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Abstract Data compression is a well-known method to improve the image composi-

tion time of parallel volume rendering on distributed memory multicomputers. In this

paper, we propose an efficient data compression scheme, the template run-length en-

coding (TRLE) scheme, for image composition. Given an image with 2n× 2n pixels,

in the TRLE scheme, the image is treated as n×n blocks and each block has 2×2 pix-

els. Since a pixel can be a blank or non-blank pixel, there 16 templates in a block. To

compress an image, the TRLE scheme encodes an image block by block similar to the

run-length encoding scheme. However, the TRLE scheme can filter out or use small

space to encode blocks whose four pixels are blank pixels, that is, the TRLE scheme

can encode a partial image according to the shape of non-blank pixels. To evaluate the

performance of the TRLE scheme, we compare the proposed scheme with the BR,

the RLE, and the BRLC schemes. Since a data compression scheme needs to cooper-

ate with some data communication schemes, in the implementation, the binary-swap,

the parallel-pipelined, and the rotate-tiling data communication schemes are used.

By combining the four data compression schemes with the three data communica-

tion schemes, we have twelve image composition methods. These twelve methods

are implemented on an IBM SP2 parallel machine. Four volume datasets are used

as test samples. The data computation time and the data communication time are
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measured. The experimental results show that the TRLE data compression scheme

with the rotate-tiling data communication scheme outperforms other eleven image

composition methods for all test samples.

Keywords Image composition · Parallel volume rendering · Bounding rectangle ·
Run-length encoding · Template run-length encoding

1 Introduction

Volume rendering [3, 5, 6, 8] can be used to analyze the shape and volumetric prop-

erty of three-dimensional objects in research areas such as medical imaging and sci-

entific visualizing. However, most volume rendering methods that produce effective

visualizations are computation intensive [13–15]. It is difficult for them to achieve in-

teractive rendering rates for large datasets. In addition, volume datasets are too large

to be stored in the memory of a single processor. One way to solve the above prob-

lems is to parallelize the serial volume rendering methods on distributed memory

multicomputers [23–29].

A parallel volume rendering system on distributed memory multi-

computers [18, 22], in general, consists of three stages, the data partition stage, the

volume render stage, and the image composition stage. In the data partition stage,

the volume dataset is partitioned into sub-volumes by an efficient data partitioning

method and the sub-volumes are distributed to processors. In the volume render stage,

each processor uses a volume rendering algorithm on the assigned sub-volume to gen-

erate a partial image. In the image composition stage, the partial images generated

by processors are composited to form a final image [1, 2, 21]. When the number of

processors is large, the image composition stage becomes a bottleneck of a parallel

volume rendering system. Hence, a good image composition method is very impor-

tant to the performance of a parallel volume rendering system on distributed memory

multicomputers.

In general, there are two ways to improve the performance of image composition

of a parallel volume rendering system on distributed memory multicomputers. One

is to use an efficient data communication scheme to minimize the data communica-

tion overheads in sending and receiving the partial images of processors. The other

is to use an efficient data compression scheme to reduce the communication sizes of

partial images. The reasons for using a data compression scheme are two-fold. First,

a partial image may contain many blank pixels. These blank pixels are useless in

image composition. If we can filter out these blank pixels in some ways, the size of

a partial image can be reduced, that is, the data transmission time among processors

can be reduced. Second, if we can filter out blank pixels of a partial image, the num-

ber of over operations spent on these blank pixels for composition can be eliminated.

By reducing the data communication size of a partial image, the overall image com-

position time can be improved. In this paper, we focus on finding an efficient data

compression scheme for image composition.

The bounding rectangle (BR) and the run-length encoding (RLE) are two well-

known data compression schemes used in computer graphics [4]. They are also used

in image composition of a parallel volume rendering system on distributed memory



TRLE—an efficient data compression scheme for image composition of volume rendering 323

Fig. 1 An example of image composition by using the BR scheme

Fig. 2 An example of the worst case of the BR scheme

multicomputers [19, 30]. Ma et al. [19] used the BR scheme for data compression. In

[19], the BR scheme uses a bounding rectangle to embrace the non-blank pixels of

the partial image of a processor. Image composition by using the BR scheme consists

of three steps. Assume that processor Pj needs to composite the partial images of Pi

and Pj . In the first step, the bounding rectangle to embrace the non-blank pixels of

the partial image of Pi is formed. Then, Pi sends pixels in the bounding rectangle to

Pj by a data communication scheme in the second step. In the third step, Pj uses the

over operation to composite the pixels in the sent bounding rectangle with the pixels

of its partial image. An example of image composition by using the BR scheme is

given in Fig. 1.

If there are many blank pixels in a bounding rectangle, the BR scheme may not

have good performance. An example of this case is given in Fig. 2. In Fig. 2, for

Pi , the bounding rectangle is the whole partial image of Pi . Pi needs to send the

whole partial image to Pj . However, only the black portion of the triangle contains

non-blank pixels. Most of pixels in the bounding rectangle that contains the triangle

are blank pixels. In this case, the BR scheme neither reduces the data communication

size for Pi nor reduces the number of over operations for Pj .

Yang et al. [30] used the RLE scheme for data compression. In [30], the RLE

scheme encodes each scanline of a partial image. Image composition by using the

RLE scheme consists of four steps. We assume that processor Pj needs to composite

the partial images of Pi and Pj . In the first step, pixels of the partial image in Pi are

encoded by using the RLE scheme and the corresponding RLE codes are formed. Pi

then sends the RLE codes and the corresponding non-blank pixels to Pj by a data

communication scheme in the second step. In the third step, Pj decodes the RLE

codes to get the partial image of Pi . In the last step, Pj uses the over operation to

composite the partial images of Pi and Pj in the forth step. An example of image

composition by using the RLE scheme is given in Fig. 3.
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Fig. 3 An example of image composition by using the RLE scheme

Fig. 4 An example of the worst

case of the RLE scheme

If the non-blank and blank pixels of the partial image are interlaced, the RLE

scheme is not efficient since the RLE codes are too large. An example of this case is

given in Fig. 4. In Fig. 4, the RLE codes are larger than the values of the non-blank

pixels, that is, the data size of the RLE codes is large than that of the partial image.

