Trivariate Statistical Analysis of Extreme Rainfall Events via Plackett Family of Copulas

Shih-Chieh Kao
Purdue University
October 29, 2007

Outline

- Background and Motivation
- Research Objectives
- Introduction to Copulas
- Current Choices of Trivariate Copulas
- Plackett Family of Copulas
- Temporal Distribution of Design Rainfall
- Conclusions

Background and Motivation

- Many hydrologic variables are indexed in space and time, and are co-dependent.
- The assumption of independence is not realistic
- Univariate stochastic approaches are not capable of addressing multivariate problems.
- Infinite possibilities of joint distributions exist for fixed marginals
- The need to characterize dependence structure
- Linear correlation coefficient is not a complete measure.
- Explore use of copulas as a solution
- Constructing higher order (>2) stochastic models is an unresolved problem

Research Objectives

- Given depth and duration, use conditional expectation to develop the temporal distribution for design rainfall
- (1) Capture peak properties
- (2) Develop temporal accumulation curves
- Construct a trivariate copula preserving bivariate dependencies for analyzing Indiana rainfall
- Explore the nuances of compatibility problem
- Not any given set of bivariate dependencies has a valid trivariate copula
- Examine the use of Plackett family of copulas at the trivariate level

Basic Probabilistic Definition

- Univariate (for variable X)
- Cumulative density function (CDF) and probability density function (PDF)

$$
F_{X}(x)=P[X \leq x] \quad f_{X}(x)=\frac{\partial}{\partial x} F_{X}(x)
$$

- Bivariate (for variables X and Y)
- joint-CDF and joint-PDF

$$
H_{X Y}(x, y)=P[X \leq x, Y \leq y] \quad h_{X Y}(x, y)=\frac{\partial^{2} H_{X Y}(x, y)}{\partial x \partial y}
$$

- Marginal distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} h_{X Y}(x, y) d y \quad f_{Y}(y)=\int_{-\infty}^{\infty} h_{X Y}(x, y) d x
$$

Concept of Dependence Structure

- Conventionally quantified by the linear correlation coefficient ρ

$$
\rho_{X Y}=\frac{E[(X-\bar{x})(Y-\bar{y})]}{S t d[X] \operatorname{Std}[Y]}
$$

- Can not correctly describe association between variables

- Only valid for Gaussian (or some elliptic) distributions
- A better tool is required to characterize dependence => copulas

Introduction to Copulas

- A copula $C(u, v)$ is a function comprised of margins $u \& v$ from $[0,1] \times[0,1]$ to $[0,1]$.
- Sklar (1959) showed that for continuous marginals u and v, there exists a unique copula C such that

$$
H_{X Y}(x, y)=C_{U V}\left(F_{X}(x), F_{Y}(y)\right)=C_{U V}(u, v)
$$

- Transformation from $[-\infty, \infty]^{2}$ to $[0,1]^{2}$
bivariate Gaussian distribution, $\rho=0.1$

bivariate Gaussian distribution, $\rho=0.1$

- Provides a complete description of dependence structure

Data Source \& Study Area

- Nation Climate Data Center, Hourly Precipitation Dataset (NCDC, TD 3240 dataset)
- 53 Co-operative Rainfall Stations in Indiana with record length greater than 50 years
- Minimum rainfall hiatus: 6 hours
- About 4800 events per station
- Annual maximum cumulative probability (AMP) definition for selecting annual series

Difficulties in Constructing Higher-order Copulas

- Preserving mutual dependencies

$$
\left\{\begin{array}{l}
C_{U V W}(1, v, w)=C_{V W}(v, w) \\
C_{U V W}(u, 1, w)=C_{U W}(u, w) \\
C_{U V W}(u, v, 1)=C_{U V}(u, v)
\end{array}\right.
$$

- Drawback of Archimedean copulas

$$
\varphi_{\theta}\left(C_{U V W}(u, v, w)\right)=\varphi_{\theta}(u)+\varphi_{\theta}(v)+\varphi_{\theta}(w)
$$

