

Engineering

Shih-Chieh Kao Purdue University October 29, 2007

Outline

- Background and Motivation
- Research Objectives
- Introduction to Copulas
- Current Choices of Trivariate Copulas
- Plackett Family of Copulas
- Temporal Distribution of Design Rainfall
- Conclusions

Background and Motivation

- Many hydrologic variables are indexed in space and time, and are co-dependent.
 - The assumption of independence is not realistic
- Univariate stochastic approaches are not capable of addressing multivariate problems.
 - Infinite possibilities of joint distributions exist for fixed marginals
- The need to characterize dependence structure
 Linear correlation coefficient is not a complete measure.
- Explore use of copulas as a solution
- Constructing higher order (>2) stochastic models is an unresolved problem

Research Objectives

- Given depth and duration, use conditional expectation to develop the temporal distribution for design rainfall
 - (1) Capture peak properties
 - (2) Develop temporal accumulation curves
- Construct a trivariate copula preserving bivariate dependencies for analyzing Indiana rainfall
- Explore the nuances of compatibility problem
 - Not any given set of bivariate dependencies has a valid trivariate copula
- Examine the use of Plackett family of copulas at the trivariate level

Basic Probabilistic Definition

and the and

- Univariate (for variable X)
 - Cumulative density function (CDF) and probability density function (PDF)

$$F_X(x) = P[X \le x]$$
 $f_X(x) = \frac{\partial}{\partial x} F_X(x)$

- Bivariate (for variables X and Y)
 - joint-CDF and joint-PDF

$$H_{XY}(x, y) = P[X \le x, Y \le y] \qquad h_{XY}(x, y) = \frac{\partial^2 H_{XY}(x, y)}{\partial x \partial y}$$

Marginal distributions

$$f_X(x) = \int_{-\infty}^{\infty} h_{XY}(x, y) dy \qquad f_Y(y) = \int_{-\infty}^{\infty} h_{XY}(x, y) dx$$

Concept of Dependence Structure

 Conventionally quantified by the linear correlation coefficient ρ

$$\rho_{XY} = \frac{E[(X - \overline{x})(Y - \overline{y})]}{Std[X]Std[Y]}$$

Can not correctly describe association between variables

Only valid for Gaussian (or some elliptic) distributions
 A better tool is required to characterize dependence
 => copulas

Introduction to Copulas

- A copula C(u,v) is a function comprised of margins u & v from [0,1]×[0,1] to [0,1].
 - Sklar (1959) showed that for continuous marginals u and v, there exists a unique copula C such that

 $H_{XY}(x, y) = C_{UV}(F_X(x), F_Y(y)) = C_{UV}(u, v)$

– Transformation from $[-\infty,\infty]^2$ to $[0,1]^2$

Provides a complete description of dependence structure

Data Source & Study Area

- Nation Climate Data Center, Hourly Precipitation Dataset (NCDC, TD 3240 dataset)
- 53 Co-operative Rainfall Stations in Indiana with record length greater than 50 years
- Minimum rainfall hiatus: 6 hours
- About 4800 events per station
- Annual maximum cumulative probability (AMP) definition for selecting annual series

Difficulties in Constructing Higher-order Copulas

and the series

Preserving mutual dependencies

 $\begin{cases} C_{UVW}(1, v, w) = C_{VW}(v, w) \\ C_{UVW}(u, 1, w) = C_{UW}(u, w) \\ C_{UVW}(u, v, 1) = C_{UV}(u, v) \end{cases}$

Drawback of Archimedean copulas

 $\varphi_{\theta}(C_{UVW}(u,v,w)) = \varphi_{\theta}(u) + \varphi_{\theta}(v) + \varphi_{\theta}(w)$

- Only one bivariate dependence can be preserved
- Compatibility problem
 - Q1: Is it possible to have all perfect positive dependencies at the bivariate level? (i.e. $\rho_{XY} = 1$, $\rho_{YZ} = 1$, and $\rho_{XZ} = 1$)
 - Q2: Is it possible to have all perfect negative dependencies at the bivariate level? (i.e. ρ_{XY} = -1, ρ_{YZ} = -1, and ρ_{XZ} = -1)
 - Not any set of given bivariate dependencies has valid copulas

Current Choices of Trivariate Copulas

- Archimedean Copulas
 - Grimaldi and Serinaldi 2006a; Zhang and Singh, 2007b, 2007c
- Fully-nested copulas
 - Grimaldi and Serinaldi, 2006b, 2007

 $\begin{cases} \varphi_1(C_{UVW}(w, C_{UV}(u, v))) = \varphi_1(w) + \varphi_1(C_{UV}(u, v)) \\ \varphi_2(C_{UV}(u, v)) = \varphi_2(u) + \varphi_2(v) \end{cases}$

