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ABSTRACT  

tRNAscan-SE has been widely used for whole-genome transfer RNA gene prediction for nearly two 

decades. With the increased availability of new genomes, a vastly larger training set has enabled 

creation of nearly one hundred specialized isotype-specific models, greatly improving tRNAscan-SE’s 

ability to identify and classify both typical and atypical tRNAs. We employ a new multi-model 

annotation strategy where predicted tRNAs are scored against a full set of isotype-specific covariance 

models. A post-filtering feature also better identifies tRNA-derived SINEs that are abundant in many 

eukaryotic genomes, and provides a “high confidence” tRNA gene set which improves upon prior 

pseudogene prediction. These new enhancements of tRNAscan-SE will provide researchers more 

accurate detection and more comprehensive annotation for tRNA genes. 

INTRODUCTION 

Transfer RNAs (tRNAs) are ubiquitous in all living organisms as the key translator of the genetic code 

into proteins. tRNAscan-SE (1) is the most widely used tool for identifying and annotating tRNA genes 

in genomes. With over eight thousand citations, its users include RNA biologists, sequencing centers, 

database annotators, and other basic researchers. To increase the ease of use for scientists who may 

not have the expertise to work with UNIX-based software, the tRNAscan-SE On-line website (2,3) 

provides quick, in-depth tRNA analysis. tRNAs predicted using tRNAscan-SE are available in the 

Genomic tRNA Database (GtRNAdb) (4,5) for thousands of genomes, enabling the research 

community to browse high-quality tRNA collections across all three domains of life.   

The original tRNAscan-SE implementation pioneered the large-scale use of covariance 

models (CMs) (6) to annotate RNA genes in genomes, predating the invaluable Rfam database (7). 

By training on structurally aligned members of the same RNA family, covariance models capture RNA 

conservation via stochastic context-free grammars that are able to integrate both primary sequence 

and secondary structure information. Despite of the intensive computational requirements, covariance 

models yield unparalleled sensitivity and specificity in finding tRNAs and many other structured RNAs. 

Any given sequence can be searched for tRNAs by alignment to a tRNA covariance model. 

Depending on the training set of tRNAs used to construct the covariance model, the search can be 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 30, 2019. ; https://doi.org/10.1101/614032doi: bioRxiv preprint 

https://doi.org/10.1101/614032


tailored for general detection of any tRNA sequence, or for more specialized searches to detect 

tRNAs with clade-specific features (e.g. eukaryotic cytosolic-type tRNAs) or specific tRNA types (e.g. 

initiator methionine tRNAs). Thus, tRNAscan-SE can easily be “tuned” to different types of tRNAs, 

limited only by high quality training set alignments. This flexibility enabled clade-specific search 

modes for eukaryotic, bacterial, archaeal, or organellar tRNAs in previous versions of tRNAscanSE; 

the same flexibility provides a framework for powerful new clade and isotype-specific search modes, 

limited only by tRNA sequence training sets. To reduce the computational load required for CM 

search and alignment across entire genomes, the original tRNAscan-SE used two fast and sensitive 

algorithms as a first-pass screen to identify putative tRNAs (8,9). The program then aligned only the 

putative tRNAs to CMs and identified key information such as the isotype and intron boundaries. The 

initial general and domain-specific CMs were built using an alignment of 1,415 tRNAs extracted from 

the gold-standard Sprinzl database (10,11), while CM construction and alignment was performed 

using COVE (6). 

Since its first implementation, numerous other tRNA detection and classification methods 

have been developed, including ARAGORN (12) which detects both tRNA genes and tmRNA genes; 

DOGMA (13), ARWEN (14), and MITOS (15) which are designed for annotating tRNAs in various 

types of organellar genomes, TFAM (16) that classifies tRNAs based on log-odds profiles built from 

covariance models; tRNAfinder (17); a rule-based program that detects tRNAs through secondary 

structure; and SPLITS (18) which is designed to find split and intron-containing tRNAs in microbial 

genomes. All of these methods were designed to either improve upon or complement tRNAscan-SE, 

and notably, many depend on tRNAscan-SE’s core detection software. 

