3
=

8r3 + 12r2 + 4r

3
.

This gives the first two terms in (3.2). To get the term involving n
F
, we note that

there is a one-to-one correspondence between the functionals in the sets N 1
F ∪ N 2

F

14



and the points in MF , and so the two sets have the same cardinality. To see this
directly, note that the cardinality of AF,ℓ is

(
2r+2ℓ−3⌊ℓ/2⌋

2

)
. Thus,

#
(
N 1

F ∪N 2
F

)
=

r∑

ℓ=0

(
2r + 2ℓ− 3⌊ℓ/2⌋

2

)
+ 3

r∑

ℓ=2

⌊ℓ/2⌋∑

m=1

(2r +m),

which reduces to (25r3 + 21r2 − 4r)/6 = #MF . Finally, we deal with the term in
(3.2) involving N . We have

#
[
N 1

T ∪ N 2
T ∪ N 3

T ∪ N 4
T

]
=

r+n∑

ℓ=r+1

[
12ℓ+

2r−2ℓ+⌊ℓ/2⌋∑

m=1

12(2ℓ+m)

+ 4

(
2r + 2ℓ− 3⌊ℓ/2⌋

2

)]
+

(
4r − 4n

3

)
,

which reduces to 10r3 − 6r2 = #MT .

Theorem 5.1 asserts that if we assign values to all of the derivatives of s listed
there, then s is uniquely determined. We emphasize that some of this data applies
to the polynomial pieces of s rather than s itself. For example (cf. N 3

T ), for every
interior face F of T , every r + 1 ≤ ℓ ≤ r + n, and every point t ∈ AF,ℓ, we have to

assign values to both Dℓ
F s|T (t) and Dℓ

F s|T̃ (t), where T and T̃ are the tetrahedra
sharing the face F . We are allowed to assign different values to these derivatives
since s is not not required to be Cℓ across the face F . The situation is similar for
the data associated with N 1

T and N 2
T since they also involve derivatives of order

greater than r.

§6. Hermite Interpolation

Theorem 5.1 shows that for any function f ∈ C4r(Ω), there is a unique spline
s ∈ Sr(△) solving the Hermite interpolation problem

λs = λf, for all λ ∈ N .

This defines a linear projector I mapping C4r(Ω) onto the superspline space Sr(△).
Since Sr(△) contains P8r+1, I reproduces all polynomials of degree d := 8r + 1.
Since the NMDS of Theorem 5.1 is local and stable, we can establish the following
error bound, see [2–4,15,17,18] for similar results for other macro-elements.

Theorem 6.1. For every f ∈ Cm+1(Ω) with 4r − 1 ≤ m ≤ 8r + 1,

‖Dα(f − If)‖Ω ≤ K|△|m+1−|α||f |m+1,Ω, (6.1)

for all 0 ≤ |α| ≤ m. Here K depends only on r and the smallest angles in △.

Proof: Fix T ∈ △, and let f ∈ Cm+1(Ω). Fix α with |α| ≤ m. By Lemma 4.3.8
of [9], there exists a polynomial p ∈ Pm such that

|f − p||β|,T ≤ K1|T |
m+1−|β||f |m+1,T , (6.2)
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for all 0 ≤ |β| ≤ m. Since I p = p,

‖Dα(f − If)‖T ≤ ‖Dα(f − p)‖T + ‖DαI(f − p)‖T .

In view of (6.2) with β = α, it suffices to estimate the second quantity. Applying
the Markov inequality [15,20] to each of the polynomials I(f − p)|T , we have

‖DαI(f − p)‖T ≤ K2|T |
−|α|‖I(f − p)‖T ,

where K2 is a constant depending only on r and the smallest angles in △. Let {cξ}
be the B-coefficients of the polynomial I(f − p)|T relative to the tetrahedron T .
Then combining (2.2) with the fact that the Bernstein basis polynomials form a
partition of unity, it is easy to see that

‖I(f − p)‖T ≤ K3 max
ξ∈Dd,T

|cξ| ≤ K4

4r∑

i=0

|T |i|f − p|i,T .

Combining this with (6.2), we have

‖I(f − p)‖T ≤ K5|T |
m+1|f |m+1,T ,

which gives
‖Dα(f − If)‖T ≤ K6|T |

m+1−|α||f |m+1,T .

Finally, we take the maximum over all tetrahedra T in △ to get (6.1).

§7. Remarks

Remark 1. The idea of a macro-element space is that the nodal data can be used
to compute a Hermite interpolating spline s as in Sect. 6, where the coefficients
of the polynomial s|T can be computed locally one tetrahedron at a time using
only the data associated with points in T . As observed already in [23], this implies
that to construct a trivariate Cr macro-element, we need to enforce at least C2r

supersmoothness around the edges (since otherwise polynomials constructed locally
will not join together with Cr smoothness). This in turn implies that we need C4r

supersmoothness at the vertices, which implies that to create a macro-element
without splitting the tetrahedra, we need to use polynomials of degree at least
8r + 1.

Remark 2. Lemma 2.3 can also be established using a Bezout-type argument
similar to the one used to prove Lemma 2.1.

Remark 3. It is possible to construct trivariate macro-element spaces using lower
degree polynomials provided we are willing to split the tetrahedra into subtetra-
hedra. For r = 1 this idea has been used in [1,21,22] to create macro-element
spaces using splines of degree five, three, and two, respectively. For some recently
constructed C2 macro-element spaces based on split tetrahedra, see [2,3,4].
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Remark 4. It is also possible to construct macro-elements based on splits of
octahedra. For the C1 case, see [12], and for the C2 case, see [13].

