TriviA: A Fast and Secure Authenticated Encryption Scheme

Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, Mridul Nandi

September 15, 2015

Outline of the talk

- Introduction.
- **2** Underlying Mathematical Components.
- Specification of TriviA
- Security Theorems and Security Bounds
- Operation Properties of TriviA
- Hardware Results for TriviA

1 Introduction

2 Underlying Mathematical Components

3 Specification

- 4 Security Theorems and Security Bounds
- 5 Properties
- 6 Hardware Results

Conclusion

Authenticated Encryption (AE)

Why AE?

- Privacy of Plaintext.
- Authenticity of the plaintext/ ciphertext and associated data.

More Formally....

- Tagged-encryption : AE.enc : $\mathcal{M} \times \mathcal{D} \times \mathcal{N} \times \mathcal{K} \to \mathcal{C}$
- Verified-decryption : AE.dec : $\mathcal{C} \times \mathcal{D} \times \mathcal{N} \times \mathcal{K} \rightarrow \mathcal{M} \cup \bot$

Stream Cipher

Formally

- Encrypts in *bit level*.
- Key stream K = KeyGen(MK, N, |M|)
- *M*, *C* and *K* are *bitstreams*.

•
$$C_i = Enc_{K_i}(M_i) = (K_i + M_i) \mod 2$$

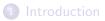
• $M_i = Dec_{K_i}(C_i) = (K_i + C_i) \mod 2$

Popular Ciphers : Trivium, Grain, Salsa etc.

ϵ - Δ U-(Universal) Hash

Formally

• $h: \mathcal{K} \times \mathcal{D} \to \mathcal{R}$

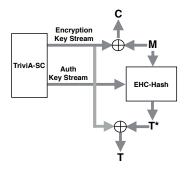

•
$$\forall \delta \in \mathcal{R}, \forall x \neq x' \in \mathcal{D}$$
, $\Pr_{K \in r\mathcal{K}}[h(K; x) - h(K; x') = \delta] \leq \epsilon$

Examples

 Multilinear Hash (ML), Pseudo Dot Product Hash (PDP), Toeplitz Hash.

Universal Hash with Minimum Multiplications

• Encode-Hash-Combine (EHC).

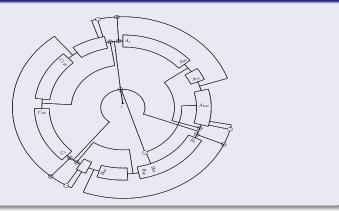

2 Underlying Mathematical Components

3 Specification

- 4 Security Theorems and Security Bounds
- 5 Properties
- 6 Hardware Results

7 Conclusion

TriviA Encryption Mode



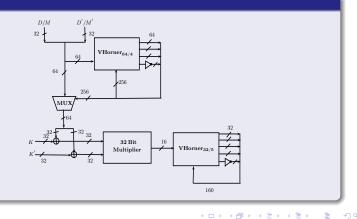
- TriviA-SC Updated version of Trivium.
- EHC-Hash Universal Hash follows EHC technique.
- TriviA-SC generates
 - Encryption key stream
 - Authentication key stream

parallely

A Trivium Based Stream Cipher : TriviA-SC

TriviA-SC Circuit

TriviA-SC Informations


- 384-bit state A (132-bit), B (105-bit) and C (147-bit)
- Load 128-bit key and 128-bit nonce, 1152-round init
- 64-bit parallelism (KeyExt64 and Update64)
- Nonlinearity in the output

• KeyExt64 - From output, StExt64 - From state

I ≡ →

Circuit of EHC Hash

EHC Circuit

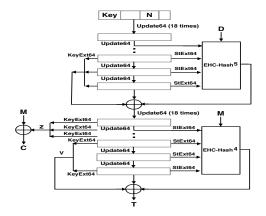
EHC-Hash Informations

• Underlying Fields - $\mathbb{F}_{2^{32}}(\alpha)$ and $\mathbb{F}_{2^{64}}(\beta)$

- Expand / Encode-Hash-Combine
 - Encode(Expand) by ECCode_d (VHorner_{64/d})
 - Blockwise Hash by PDP-Hash (32-bit Multiplier)
 - *Combine* by VMult_{α,d} (VHorner_{32/d+1})

One 32-bit Multiplication for 64-bit block.

• EHC is 2^{-128} - Δ -U hash


2 Underlying Mathematical Components

3 Specification

- 4 Security Theorems and Security Bounds
- 5 Properties
- 6 Hardware Results

Lower Level Structure of TriviA

TriviA

Informations on TriviA

- Updated to the CAESAR second round
- Arbitrary length M (padded with 10^{*}) divided into 64-bit Blocks
- Intermediate tag (if any) Computed after each *ck* blocks.
 - *ck* = 0 for this Paper (no intermediate tag).
 - $ck \in \{0, 128\}$ for CAESAR submission.

•
$$|C| = |M|, |T| = 128$$

1 Introduction

2 Underlying Mathematical Components

3 Specification

4 Security Theorems and Security Bounds

5 Properties

6 Hardware Results

7 Conclusion

Privacy Bound for TriviA

Theorem

Let A be a relaxed nonce-respecting adversary which makes at most q encryption queries. Moreover we assume that A can make at most 2^{32} queries with a same nonce. Then, $\mathbf{Adv}_{TriviA}^{\text{priv}}(A) \leq \frac{q}{2^{128}}$.