The data transmission overhead is increased.

Yang et al. [30] combined the BR and the RLE schemes, denoted as the BRLC

scheme, to reduce the data communication sizes. The BRLC scheme first uses the

BR scheme to find a bounding rectangle with non-blank pixels of a partial image. The

scheme then applies the RLE scheme to encode the pixels in the bounding rectangle.

For many cases, the BRLC scheme performs better than the BR and the RLE schemes.

However, the BRLC scheme cannot solve the problems presented in Fig. 4 either.

To overcome the disadvantages of the BR, the RLE, and the BRLC schemes,

we propose an efficient data compression scheme, the template run-length encoding

(TRLE) scheme, for image composition of a parallel volume rendering system on dis-

tributed memory multicomputers. Given an image with 2n × 2n pixels, in the TRLE

scheme, the image consists of n×n blocks and each block has 2×2 pixels. Since each

pixel is either a blank or a non-blank pixel, there are sixteen blank/non-blank pixel

combinations in a block. We call these sixteen blank/non-blank pixel combinations

as templates. With these templates, the TRLE scheme encodes a partial image block

by block similar to the RLE scheme. However, the TRLE scheme can filter out or use

small space to encode blocks whose four pixels are blank pixels, that is, the TRLE

scheme can encode a partial image according to the shape of non-blank pixels. In the

TRLE scheme, the bit operations, and, or, and xor, are used to encode and decode

a partial image. Hence, the TRLE scheme is easy to be implemented and the time

spent on encoding and decoding is small compared to the overall image composition

time. An example of the TRLE scheme is given in Fig. 5. Since the TRLE scheme

can encode a partial image according to the shape of non-blank pixels, it can solve
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Fig. 5 The encoding codes for

the TRLE scheme

the problems of the BR, the RLE, and the BRLC schemes efficiently. For example,

for the image shown in Fig. 5, the data size compressed by using the BR, the RLE,

the BRLC, and the TRLE schemes is 64 × 16 = 1024, 32 × 16 + 72 × 12 = 1376,

32 × 16 + 72 × 12 = 1376, and 32 × 16 + 16 = 528 bytes, respectively (assume that

each pixel requires 16 bytes to store values). The data size compressed by the TRLE

scheme is the smallest among these four data compressed schemes.

To evaluate the performance of the TRLE scheme, we compare the proposed

scheme with the BR, the RLE, and the BRLC schemes. Both theoretical and ex-

perimental analyses are conducted. In theoretical analysis, we analyze the ranges of

data compression ratio of these four schemes. We also analyze the communication

time and the computation time for these four schemes combined with the binary-

swap (BS) [19], the parallel-pipelined (PP) [13], and the rotate-tiling (RT) [17] data

communication schemes. By combining the four data compression schemes and three

data communication schemes, we have twelve image composition methods. In the ex-

perimental, four volume datasets are used as test samples. For each method, the data

computation time and the data communication time are measured on an IBM SP2

parallel machine. The experimental results show that the TRLE data compression

scheme with the RT data communication scheme outperforms other image composi-

tion methods for all test samples.

The rest of the paper is organized as follows. The TRLE scheme will be pre-

sented in Sect. 2. In Sect. 3, we will analyze the ranges of data compression ratio

of the TRLE, the BR, the RLE, and the BRLC schemes. A generic image composi-

tion algorithm by combining the four data compression schemes with the three data

communication schemes will be presented in Sect. 4. We will also analyze these

twelve image composition algorithms in terms of the communication time and the

computation time. In Sect. 5, the experimental results and performance analysis of

these twelve image composition methods on an IBM SP2 parallel machine will be

discussed.

2 The TRLE data compression scheme

The main idea of the TRLE scheme is trying to encode pixels according to the shapes

of non-blank pixels. Given an image with 2n × 2n pixels, in the TRLE scheme, the

image is treated as n×n blocks and each block has 2×2 pixels. The reason to choose

a block with 2 × 2 pixels is that we want to use one-byte to encode a block. In a byte,

we can use the lower 4-bit to represent 2 × 2 pixels and the higher 4-bit to represent

the number of repetition of the block represented in the lower 4-bit. A block with
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Fig. 6 Labels of pixels in a

block

2 × 2 pixels has 24 = 16 templates (the definition of template will be defined later).

If a block with 3 × 3 pixels, 9-bit is needed to represent it. We need to use 2 bytes

to encode a block. A block with 3 × 3 pixels has 29 = 512 templates. The more the

number of templates, the more time of the encoding/decoding of partial images.

Pixels in a block are labeled as shown in Fig. 6. A pixel of an image is a blank

pixel if its value is less than a threshold. Otherwise, it is a non-blank pixel. For a pixel

in a block, it is either a blank or a non-blank pixel. There are sixteen blank and non-

blank pixel combinations in a block. We define these sixteen blank and non-blank

pixel combinations as templates. To represent these templates, 4-bit binary codes are

used. Given a 4-bit binary code b3b2b1b0, b3, b2, b1, and b0 denote the pixel with

label 0, 1, 2, and 3 in a block, respectively. The value of bi in a 4-bit binary code is 0

if the corresponding pixel is a blank pixel. Otherwise, bi is 1. The 4-bit binary codes

of the templates are given in Fig. 7. In Fig. 7, white squares represent blank pixels

while black squares represent non-blank pixels.

Given an image consists of n × n blocks and each block has 2 × 2 pixels, to

compress the image, the TRLE scheme uses the templates to encode blocks row by

row. Blocks in the same row are encoded as a TRLE_sequence (will be defined later).