Remark 5. Using the MDS M of Theorem 3.1, it is easy to construct a stable local
basis for Sr(△). For each ξ ∈ M, let ψξ ∈ Sr(△) be the spline whose B-coefficients
satisfy cη = δη,ξ for all ξ, η ∈ M. It is clear that the splines in the set {ψξ}ξ∈M are
linearly independent, and since #M = dimSr(△), it follows that they form a basis
for Sr(△). They are called the dual basis splines associated with M. It is easy to
see that they have the following small supports:

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained in the
union of the tetrahedra containing e,

3) if ξ ∈ MF for some face F of △, then the support of ψξ is contained in the
union of the tetrahedra containing F ,

4) if ξ ∈ MT for some tetrahedron T of △, then the support of ψξ is contained
in T .

Remark 6. We can construct a different stable local basis for Sr(△) using the
NMDS N of Theorem 5.1. For each λ ∈ N , let φλ ∈ Sr(△) be such that γφλ =
δγ,λ for all γ, λ ∈ N . It is clear that the splines in the set {φξ}ξ∈N are linearly
independent, and since #N = dimSr(△), it follows that they form a basis for
Sr(△). They are called the dual basis splines associated with N . Each of these
splines has support on a set that is at most the union of all tetrahedra surrounding
a vertex.

Remark 7. Assuming that Conjecture 2.2 holds, it is possible to describe a dif-
ferent nodal minimal determining set for Sr(△) which replaces some of the higher
order edge derivatives by face derivatives. Given a face F with edges EF and vertices
VF , let

ÃF,ℓ := {ξF,8r+1−ℓ
ijk : i, j, k ≥ 2r − ℓ+ 1} \

⋃

v∈VF

D4r−ℓ(v),

for 0 ≤ ℓ ≤ r, and

ÃF,ℓ := {ξF,8r+1−ℓ
ijk : i, j, k ≥ ℓ} \

⋃

v∈VF

D4r−ℓ(v),

for r + 1 ≤ ℓ ≤ r + n. Then we define an alternative nodal minimal determining
set Ñ by replacing the sets N 1

F ∪N 2
F by

ÑF :=
r⋃

ℓ=0

{εξD
ℓ
F }ξ∈ÃF,ℓ

,

and replacing the sets N 1
T ∪ N 2

T ∪ N 3
T by

Ñ 1
T :=

⋃

F∈FT

r+n⋃

ℓ=r+1

{εξD
ℓ
F }ξ∈ÃF,ℓ

,
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where FT is the set of faces of T . A simple count shows that Ñ has the same
cardinality as N . To show that it is a nodal minimal determining set, we can follow
the proof of Theorem 5.1. The proof changes slightly in dealing with layers of a
tetrahedron. Given that we have already determined coefficients associated with all
balls D4r(v) and tubes E2r(e), we determine the remaining coefficients associated
with domain points on a typical face Fℓ of the ℓ-th layer by solving an interpolation
problem whose matrix is

[
BF,8r+1−ℓ

ξ (η)
]
ξ,η∈ÃF,ℓ

. To ensure this is a nonsingular

system, we appeal to the conjecture.

Remark 8. It was also conjectured by the second author that the trivariate ver-
sion of Conjecture 2.2 holds, i.e., that given a tetrahedron T , matrices of the form
[BT,d

ξ (η)]ξ,η∈Γ are nonsingular for any choice of Γ ⊆ Dd,T . Assuming this conjec-
ture, it is possible to give another interesting nodal minimal determining set for
Sr(△). Now we define Ñ by replacing N 1

T ∪ N 2
T ∪ N 3

T ∪ N 4
T in Theorem 5.1 by

ÑT := {εξ}MT
, where MT is as in Theorem 3.1, i.e.,

MT := {ξT,8r+1
ijkl : i, j, k, l ≥ r + 1} \

⋃

v∈VT

D4r(v),

where VT is the set of vertices of T . Using Ñ , we now determine the B-coefficients
corresponding to MT by interpolating at the domain points of MT .

Remark 9. The proof of Theorem 4.2 showing that Sr(△) has full approximation
power is based on the construction of a quasi-interpolation operator. The general
idea has been used in spline theory for some time. It was used explicitly in the
trivariate setting in [17], and can also be used to show that any trivariate spline
space with a stable local minimal determining set has full approximation power,
see [15]. The idea of the proof of Theorem 6.1 has also been used in several recent
papers on trivariate macro-elements, see [2–4,17,18].

Remark 10. The problem of finding the dimension of Cr trivariate spline spaces
with r > 0 seems to be quite difficult. There are dimension formulae in the literature
for the macro-element spaces mentioned in Remarks 3 and 4. There are also results
for certain spaces on other special partitions, see e.g. [17,18]. However, for general
tetrahedral partitions, formulae are not known for the spline spaces Sr

d(△) := {s ∈
Cr(Ω) : s|T ∈ Pd, all T ∈ △} or their superspline subspaces, even for large values
of d compared to r. As observed in [6], we cannot expect to get dimension formulae
for these spaces without first solving the dimension problem for bivariate splines
on cells (clusters of triangles surrounding a single vertex) for all values of d and r.
For generic partitions, the case r = 1 and d ≥ 8 was treated in [6]. Surprisingly,
without giving dimension formulae, it is possible to show that the spaces Sr

d(△)
have local bases for d ≥ 8r + 1, see [5,7,8]. Numerical methods for constructing
stable local bases of multivariate spline spaces can be found in [11].
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