- Only one bivariate dependence can be preserved
- Compatibility problem
- Q1: Is it possible to have all perfect positive dependencies at the bivariate level? (i.e. $\rho_{X Y}=1, \rho_{Y Z}=1$, and $\rho_{X Z}=1$)
- Q2: Is it possible to have all perfect negative dependencies at the bivariate level? (i.e. $\rho_{X Y}=-1, \rho_{Y Z}=-1$, and $\rho_{X Z}=-1$)
- Not any set of given bivariate dependencies has valid copulas

Current Choices of Trivariate Copulas

- Archimedean Copulas
- Grimaldi and Serinaldi 2006a; Zhang and Singh, 2007b, 2007c
- Fully-nested copulas
- Grimaldi and Serinaldi, 2006b, 2007

$$
\left\{\begin{array}{l}
\varphi_{1}\left(C_{U V W}\left(w, C_{U V}(u, v)\right)\right)=\varphi_{1}(w)+\varphi_{1}\left(C_{U V}(u, v)\right) \\
\varphi_{2}\left(C_{U V}(u, v)\right)=\varphi_{2}(u)+\varphi_{2}(v)
\end{array}\right.
$$

- Not all bivariate dependencies can be preserved
- Salvadori and De Michele (2006)
- Special case of "conditional copulas" (Chakak and Koehler, 1995)
- Sequence of variables is not interchangeable
- Meta-elliptical copulas
- Genest et al., 2007; Renard and Lang, 2007
- Extension of multivariate Gaussian distribution
- Lack of parameter on the trivariate level

Constant Cross Product Ratio Theory

- Constant cross product ratio theory (2-Plackett copulas)
- For any given point (u,v) in $[0,1]^{2}$

$$
\psi_{U V}=\frac{P[U \leq u, V \leq v] P[U>u, V>v]}{P[U>u, V \leq v] P[U \leq u, V>v]}
$$

- In terms of copulas $\mathrm{C}_{\mathrm{UV}}(\mathrm{u}, \mathrm{v})$

$$
C_{U v}(u, v)=\frac{\left[1+\left(\psi_{U v}-1\right)(u+v)\right]-\sqrt{\left[1+\left(\psi_{U v}-1\right)(u+v)\right]^{2}-4 u v \psi_{v v}\left(\psi_{v v}-1\right)}}{2\left(\psi_{U v}-1\right)}
$$

$-\Psi=1$, independent
$\Psi>1$, positive dependent $(\Psi \rightarrow \infty$, totally positive)
$\Psi<1$, negative dependent $(\Psi \rightarrow 0$, totally negative)

- Parameter estimation
- Maximum likelihood
- Median approach $-n_{00} n_{11} / n_{01} n_{10}$

Trivariate Plackett Family of Copulas (I)

- 3-Plackett
- In $[0,1]^{3} \quad \psi_{U V W}=\frac{P_{000} P_{011} P_{101} P_{110}}{P_{111} P_{100} P_{010} P_{001}}$
- Solve the 4-th order polynomial
$\psi_{U V W}\left(a_{1}-z\right)\left(a_{2}-z\right)\left(a_{3}-z\right)\left(a_{4}-z\right)-z\left(z-b_{1}\right)\left(z-b_{2}\right)\left(z-b_{3}\right)=0$
$\left(a_{1}=C_{V W}(v, w), \quad a_{2}=C_{U W}(u, w), \quad a_{3}=C_{U V}(u, v)\right.$
$a_{4}=1-u-v-w+C_{U V}(u, v)+C_{V W}(v, w)+C_{U W}(u, w)$
$b_{1}=C_{U W}(u, w)+C_{V W}(v, w)-w$

$b_{2}=C_{U V}(u, v)+C_{V W}(v, w)-v$
$b_{3}=C_{U W}(u, w)+C_{U V}(u, v)-u$
- When compatible, only one solution in (Fréchet bounds)

$$
\max \left(0, b_{1}, b_{2}, b_{3}\right) \leq z \leq \min \left(a_{1}, a_{2}, a_{3}, a_{4}\right)
$$