By packing all TRLE_sequences in a packet, the packet is the compressed image that

can be sent/received among processors.

Definition 1 A template_code is an 8-bit long code. In a template_code, the lower

four bits represent the binary code of a template. The upper four bits represent the

repetition of the template specified in the lower four bits. A template_code can rep-

resent up to 15 replication of a template.

An example of a template_code is given in Fig. 8. In Fig. 8, the template_code is

“2A.” It means that two consecutive blocks are the same block and are encoded by

template “1010.”

Definition 2 A TRLE_code consists of a template_code and the values of non-blank

pixels in a template.

The number of bytes to store the values of a pixel depends on the volume data

used. For the volume data used in this paper, each pixel is represented by 16 bytes.

Each pixels consists of intensity and opacity. An example of TRLE_code is given in

Fig. 9. In Fig. 9, the template_code of the TRLE_code is “2A.” It means that two con-

secutive blocks are the same block and are encoded by template “1010.” In template

“1010,” pixels with labels 0 and 2 are non-blank pixels. The first 16 bytes followed

the template_code in the TRLE_code store the values of non-blank pixel P1, the next

16 bytes store the values of non-blank pixel P2 followed by the values of P3 and P4.
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Fig. 7 4-bit binary codes of templates

Fig. 8 An example of a template_code

Fig. 9 An example of a TRLE_code

Definition 3 A TRLE_sequence is an encoded sequence for blocks in the same row

of an image. It consists of a 2-byte index to store the coordinate of the first block that

contains non-blank pixels in a row, a set of template_code/TRLE_code for blocks in
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Fig. 10 An example of a TRLE_sequence

the same row, and an end byte “00.” In the 2-byte index, the first byte and the second

byte store the row index and the column index of the block, respectively.

An example of a TRLE_sequence is given in Fig. 10. For the TRLE_sequence

shown in Fig. 10, the 2-byte index is “02 01.” It means that the TRLE_sequence

encodes the blocks in the first row of an image. The first block that contains non-

blank pixels in the first row is the second block. Five TRLE_codes are followed the

2-byte index. They encode the blocks in the first row according to templates. At the

end of the TRLE_sequence is an end byte with value “00.” It indicates the end of row.

In the example, it is possible that there are blocks followed block 8. However, they are

blocks whose four pixels are blank pixels and are eliminated from the TRLE scheme.

From this example, we can see that the purpose of the 2-bype index and the end byte

of a TRLE_sequence is to find the boundary of an image. In a TRLE_sequence, for the

2-byte index, the TRLE scheme can handle an image with size up to 512×512 pixels.

For an image size over 512×512 pixels, the TRLE scheme uses a 4-byte index (x and

y occupied 2-bye each) that can handle an image with size up to 65536 × 65536

blocks.

Definition 4 A TRLE_packet is a one-dimensional array to store the set of TELE_se-

quence of a partial image.

An example of a TRLE_packet is given in Fig. 11. In Fig. 11, an image with 8 × 8

pixels that consists of 4 × 4 blocks is given. There are four TRLE_sequences. The

TRLE_packet contains the four TRLE_sequences. Form the TRLE_sequences shown

in Fig. 11, we can see that the TRLE scheme can encode an image according to the

shape of non-blank pixels in the image. For example, the blank pixels outside the

triangle are filtered out in the TRLE_sequences. For blank pixels inside the triangle,

they are only encoded by template_codes. Their attributes are also filtered out from

TRLE_packet. Therefore, in general, the TRLE scheme can have better compression

ratio compared with the BR, the RLE, and the BRLC schemes.

According to the above definitions, the TRLE scheme can easily encode a partial

image to form a TRLE_packet or decode a TRLE_packet to get the corresponding

image. The encoding and decoding algorithms are given as follows.
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Fig. 11 An example of a TRLE_packet

Algorithm TRLE_Encode(A){
/* A is the partial image that has to encoding. */

/* packet is the TRLE_Packet for the non-blank pixels of a partial image. */

1. x := 1, y := 1,packet := ∅;
2. do {

3. To find the first non-blank pixel P(x, y), and save the pixel’s block

value of x and y into packet;

4. do {

5. To find template of block of P(x, y),P (x + 1, y),P (x, y + 1),

and P(x + 1, y + 1) and save the TRLE_code into packet;

6. y := y + 1;
7. } while y < width(A);
8. To add a byte ‘00’;

9. x := x + 1;
10. } while x < height(A);
11. return packet;

12. }

end_of_TRLE_Encode

Algorithm TRLE_Decode(packet) {

/* packet is the TRLE_Packet for the non-blank pixels of a partial image*/

/* A is the partial image */

1. x := 0;
2. if (packet != ∅){
3. do {

4. read the two values of packet;

5. do {

6. read TRLE_code;

7. composite the non-blank pixels with the same position pixels of A;
8. x := x + 1;
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9. } while packet(x)! = ‘00’;

10. x := x + 1;
11. } while packet(x)! = ‘eof’;

12. return A;
13. }

end_of_TRLE_Decode

In algorithms TRLE_Encode and TRLE_Decode, bit operations, and, or, and xor

are used to encode and decode an image. The computation overheads spent on en-

coding and decoding of an image are small.

3 Theoretical analysis of data compression schemes

One of the reasons to use a data compression scheme in the image composition stage

of a parallel volume rendering system on distributed memory multicomputers is to

reduce the data transmission time of partial images. In the following, we analyze the

BR, the RLE, the BRLC and the TRLE data compression schemes in terms of the

data compression ratio. Based on the data compression ratio of a data compression

scheme, we derive the best and the worst case bounds of a data compression scheme.

A summary of the notations used in this section is given below.

• PA—The number of pixels in a partial image.

• PAnb—The number of non-blank pixels of a partial image.