- Not all bivariate dependencies can be preserved
- Salvadori and De Michele (2006)
 - Special case of "conditional copulas" (Chakak and Koehler, 1995)
 - Sequence of variables is not interchangeable
- Meta-elliptical copulas
 - Genest et al., 2007; Renard and Lang, 2007
 - Extension of multivariate Gaussian distribution
 - Lack of parameter on the trivariate level

Constant Cross Product Ratio Theory

- Constant cross product ratio theory (2-Plackett copulas)
 - For any given point (u,v) in $[0,1]^2$

$$\psi_{UV} = \frac{P[U \le u, V \le v]P[U > u, V > v]}{P[U > u, V \le v]P[U \le u, V > v]}$$

– In terms of copulas $C_{UV}(u,v)$

$$C_{UV}(u,v) = \frac{\left[1 + (\psi_{UV} - 1)(u+v)\right] - \sqrt{\left[1 + (\psi_{UV} - 1)(u+v)\right]^2 - 4uv\psi_{UV}(\psi_{UV} - 1)^2}}{2(\psi_{UV} - 1)}$$

 $-\Psi$ = 1, independent

 $\Psi > 1$, positive dependent ($\Psi \rightarrow \infty$, totally positive)

- Ψ < 1, negative dependent ($\Psi \rightarrow$ 0, totally negative)
- Parameter estimation
 - Maximum likelihood
 - Median approach $n_{00}n_{11}/n_{01}n_{10}$

Trivariate Plackett Family of Copulas (I)

- **3-Plackett** - In [0, 1]³ $\psi_{UVW} = \frac{P_{000}P_{011}P_{101}P_{110}}{P_{111}P_{100}P_{010}P_{001}}$
 - Solve the 4-th order polynomial $\psi_{UVW}(a_1 - z)(a_2 - z)(a_3 - z)(a_4 - z) - z(z - b_1)(z - b_2)(z - b_3) = 0$ $\begin{cases}
 a_1 = C_{VW}(v, w), & a_2 = C_{UW}(u, w), & a_3 = C_{UV}(u, v) \\
 a_4 = 1 - u - v - w + C_{UV}(u, v) + C_{VW}(v, w) + C_{UW}(u, w) \\
 b_1 = C_{UW}(u, w) + C_{VW}(v, w) - w \\
 b_2 = C_{UV}(u, v) + C_{VW}(v, w) - v \\
 b_3 = C_{UW}(u, w) + C_{UV}(u, v) - u
 \end{cases}$

- When compatible, only one solution in (Fréchet bounds) $\max(0, b_1, b_2, b_3) \le z \le \min(a_1, a_2, a_3, a_4)$
- Implicit procedure for computing copula density
- Parameter estimation
 - Maximum likelihood
 - Median approach $n_{000}n_{011}n_{101}n_{110}/n_{111}n_{100}n_{010}n_{001}$

Feasible Region for Valid 3-Plackett

- Problem: bivariate distributions may not be compatible,
 i.e. probability measure V_C in [a₁, b₁, c₁] and [a₂, b₂, c₂] might be negative! Open Question.
- Feasible region of Plackett parameters
 - Adopt numerical approach to find when copula density is greater or equal to zero in [0,1]³

Comparison between Plackett and Gaussian

- Samples with identical bivariate dependencies (correlation matrix)
 - Do they have identical trivariate distributions?
 - Could cause error when computing conditional probabilistic features

Diagional $\delta(t,t,t)$ 1 0.8 $\psi_{123} = 20$ $\psi_{123} = 1$ $\psi_{123} = 1/20$ -Gaussian0.2 0 0 0.5 t

Temporal Distribution of Design Rainfall

- Given depth (P) and duration (D), what is the corresponding temporal distribution of design rainfall?
 - Conditional expectation
 - Two applications
 - Capture the peak features
 - Develop the temporal accumulation curves
- Selected variables for analysis:
 - Depth (volume), P (mm)
 - Duration, D (hour)
 - Peak Intensity, I (mm/hour)
 - Percentage Time to Peak, T_p (%)
 - Percentage cumulative accumulation at each 10% temporal ordinates, A₁₀, A₂₀, ..., A₉₀ (%)
- 50 out of 53 stations are valid for 3-Plackett

Marginal Distributions

- Parameter estimation
 - Maximum likelihood (ML) & method of moments (MOM)
- Goodness-of-fit
 - Chi-square and Kolmogorov-Smirnov (KS) test
- Selection of marginal distribution:
 - Akaike Information Criterion (AIC) & Bayesian Information Criterion (BIC)

	Number of	f stations w	ith the min	imum AIC	Number of stations with the minimum BIC			
	GEV	LN	P3	LP3	GEV	LN	P3	LP3
Depth, P	7	38	1	7	4	47	0	2
Duration, D	1	46	6	0	1	50	2	0
Intensity, I	9	41	2	1	2	49	1	1