- Implicit procedure for computing copula density
- Parameter estimation
- Maximum likelihood
- Median approach - $n_{000} n_{011} n_{101} n_{110} / n_{111} n_{100} n_{010} n_{001}$

Trivariate Plackett Family of Copulas (II)

$$
w=0.8, \psi_{u v}=1, \psi_{v w}=1, \psi_{u w}=1, \psi_{u v w}=1 \quad w=0 . \text { s, } \psi_{u v}=3, \psi_{v w}=1, \psi_{u w}=1, \psi_{u v w}=1
$$

Feasible Region for Valid 3-Plackett

- Problem: bivariate distributions may not be compatible, i.e. probability measure V_{C} in $\left[\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}\right]$ and $\left[\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}\right]$ might be negative! - Open Question.
- Feasible region of Plackett parameters
- Adopt numerical approach to find when copula density is greater or equal to zero in $[0,1]^{3}$

Comparison between Plackett and Gaussian

- Samples with identical bivariate dependencies (correlation matrix)
- Do they have identical trivariate distributions?
- Could cause error when computing conditional probabilistic features

Diagional $\delta(t, t, t)$

Temporal Distribution of Design Rainfall

- Given depth (P) and duration (D), what is the corresponding temporal distribution of design rainfall?
- Conditional expectation
- Two applications
- Capture the peak features
- Develop the temporal accumulation curves
- Selected variables for analysis:
- Depth (volume), P (mm)
- Duration, D (hour)
- Peak Intensity, I (mm/hour)
- Percentage Time to Peak, T_{p} (\%)
- Percentage cumulative accumulation at each 10% temporal ordinates, $\mathrm{A}_{10}, \mathrm{~A}_{20}, \ldots, \mathrm{~A}_{90}(\%)$
- 50 out of 53 stations are valid for 3-Plackett

Marginal Distributions

- Parameter estimation
- Maximum likelihood (ML) \& method of moments (MOM)
- Goodness-of-fit
- Chi-square and Kolmogorov-Smirnov (KS) test
- Selection of marginal distribution:
- Akaike Information Criterion (AIC) \& Bayesian Information Criterion (BIC)

	Number of stations with the minimum AIC				Number of stations with the minimum BIC				
	GEV	LN	P3	LP3	GEV	LN	P3	LP3	
Depth, P	7	38	1	7	4	47	0	2	
Duration, D	1	46	6	0	1	50	2	0	
Intensity, I	9	41	2	1	2	49	1	1	

- P, D, and I: Log-normal (LN) distribution
- T_{p} and A_{k} : Beta (β) distribution

Bivariate Dependence Structure

	Kendall's τ		Frank's θ esimated by				Plackett's ψ estimated by			
			ML		Kendall's τ		ML		Median	
	mean	stdev								
P vs. D	0.336	0.077	3.554	1.031	3.410	0.975	5.140	2.335	4.468	2.394
P vs. I	0.246	0.097	2.410	1.055	2.389	1.029	3.270	1.449	2.926	1.474
P vs. T_{p}	0.047	0.100	0.392	0.959	0.429	0.926	1.323	0.551	1.518	0.838
P vs. A_{k}	-0.053	0.103	-0.503	0.966	-0.494	0.947	0.883	0.469	0.917	0.581
D vs. I	-0.196	0.093	-1.971	0.962	-1.863	0.927	0.439	0.198	0.554	0.341
D vs. T_{p}	0.030	0.085	0.246	0.868	0.272	0.776	1.214	0.477	1.421	0.608
D vs. A_{k}	-0.076	0.093	-0.726	0.910	-0.710	0.866	0.783	0.364	0.746	0.395

- Parameter estimation
- Maximum likelihood (ML)
- Non-parametric approach using Kendall's tau т
- Median approach
- Goodness-of-fit
- Multidimensional KS test
- Rosenblatt's transformation test (RTT)
- $Z_{1}=\Phi^{-1}(P[U \leq u]), Z_{2}=\Phi^{-1}(P[V \leq v \mid U=u])$
- Test if $S=Z_{1}{ }^{2}+Z_{2}{ }^{2}$ follows chi-square distribution $\left(\lambda^{2}{ }_{2}\right)$