• PABR—The number of pixels in a bounding rectangle of the BR scheme.

• CRLE—The encoding code size of the RLE scheme.

• CBRLC—The encoding code size of the BRLC scheme.

• CTRLE—The encoding code size of the TRLE scheme.

The compression ratio of a partial image of method M is defined as

CR(M) =
The total data size per bytes

The total compressed data size per bytes
.

In the BR scheme, the compression ratio is

CR(BR) =
PA × 16

PABR × 16 + 8
.

The worst case of the BR scheme is PABR = PA. The best case of the BR scheme is

PABR = PAnb. We have

PA × 16

PA × 16 + 8
≤ CR(BR) ≤

PA × 16

PAnb × 16 + 8
.

In the RLE scheme, the compression ratio is

CR(RLE) =
PA × 16

PAnb × 16 + CRLE × 2 +
√

PA × 2
.
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The worst case of the RLE scheme is that the blank and non-blank pixels are in-

terlaced in each row. CRLE is 2 × PA. The best case of the RLE scheme is that all

non-blank pixels form a square. CRLE =
√

PAnb × 2. We have

PA × 16

PAnb × 16 + PA × 4 +
√

PA × 2
≤ CR(RLE)

≤
PA × 16

PAnb × 16 +
√

PAnb × 2 +
√

PA × 2
.

In the BRLC scheme, the compression ratio is

CR(BRLC) =
PA × 16

PAnb × 16 + CBRLC × 2 +
√

PABR × 2 + 8
.

The worst case of the BRLC scheme is that the blank and non-blank pixels are inter-

laced in each row. CBRLC is 2 × PA. The best case of the BRLC scheme is that all

non-blank pixels form a square. CBRLC =
√

PAnb × 2. We have

PA × 16

PAnb × 16 + PA × 4 +
√

PA × 2 + 8
≤ CR(BRLC) ≤

PA × 16

PAnb × 16 +
√

PAnb × 4 + 8
.

In the TRLE scheme, the compression ratio is

CR(TRLE) =
PA × 16

PAnb × 16 + CTRLE
.

The worst case of the TRLE scheme is that any two consecutive blocks are encoded

by different templates. CTRLE is PA/2+
√

PA×3. The best case of the TRLE scheme

is that all non-blank pixel form a square. CTRLE =
√

PAnb × 4. We have

PA × 16

PAnb × 16 + PA/2 +
√

PA × 3
≤ CR(TRLE) ≤

PA × 16

PAnb × 16 +
√

PAnb × 4
.

A summary of the ranges of data compression ratio for these four data compression

schemes is given in Table 1. The range comparison of the data compression ratio of

the four data compression schemes are shown in Fig. 12. In Fig. 12, the range of

the BR scheme covers those of other three schemes. It indicates that the compression

ration is heavily influenced by the shape of an image. The range of the BRLC scheme

also covers that of the RLE scheme. It also indicates that the BRLC scheme is more

sensitive to the shape of an image than the RLE scheme. The range of the TRLE

scheme overlaps those of the RLE and the BRLC schemes. However, the average

compression ratio of the TRLE scheme is better than those of the RLE and the BRLC

schemes.

4 Analysis of image composition with data compression schemes

To use a data compression scheme in the image composition stage of a parallel vol-

ume rendering system on distributed memory multicomputers, it needs to be com-

bined with some data communication schemes. The following is a generic image
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Table 1 The ranges of data compression ratio of four data compression schemes

Method Ranges

BR PA×16
PA×16+8

≤ CR(BR) ≤ PA×16
PAnb×16+8

RLE PA×16

PAnb×16+PA×4+
√

PA×2
≤ CR(RLE) ≤ PA×16

PAnb×16+
√

PAnb×2+
√

PA×2

BRLC PA×16

PAnb×16+PA×4+
√

PA×2+8
≤ CR(BRLC) ≤ PA×16

PAnb×16+
√

PAnb×4+8

TRLE PA×16

PAnb×16+PA/2+
√

PA×3
≤ CR(TRLE) ≤ PA×16

PAnb×16+
√

PAnb×4

Fig. 12 The comparison of the ranges of CR of the four data compression schemes

Algorithm Comm_Compress_Scheme(P,A){
/* P is the number of processors. */

/* A is the initial image of each processor. */

1. for k = 1 to communication_step do {

2. for each processor Pr do parallel {

3. Pr sends compress(A) to Pi;
4. Pr receives compress(A) from Pj ;
5. Pr uses the over operation to composite the

received compress(A) with its local image;

6. }

7. }

end_of_Comm_Compress_Scheme

composition algorithm with a data compression scheme, where compress(A) is a

function call to a data compression scheme for image A.

In this section, we analyze the theoretical performance of the BS, the PP, and the

RT data communication schemes with the BR, the RLE, the BRLC, and the TRLE

data compression schemes. The three data communication schemes and the four data

compression schemes have 12 combinations. A summary of the notations used in this

section is given below.

• P —The number of processors.

• Pi—The processor with rank i.
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• A—The image size in pixels.

• S(M)—The number of communication steps of method M .

• N—The number of initial blocks of a partial image in the RT method.

• Ts—The startup time of a communication channel.

• Tp—The data transmission time per byte.

• To—The computation time of the over operation per pixel.

• Tcomm(M)—The total communication time of method M .

• Tcomp(M)—The total computation time of method M .

• T k
comm(M,Pi)—The communication time of Pi in the kth communication step of

method M .

• T k
comp(M,Pi)—The computation time of Pi in the kth communication step of

method M .

• T k
e_c(M,Pi)—The data encoding time of Pi in the kth communication step of

method M .

• T k
d_c(M,Pi)—The data decoding time of Pi in the kth communication step of

method M .

• Ak
i (M,Pi)—The number of pixels sent/received by Pi in the kth communication

step of method M .