Authenticity Bound for TriviA

Theorem

Let A be a relaxed nonce-respecting adversary which makes at most q queries such that nonce can repeat up to 2^{32} times. In addition, A is making at most q_f forging attempt. If the stream cipher Trivia-SC is perfectly secure then

$$\mathsf{Adv}^{ ext{auth}}_{\mathit{TriviA}}(A) \ \le \ rac{q}{2^{128}} + rac{q_f}{2^{124}} \, .$$

Security Level for TriviA

Security Bou	Security Bounds						
	Version	Confdentiality	Authenticity				
_	TriviA-0	128	124				
	TriviA-128	128	124				

э

-

▲ 同 ▶ → ● 三

2 Underlying Mathematical Components

3 Specification

4 Security Theorems and Security Bounds

5 Properties

6 Hardware Results

7 Conclusion

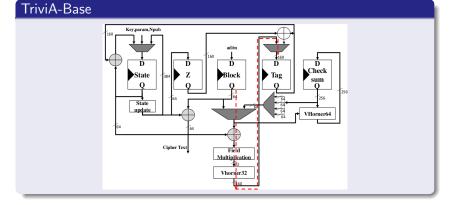
Important Properties of TriviA

- Options for Intermediate Tag.
- TriviA-SC Updated design of a well studied and efficient (both in hardware and software) stream cipher Trivium.
- High security level- 128-bits for confidentiality and 124-bits for Authenticity of plaintext.
- High speed hardware.

1 Introduction

2 Underlying Mathematical Components

3 Specification


4 Security Theorems and Security Bounds

5 Properties

6 Hardware Results

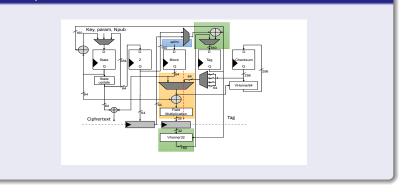
TriviA-Base Architecture

æ

- 《圖》 《문》 《문》

TriviA-Base Architecture Properties

- No *pipelined* register
- Parallel processing of data
- Processes 64-bits/ cycle


• Long Critical path : (2×1) 64-bit $MUX \rightarrow$ 64-bit $XOR \rightarrow$ 32-bit $Mult \rightarrow$ Tag Updation \rightarrow (3×1) 160-bit MUX

• Reduced Speed, Throughput

< A >

TriviA-Pipelined Architecture

TriviA-Pipelined

< 同 ▶

э

TriviA-Pipelined Architecture Properties

- 2 operations in series
 - 32-bit multiplication
 - Tag updation

• Shorter Critical path : (2×1) 64-bit $MUX \rightarrow$ 64-bit $XOR \rightarrow$ 32-bit Mult

• 3 stage pipeline : Increased *throughput*, *frequency*

• 3 extra clock cycles (*Blue*, *Orange* and *Green* blocks)

TriviA ASIC Implementation

- Verilog HDL, Synopsys Design Compiler J-2014.09
- Technology node: UMC 65nm logic SP/RVT Low-K process
- Base Implementation
 - Area : 23.6 KGE
 - Frequency : 1150 MHZ, Throughput : 73.9 Gbps

• Pipelined Implementation

- Area : 24.4 KGE
- Frequency : 1425 MHZ, Throughput : 91.2 Gbps

Comparison with Other Results

AE Schemes		1	Cycles/ Byte			
		Area	Throughput	Efficiency	(cpb)	
		(KGE)	(Gbps)	(Mbps/ GE)		
TriviA Base		23.6	73.9	3.13	0.12	
TriviA Pipelined		24.4	91.2	3.73	0.12	
Scream, iScream		17.29	5.19	0.30	-	
NORX		62	28.2	0.45	-	
Ascon		7.95	7.77	0.98	0.75	
AEGIS	AO1	20.55	1.35	0.07	6.67	
	AO2	60.88	37.44	0.61	0.33	
	T01	88.91	53.55	0.60	0.20	
	Т02	172.72	121.07	0.70	0.07	

TriviA FPGA Results

Xilinx ISE 14.7

• Default settings, no optimizations

• Pre-layout synthesis

• 5.4x better (in terms of area efficiency) of than AES-CCM

TriviA FPGA Results Comparison

Xilinx	AES-CCM			TriviA- <i>Base</i>			TriviA- Pipelined
FPGA Platform	# Slices	Gbps	Area— Efficiency (Mbps/Slice)	# Slices	Gbps	Area— Efficiency (Mbps/Slice)	Area— Efficiency (Mbps/Slice)
Spartan-6 -3	272	>0.57	2.09	815	7.6	9.3	11.29
Virtex-5 -3	343	>0.78	2.27	637	11.7	18.3	20.3
Virtex-6 -3	295	>0.87	2.95	725	16	22	25
Kintex-7 -3	296	>1	3.38	714	16.89	23.65	24.31
Virtex-7 -3	296	>1	3.38	714	16.89	23.65	24.31

1 Introduction

2 Underlying Mathematical Components

3 Specification

- 4 Security Theorems and Security Bounds
- 5 Properties
- 6 Hardware Results

Conclusion

- SC and PI hash based AE
- Achieves high provable security bound
- Well Studied SC and PI hash needs minimum multiplication
- High speed AE and high area-efficiency

Thank you