Trivariate Dependence Structure

Variables	Plackett's ψ		Variables	Plackett's ψ	
	mean	stdev		mean	stdev
P vs. D vs. I	1.163	0.531	P vs. D vs. T_{p}	1.438	1.088
P vs. D vs. A_{10}	1.162	0.722	P vs. D vs. A_{60}	1.392	1.174
P vs. D vs. A_{20}	1.149	0.623	P vs. D vs. A_{70}	1.403	1.200
P vs. D vs. A_{30}	1.432	1.271	P vs. D vs. A_{80}	1.228	0.765
P vs. D vs. A_{40}	1.379	1.180	P vs. D vs. A_{90}	1.228	0.880
P vs. D vs. A_{50}	1.458	1.542			

- Parameter estimation
- Only by maximum likelihood (ML)
- Sample size is not sufficient for median approach. Cases with zero observation may exist
- RTT test
$-Z_{1}=\Phi^{-1}(P[U \leq u]), Z_{2}=\Phi^{-1}(P[V \leq v \mid U=u]), Z_{3}=\Phi^{-1}(P[W \leq w \mid U=u, V=v])$
- Test if $S=Z_{1}{ }^{2}+Z_{2}{ }^{2}+Z_{3}{ }^{2}$ follows chi-square distribution $\left(\lambda^{2}{ }_{3}\right)$

	Number of stations invalid for 3-Plackett		Number of stations rejected by RTT at 5\% significance level	
	median approach	maximum likelihood	median approach	maximum likelihood
$\mathrm{C}_{\mathrm{UVW}}(\mathrm{P}$ vs. D vs. I)	$3 / 53$	$22 / 53$	$4 / 50$	$4 / 31$
$\mathrm{C}_{\mathrm{UVR} 90}\left(\mathrm{P}\right.$ vs. D vs. $\left.\mathrm{A}_{90}\right)$	$0 / 53$	$1 / 53$	$0 / 53$	$0 / 52$

Marginals of Volume P, u

Marginals of Duration D, v

Marginals of Peak I, w

Marginals of Volume P,u

Marginals of Duration D, v
N
N

Rainfall Peak Attributes

- Given depth (P) and duration (D), compute the conditional expectation of peak intensity (I) and percentage time to peak (T_{p})
- Peak intensity increases with total depth, decreases with duration
- Time to peak increases with duration, decreases with total depth

$$
E\left[I \mid P>p_{D}, d_{D}-1<D<d_{D}\right]
$$

$E\left\lfloor T_{p} \mid P>p_{D}, d_{D}-1<D<d_{D}\right\rfloor$

Temporal Accumulation Curves

- Given depth (P) and duration (D), compute the conditional expectation of percentage accumulations at each 10% temporal ordinates ($\mathrm{A}_{10}, \mathrm{~A}_{20}, \ldots, \mathrm{~A}_{90}$)
- Results are sensitive to the quality of data

Conclusions (I)

- Plackett family of copulas, along with the underlying cross product ratio theory, was found to be a suitable trivariate dependence model in constructing rainfall temporal distribution.
- The feasibility region for Plackett parameters that would result in valid 3 -copulas has been identified numerically in this study.
- Not every sets of given bivariate dependencies have a corresponding valid 3 -copula (even for Gaussian copulas). The compatibility of given bivariate dependencies needs to be investigated.

Conclusions (II)

- Marginal distributions
- Log-normal distribution is found suitable for depth, duration, and peak intensity
- Beta (β) distribution is found suitable for percentage time to peak and percentage cumulative accumulation at each 10% temporal ordinates
- Dependence Structure
- Plackett family is found to be a suitable dependence model both on the bivariate and trivariate levels.
- When given depth and duration, it can be observed that peak intensity (I) increases with depth, decreases with duration, while time to peak $\left(T_{p}\right)$ increases with duration, decreases with depth.
- The analytical proof for trivariate Plackett family remains an "Open Question".

Civil
Engineering

Questions?