• Ai,k(M)—The number of pixels of partial image of Pi in the kth communication

step of method M .

• A
i,k
BR(M)—The number of pixels in a bounding rectangle of Ai,k(M).

• A
i,k
TRLE(M)—The number of pixels encoded by the TRLE method of Ai,k(M).

• A
i,k
nb (M)—The number of non-blank pixels of Ai,k(M).

• C
i,k
RLE(M)—The number of the RLE encoding codes of Ai,k(M).

• C
i,k
BRLC(M)—The number of the BRLC encoding codes of Ai,k(M).

• C
i,k
TRLE(M)—The number of the TRLE encoding codes of Ai,k(M).

• TBR—The computation time for finding a bounding rectangle.

• Te_c—The computation time of encoding a pixel.

• Td_c—The computation time of decoding a pixel.

To analyze the theoretical performance of the image composition methods, in the

cost model, a synchronous communication mode is used. In this model, all processors

start their computation after each processor completes its communication. In real

situation, an asynchronous communication mode can be applied as well. However, it

is difficult to analyze the theoretical performance if an asynchronous communication

mode is used. According to above notations, the cost model of an image composition

method M is defined as

Ttotal(M) =
S(M)
∑

k=1

max{T k
comm(M,Pi) + T k

comp(M,Pi)}. (1)

In our communication model, we assume that each processor can communicate with

all other processors in one communication step. T k
comm(M,Pi) is defined as

T k
comm(M,Pi) = δk

i × Ts + Ak
i (M,Pi) × Tp, (2)

where δk
i is the number of processors that Pi sends data to in the kth communication

step. In our computation model, we assume that the partial image in each processor
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is first encoded by method M . Each pixel of a compressed block then received from

another processor is decoded and composited using the over operation. Therefore,

T k
comp(M) is defined as

T k
comp(M,Pi) = T k

e_c(M,Pi) + T k
d_c(M,Pi) + Ak

i (M,Pi) × To. (3)

According to Eqs. (2) and (3), we can see that Ak
i (M,Pi) affects the performance

of the image composition methods. A good data compression scheme can reduce the

size of Ak
i (M,Pi) and is important to an image composition method. In the following,

we analyze the performance of these twelve image composition methods.

In the BS scheme, there are logP communication steps. In the kth communication

step, the partial image size is A/2k , where k = 1, . . . , logP . When the BR scheme

is applied (M = BS_BR), the size of Ak
i (M,Pi) is (A

i,k
BR(M)). T k

comm(M,Pi) and

T k
comp(M,Pi) are Ts + (A

i,k
BR(M) × 16 + 8) × Tp and TBR + (A

i,k
BR(M)) × To, respec-

tively. We have Tcomm(M) =
∑logP

k=1 (Ts + MAXP−1
i=0 (A

i,k
BR(M) × 16 + 8) × Tp)) and

Tcomp(M) =
∑logP

k=1 (TBR + MAXP−1
i=0 (A

i,k
BR(M)) × To).

When the RLE scheme is applied (M = BS_RLE), the size of Ak
i (M,Pi) is

(Ai,k(M)). T k
comm(M,Pi) and T k

comp(M,Pi) are Ts + (A
i,k
nb (M) × 16 + C

i,k
BRLC(M) ×

2) × Tp and Ts + (A
i,k
nb (M) × 16 + C

i,k
RLE(M) × 2) × To, respectively. We have

Tcomm(M) =
∑logP

k=1 (Ts + MAXP−1
i=0 (A

i,k
nb (M) × 16 + C

i,k
RLE(M) × 2) × Tp) and

Tcomp(M) =
∑logP

k−1 MAXP−1
i=0 (Te_c × Ai,k(M) + Td_c × C

i,k
RLE(M) + Ai,k(M) × To).

When the BRLC scheme is applied (M = BS_BRLC), the size of Ak
i (M,Pi) is

MAXP−1
i=0 (A

i,k
BR(M)). T k

comm(M,Pi) and T k
comp(M,Pi) are MAXP−1

i=0 (A
i,k
nb (M) × 16 +

C
i,k
BRLC(M) × 2 + 8) and TBR + MAXP−1

i=0 (Te_c × A
i,k
BR(M) + Td_c × C

i,k
BRLC(M) +

A
i,k
BR(M)×To), respectively. We have Tcomm(M) =

∑logP

k=1 (Ts +MAXP−1
i=0 (A

i,k
nb (M)×

16 + C
i,k
BRLC(M) × 2 + 8) × Tp) and Tcomp(M) =

∑logP

k=1 (TBR + MAXP−1
i=0 (Te_c ×

A
i,k
BR(M) + Td_c × C

i,k
BRLC(M) + A

i,k
BR(M) × To)).

When the TRLE scheme is applied (M = BS_TRLE), the size of Ak
i (M,Pi) is

MAXP−1
i=0 (A

i,k
TRLE(M)). T k

comm(M,Pi) and T k
comp(M,Pi) are Ts +MAXP−1

i=0 (A
i,k
nb (M)×

16 + C
i,k
TRLE(M) × Tp) and MAXP−1

i=0 (Te_c × Ai,k(M) + Td_c × C
i,k
TRLE(M) +

A
i,k
TRLE(M) × To), respectively. A

i,k
TRLE(M) may contain both blank and non-blank

pixels. However, the attributes (intensity and opacity) of blank pixels will be fil-

tered out when blank pixels are encoded as TRLE_code, i.e., only attributes of non-

blank pixels are encoded in the TRLE scheme. We have Tcomm(M) =
∑logP

k=1 (Ts +
MAXP−1

i=0 (A
i,k
nb (M)×16+C

i,k
TRLE(M))×Tp) and Tcomp(M) =

∑logP

k=1 MAXP−1
i=0 (Te_c ×

Ai,k(M)+Td_c ×C
i,k
TRLE(M)+A

i,k
TRLE(M)×To). The data communication time and

the data computation time of the four image composition methods are summarized in

Table 2.