- P, D, and I: Log-normal (LN) distribution
- T_p and A_k : Beta (β) distribution

Bivariate Dependence Structure

	Kendall's τ		Frank's θ esimated by			Plackett's ψ estimated by				
			ML		Kendall's τ		ML		Median	
	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev
P vs. D	0.336	0.077	3.554	1.031	3.410	0.975	5.140	2.335	4.468	2.394
P vs. I	0.246	0.097	2.410	1.055	2.389	1.029	3.270	1.449	2.926	1.474
P vs. T _p	0.047	0.100	0.392	0.959	0.429	0.926	1.323	0.551	1.518	0.838
P vs. A _k	-0.053	0.103	-0.503	0.966	-0.494	0.947	0.883	0.469	0.917	0.581
D vs. I	-0.196	0.093	-1.971	0.962	-1.863	0.927	0.439	0.198	0.554	0.341
D vs. T _p	0.030	0.085	0.246	0.868	0.272	0.776	1.214	0.477	1.421	0.608
D vs. A _k	-0.076	0.093	-0.726	0.910	-0.710	0.866	0.783	0.364	0.746	0.395

• Parameter estimation

- Maximum likelihood (ML)
- Non-parametric approach using Kendall's tau т
- Median approach
- Goodness-of-fit
 - Multidimensional KS test
 - Rosenblatt's transformation test (RTT)
 - $Z_1 = \Phi^{-1}(P[U \le u]), Z_2 = \Phi^{-1}(P[V \le v|U=u])$
 - Test if S = $Z_1^2 + Z_2^2$ follows chi-square distribution (λ_2^2)

Trivariate Dependence Structure

	Plack	ett's ψ	_	Plackett's ψ		
Variables	mean	stdev	Variables	mean	stdev	
P vs. D vs. I	1.163	0.531	P vs. D vs. T _p	1.438	1.088	
P vs. D vs. A ₁₀	1.162	0.722	P vs. D vs. A ₆₀	1.392	1.174	
P vs. D vs. A ₂₀	1.149	0.623	P vs. D vs. A ₇₀	1.403	1.200	
P vs. D vs. A ₃₀	1.432	1.271	P vs. D vs. A ₈₀	1.228	0.765	
P vs. D vs. A ₄₀	1.379	1.180	P vs. D vs. A ₉₀	1.228	0.880	
P vs. D vs. A ₅₀	1.458	1.542				

- Parameter estimation
 - Only by maximum likelihood (ML)
 - Sample size is not sufficient for median approach. Cases with zero observation may exist
- RTT test
 - $Z_1 = \Phi^{-1}(P[U \le u]), Z_2 = \Phi^{-1}(P[V \le v|U=u]), Z_3 = \Phi^{-1}(P[W \le w|U=u,V=v])$
 - Test if S = $Z_1^2 + Z_2^2 + Z_3^2$ follows chi-square distribution (λ^2_3)

	Number of stations	invalid for 3-Plackett	Number of stations rejected by RTT at 5% significance level		
	median approach	maximum likelihood	median approach	maximum likelihood	
C _{UVW} (P vs. D vs. I)	3/53	22/53	4/50	4/31	
C _{UVR90} (P vs. D vs. A ₉₀)	0/53	1/53	0/53	0/52	

Rainfall Peak Attributes

- Given depth (P) and duration (D), compute the conditional expectation of peak intensity (I) and percentage time to peak (T_p)
 - Peak intensity increases with total depth, decreases with duration
 - Time to peak increases with duration, decreases with total depth

Temporal Accumulation Curves

- Given depth (P) and duration (D), compute the conditional expectation of percentage accumulations at each 10% temporal ordinates (A₁₀, A₂₀, ..., A₉₀)
- Results are sensitive to the quality of data

Conclusions (I)

- Plackett family of copulas, along with the underlying cross product ratio theory, was found to be a suitable trivariate dependence model in constructing rainfall temporal distribution.
- The feasibility region for Plackett parameters that would result in valid 3-copulas has been identified numerically in this study.
- Not every sets of given bivariate dependencies have a corresponding valid 3-copula (even for Gaussian copulas). The compatibility of given bivariate dependencies needs to be investigated.

Conclusions (II)

- Marginal distributions
 - Log-normal distribution is found suitable for depth, duration, and peak intensity
 - Beta (β) distribution is found suitable for percentage time to peak and percentage cumulative accumulation at each 10% temporal ordinates
- Dependence Structure
 - Plackett family is found to be a suitable dependence model both on the bivariate and trivariate levels.
- When given depth and duration, it can be observed that peak intensity (I) increases with depth, decreases with duration, while time to peak (T_p) increases with duration, decreases with depth.
- The analytical proof for trivariate Plackett family remains an "Open Question".

Questions?

IIIIII III