In the PP scheme, there are (P − 1) communication steps. In the kth communica-

tion step, the partial image size is A/P . When the BR, the RLE, the BRLC, and the

TRLE schemes are applied, we have similar analysis as those for the BS scheme. The

data communication time and the data computation time of the four image composi-

tion methods are summarized in Table 3.
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Table 2 Theoretical time of the BS scheme with four data compression schemes

Method Time

BS_BR Tcomm(M) =
∑logP

k=1

(

Ts + MAXP−1
i=0

(

A
i,k
BR(M) × 16 + 8

)

× Tp

)

Tcomp(M) =
∑logP

k=1

(

TBR + MAXP−1
i=0

(

A
i,k
BR(M)

)

× To

)

BS_RLE Tcomm(M) =
∑logP

k=1

(

Ts + MAXP−1
i=0

(

A
i,k
nb

(M) × 16 + C
i,k
RLE(M) × 2

)

× Tp

)

Tcomp(M) =
∑logP

k−1
MAXP−1

i=0

(

Ai,k(M)Te_c + C
i,k
RLE(M)Td_c + Ai,k(M)To

)

BS_BRLC Tcomm(M) =
∑logP

k=1

(

Ts + MAXP−1
i=0

(

A
i,k
nb

(M) × 16 + C
i,k
BRLC

(M) × 2 + 8
)

× Tp

)

Tcomp(M) =
∑logP

k=1

(

TBR + MAXP−1
i=0

(

A
i,k
BR(M)Te_c + C

i,k
BRLC

(M)Td_c + A
i,k
BR(M)To

))

BS_TRLE Tcomm(M) =
∑logP

k=1

(

Ts + MAXP−1
i=0

(

A
i,k
nb

(M) × 16 + C
i,k
TRLE(M)

)

× Tp

)

Tcomp(M) =
∑logP

k=1
MAXP−1

i=0

(

Ai,k(M)Te_c + C
i,k
TRLE(M)Td_c + A

i,k
TRLE(M)To

)

Table 3 Theoretical time of the PP scheme with four data compression schemes

Method Time

PP_BR Tcomm(M) =
∑P−1

k=1

(

Ts + MAXP−1
i=0

(

A
i,k
BR(M) × 16 + 8

)

× Tp

)

Tcomp(M) =
∑P−1

k=1

(

TBR + MAXP−1
i=0

(

A
i,k
BR(M)

)

× To

)

PP_RLE Tcomm(M) =
∑P−1

k=1

(

Ts + MAXP−1
i=0

(

A
i,k
nb

(M) × 16 + C
i,k
RLE(M) × 2

)

× Tp

)

Tcomp(M) =
∑P−1

k=1
MAXP−1

i=0

(

Ai,k(M)Te_c + C
i,k
RLE(M)Td_c + Ai,k(M)To

)

PP_BRLC Tcomm(M) =
∑P−1

k=1

(

Ts + MAXP−1
i=0

(

A
i,k
nb

(M) × 16 + C
i,k
BRLC

(M) × 2 + 8
)

× Tp

)

Tcomp(M) =
∑P−1

k=1

(

TBR + MAXP−1
i=0

(

A
i,k
BR(M)Te_c + C

i,k
BRLC

(M)Td_c + A
i,k
BR(M)To

))

PP_TRLE Tcomm(M) =
∑P−1

k=1

(

Ts + MAXP−1
i=0

(

A
i,k
nb

(M) × 16 + C
i,k
TRLE(M)

)

× Tp

)

Tcomp(M) =
∑P−1

k=1
MAXP−1

i=0

(

Ai,k(M)Te_c + C
i,k
TRLE(M)Td_c + A

i,k
TRLE(M)To

)

In the RT scheme, there are ⌈logP ⌉ communication steps. In the first commu-

nication step (k = 1), the maximum number of send/receive operations performed

by processors is ⌈N
P

⌉. The block size in each sent or received by a processor is
A
N

. The maximum data communication and computation time among processors are

⌈N
P

⌉ × Ts + ⌈N
P

⌉ A
N

× Tp and ⌈N
P

⌉ A
N

× To, respectively. In the kth communication

step, where k > 1, the maximum number of send/receive operations performed by

processors is ⌈ 2Bk

P
⌉, where

Bk =
{

N for k = 1

Bk−1 − ⌊Bk−1/P ⌋ for k > 1.
(4)

The block size in each sent or received by a processor is A

2k−1N
, where k =

2, . . . , ⌈logP ⌉. The maximum data communication and computation time among
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Table 4 Theoretical time of the RT scheme with four data compression schemes

Method Time

RT_BR Tcomm(M)=
∑⌈logP ⌉

k=1

((⌈

2Bk
P

⌉

+
⌈

N
P

⌉

−
⌈

2N
P

⌉)(

Ts+ 1
N

×MAXP−1
i=0

(

A
i,k
BR(M)×16+8

)

×Tp

))

Tcomp(M)=
∑⌈logP ⌉

k=1

(

TBR+ 1
N

(⌈

2Bk
P

⌉

+
⌈

N
P

⌉

−
⌈

2N
P

⌉)

×MAXP−1
i=0

(

A
i,k
BR(M)

)

×To

)

RT_RLE Tcomm(M)=
∑⌈logP ⌉

k=1

((⌈

2Bk
P

⌉

+
⌈

N
P

⌉

−
⌈

2N
P

⌉)(

Ts+ 1
N

MAXP−1
i=0

(

A
i,k
nb

(M)×16+C
i,k
RLE(M)×2

)

×Tp

))

Tcomp(M)=
∑⌈logP ⌉

k=1

(⌈

2Bk
P

⌉

+
⌈

N
P

⌉

−
⌈

2N
P

⌉)

1
N

MAXP−1
i=0

(

Ai,k(M)Te_c+C
i,k
RLE(M)Td_c+A

i,k
nb

(M)To
)

RT_BRLC Tcomm(M)=
∑⌈logP ⌉

k=1

((⌈

2Bk
P

⌉

+
⌈

N
P

⌉

−
⌈

2N
P

⌉)(

Ts+ 1
N

MAXP−1
i=0

(

A
i,k
nb

(M)×16

+C
i,k
BRLC

(M)×2+8
)

×Tp

))

Tcomp(M)=
∑⌈logP ⌉

k=1

(

TBR+ 1
N

(⌈

2Bk
P

⌉

+
⌈

N
P

⌉

−
⌈

2N
P

⌉)

MAXP−1
i=0

(

A
i,k
BR(M)Te_c

+C
i,k
BRLC

(M)Td_c+A
i,k
nb

(M)Tc
)

)

RT_TRLE Tcomm(M)

=
∑⌈logP ⌉

k=1

(⌈

logN
⌉

Ts+ ⌈logN⌉
N

×MAXP−1
i=0

(

A
i,k
nb

(M)×16+CODE
i,k
TRLE(M)

)

)

×Tc

Tcomp(M)=
∑⌈logP ⌉

k=1
1
N

(⌈

2Bk
P

⌉

+
⌈

N
P

⌉

−
⌈

2N
P

⌉)

MAXP−1
i=0

(

Ai,k(M)Te_c+C
i,k
TRLE(M)Td_c

+A
i,k
TRLE(M)To

)

processors are ⌈ 2Bk

P
⌉Ts + ⌈ 2Bk

P
⌉ A

N2k−1 Tp and ⌈ 2Bk

P
⌉ A

N2k−1 To, respectively. When the

BR, the RLE, the BRLC, and the TRLE schemes are applied, we have similar analysis

as those for the BS scheme. The data communication time and the data computation

time of the four image composition methods are summarized in Table 4.

5 Experimental results and performance analysis

To evaluate the performance of the TRLE scheme, we compare the TRLE scheme

with the BR, the RLE, and the BRLC schemes on an IBM SP2 parallel machine [7].

The IBM SP2 parallel machine is located at National Center of High Performance

Computing (NCHC) in Taiwan. The IBM SP2 parallel machine is a super-scalar ar-

chitecture that it uses IBM RISC System/6000 POWER2 SuperChips (P2SCs) with

clock rate of 120 and 140 MHz. There are 110 IBM POWER2 CPUs in this machine,

and each CPU has a 128 KB first-level data cache, a 32 KB first-level instruction

cache, and 256 MB or 512 MB of memory space. Each node is connected to a low-

latency, high-bandwidth interconnection network called High Performance Switch

(HPS).

A parallel volume rendering system consists of three main stages: the data parti-

tion stage, the volume render stage, and the image composition stage. To implement

the data compression schemes, in the data partition stage, we use the efficient 2-D

partitioning scheme [16] to distribute a volume dataset to processors. In the data ren-

der stage, each processor uses the shear-warp factorization [9–12] volume rendering

method to generate a partial image. In the image composition stage, the twelve image

composition methods are used to composite partial images. We use C and MPICH

[20] message passing libraries to implement the data compression schemes.
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Fig. 13 The final images of the

four test samples

Since the compression ratio of a data compress scheme is affected by the shape of

an image, two kinds of image shapes, concentrated and scatter, are used to evaluate

the performance of these data compression schemes. For the concentrated shape, all

the non-blank pixels fill out one block of area of an image. Shapes not in the con-

centrated category are scatter shapes. Four volume datasets are used as test samples.

The first test sample is an “Engine_low” dataset, which is the CT scan of an engine

block and the dimensions of the dataset is 256 × 256 × 110. Each voxel in “En-

gine_low” consists of grayscale intensity. The second test sample is a “Brain” dataset

generated from the MR scan of a human brain, and the dimensions of the dataset is

256 × 256 × 225. Each voxel in “Brain” consists of grayscale intensity. The images

of “Engine_low” and “Brain” datasets belong to the concentrate shape category. The

third test sample is an “Engine_high” dataset, which is obtained by extracting those

voxels whose intensity is greater than 180 from “Engine_low”. The fourth test sam-

ple is a “Cube” dataset generated from the CT scan of nine combined cubes, and

the dimensions of the dataset is 256 × 256 × 110. Each voxel of “Cube” consists of

grayscale intensity, and the value is 180. The images of “Engine_high” and “Cube”

datasets belong to the scatter shape category. Figure 13 shows the final images of the

four test samples. Each image is grayscale color and contains 512 × 512 pixels.

5.1 Performance results for the concentrate shape

Figure 14 shows the data communication time, the data computation time, and the

total image composition time of the twelve image composition methods for the “En-

gine_low” dataset on an IBM SP2 parallel machine. Figure 14a shows the results for

the BS scheme. For a concentrated shape, in general, the RLE scheme or the BRLC
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(a) The BS scheme

(b) The PP scheme

(c) The RT scheme

Fig. 14 The image composition time for “Engine_low”

should be sufficient. In Fig. 14a, the order of the data communication time, in general,

is Tcomm(BS_TRLE) < Tcomm(BS_RLE) < Tcomm(BS_BRLC) < Tcomm(BS_BR). We

can see that Tcomm(BS_TRLE) is the smallest of the four image composition methods.

This implies that the TRLE scheme can achieve a better compression ratio than other

three compression schemes for the test sample “Engine_low”. The reason is that the

TRLE scheme only encodes non-blank pixels while other schemes may encode both

blank and non-blank pixels.
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In Fig. 14a, the order of the data computation time, in general, is

Tcomp(BS_TRLE) < Tcomp(BS_BRLC) < Tcomp(BS_BR) < Tcomp(BS_RLE). We can

see that Tcomp(BS_TRLE) is the smallest of the four image composition methods.

The reason is that, in the TRLE scheme, only non-blank pixels are encoded. For

other schemes, both blank and non-blank pixels are encoded. The time spent on the

over operations in the TRLE scheme is the smallest. Since the encoding/decoding

time is small compare to the time of over operations, Tcomp(BS_TRLE) is the small-

est in this case. Since Tcomm(BS_TRLE) and Tcomp(BS_TRLE) are the smallest,

Ttotal(BS_TRLE) is the smallest as well.

In Fig. 14a, the order of the total composition time is Ttotal(BS_TRLE) <

Ttotal(BS_BRLC) < Ttotal(BS_BR) < Ttotal(BS_RLE). Figure 14b and Fig. 14c show

the results for the PP and the RT schemes, respectively. From Fig. 14b and Fig. 14c,

we have similar observations as those in Fig. 14a.

Figure 15 shows the data communication time, the data computation time, and

the total image composition time of the twelve image composition methods for the

“Brain” datasets on an IBM SP2 parallel machine. From Fig. 15, we have similar

observations as those in Fig. 14.

From Figs. 14 and 15, we can see that, in general, the RLE scheme has smaller

data communication time but the highest data computation time. The BRLC scheme

has smaller data computation time but higher data communication time. Only the pro-

posed scheme produces the smallest data communication and computation time. This

implies that the encoding/decoding method used in the TRLE scheme can produce

good data compression ratio and take less data computation time for the concentrated

shape.

5.2 Performance results for the scatter shape

Figure 16 shows the data communication time, the data computation time, and the

total image composition time of the twelve image composition methods for the “En-

gine_high” datasets on an IBM SP2 parallel machine. Figure 16a shows the results

for the BS scheme. In Fig. 16a, the order of the data communication time, in general,

is Tcomm(BS_TRLE) < Tcomm(BS_RLE) < Tcomm(BS_BR) < Tcomm(BS_BRLC). We

can see that Tcomm(BS_TRLE) is the smallest of the four image composition meth-

ods. This implies that the TRLE scheme can achieve a better compression ratio than

other three compression schemes for the test sample “Engine_high”. There are two

reasons. First, for the scatter shape, the TRLE scheme may encode both blank and

non-blank pixels as others. However, the TRLE scheme encodes less blank pixels

than other schemes since the TRLE method can encode an image according to the

outer shapes of objects in an image. Second, the attributes (intensity and opacity) of

blank pixels will be filtered out when blank pixels are encoded as TRLE_code, i.e.,

only attributes of non-blank pixels are encoded in the TRLE scheme. This will reduce

the encoded code size.

In Fig. 16a, the order of the data computation time, in general, is

Tcomp(BS_TRLE) < Tcomp(BS_BRLC) < Tcomp(BS_BR) < Tcomp(BS_RLE). We can

see that Tcomp(BS_TRLE) is the smallest of the four image composition methods.

The reason is that the TRLE scheme encodes less blank pixels than others. The time
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(a) The BS scheme

(b) The PP scheme

(c) The RT scheme

Fig. 15 The image composition time for “Brain”

spent on the over operations in the TRLE scheme is the smallest. Since the encod-

ing/decoding time is small compare to the time of over operations, Tcomp(BS_TRLE)

is the smallest in this case. Since Tcomm(BS_TRLE) and Tcomp(BS_TRLE) are the

smallest, Ttotal(BS_TRLE) is the smallest as well.

In Fig. 16a, the order of the total composition time is Ttotal(BS_TRLE) <

Ttotal(BS_BRLC) < Ttotal(BS_BR) < Ttotal(BS_RLE). Figure 16b and Fig. 16c show
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(a) The BS scheme

(b) The PP scheme

(c) The RT scheme

Fig. 16 The image composition time for “Engine_high”

the results for the PP and the RT schemes, respectively. From Fig. 16b and Fig. 16c,

we have similar observations as those in Fig. 16a.

Figure 17 shows the data communication time, the data computation time, and the

total image composition time of the twelve image composition methods for “Cube”

datasets on an IBM SP2 parallel machine. From Fig. 17, we have similar observations

as those in Fig. 16.
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(a) The BS scheme

(b) The PP scheme

(c) The RT scheme

Fig. 17 The image composition time for “Cube” and the final image size is 512 × 512

From Figs. 16 and 17, we can see that, in general, the RLE scheme has smaller

data communication time but the highest data computation time. The BRLC scheme

has smaller data computation time but higher data communication time. Only the pro-

posed scheme produces the smallest data communication and computation time. This

implies that the encoding/decoding method used in the TRLE scheme can produce
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good data compression ratio and take less data computation time for the scatter shape

as well.

6 Conclusions

In this paper, we have proposed an efficient data compression scheme, the template

run-length encoding scheme, for image composition of parallel volume rendering on

distributed memory multicomputers. The main idea of the TRLE scheme is to encode

an image according to the outer shapes of objects in the image. To evaluate the per-

formance of the TRLE scheme, we compared the proposed scheme with the BR, the

RLE, and the BRLC schemes. Both theoretical and experimental analyses were con-

ducted. For the theoretical analysis, we compared the ranges of the compression ratio

of these four data compression schemes. For the experimental analysis, the BR, the

RLE, the BRLC, and the TRLE data compression schemes have implemented with

the binary-swap (BS), parallel-pipelined (PP), and rotate-tiling (RT) data communi-

cation schemes. The data computation time and the data communication time were

measured on an IBM SP2 parallel machine. Four volume datasets were used as test

samples. From the experimental results, we had the following remarks.

Remark 1 The RT_TRLE method has the best performance among the twelve image

composition methods in terms of the data communication time, the data computation

time, and the image composition time.

Remark 2 The TRLE scheme, in general, can achieve a better compression ratio

than other three compression schemes for images that are either concentrated shape

or scatter shape.
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