Although tRNAscan-SE has remained a reliable and easily accessible tool for tRNA detection 

over the past two decades, it has been in need of a major revision to incorporate new algorithms, new 

data, and new strategies for improved performance and functional prediction accuracy. Here, we 

describe the latest version of tRNAscan-SE that has enhancements including (1) improved covariance 

model search technology in the form ofintegration of Infernal 1.1 covariance model search software 

(19); (2) updated search models leveraging a more broadly representative diversity of tRNA genes 

from thousands of newly sequenced genomes (Table 1); (3) better functional classification of tRNAs, 

based on comparative information from a full suite of isotype-specific tRNA covariance models, and 

(4) a new “high confidence” filter to identify eukaryotic tRNAs that are the most likely to be used in 

protein translation.  

MATERIAL AND METHODS 

tRNAscan-SE prediction results 

Predicted tRNA genes using tRNAscan-SE 2.0 are currently available in the Genomic tRNA Database 

(GtRNAdb) (5). The genome assemblies used in this study include 4041 bacteria, 216 archaea, and 

181 eukaryotes. While these are not exhaustive analyses of all available genomes (which increases 

every day), it does constitute a good representation of high quality, substantially complete genomes. 
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Bacterial, archaeal and 72 fungal eukaryotic genomes were obtained from NCBI GenBank, and 101 

large eukaryotic genomes were obtained from the UCSC Genome Browser (21) and JGI Phytozome 

(22). The prediction results of specific genomes highlighted in this manuscript are human 

(GRCh37/hg19 and GRCh38/hg38), mouse (GRCm38/mm10), cat (Felis_catus_9.0), Saccharomyces 

cerevisiae S288c (GCA_000146045.2/R64), Escherichia coli str. K-12 substr. MG1655 

(GCA_000005845.2 /	ASM584v2), and Pyrococcus furiosus DSM 3638 (GCA_000007305.1 /	

ASM730v1).  

tRNA search modes 

In default search mode, the new tRNAscan-SE 2.0 uses Infernal 1.1 (19) as the state-of-the-art 

sequence search engine to find and score tRNA genes (Figure 1). The original tRNAscan-SE 1.0 

used tRNAscan (8) and software implementing an algorithm from Pavesi and colleagues (9) as the 

sensitive first-pass candidate-gathering searches, and Infernal’s forerunner, COVE (6), as the high-

specificity tRNA filter. This 1.0 search mode is still available in 2.0 as the “legacy mode” (-L) for 

researchers who wish to make backward version comparisons. The Infernal software implements 

profile stochastic context-free grammars, also known as “covariance models” because of their ability 

to detect covariation in conserved RNA secondary structures.  Covariance models can be created to 

identify members of any RNA gene family based on structurally aligned, trusted examples which 

serve as training sets. tRNAscan-SE 2.0 (Figure 1) employs a combination of 76 different covariance 

models (described below) for identifying and classifying the many different types and biological 

sources of tRNAs in two phases. In step one, models trained on all tRNA isotypes from species in 

each domain of life (Eukayota, Bacteria, or Archaea) are used to maximize sensitivity for predicting 

different types of tRNA genes. The incorporation of the accelerated profile hidden Markov model 

(HMM) methods used in HMMER3 (23,24) and the constrained CM alignment algorithms (19,25) in 

Infernal provide multiple levels of filtering as part of sequence homology searches. In the default 

setting, tRNAscan-SE 2.0 adopts the mid-level strictness (cmsearch option: –mid) with a low-score 

cutoff (10 bits) to replace the first-pass filters in tRNAscan-SE 1.3 for high sensitivity and fast 

performance. Then, for the second-pass specificity scan, it uses Infernal without the HMM filter 

against the first-pass candidates with extra flanking sequences and a default score threshold of 20 

bits. For users who need to obtain maximum search sensitivity and can accept a longer processing 

time, we also include the use of Infernal without HMM filter (--max option) as an addition single-pass 

search option. To further improve identification of slightly shortened tRNA genes, the new algorithm 

also makes use of the truncated hit detection feature in Infernal to annotate tRNA predictions that are 

possibly truncated at either or both ends of the sequence. After initial tRNA gene prediction, the task 

of isotype classification is performed by comparing each anticodon prediction (based purely on its 

position in the anticodon loop of the tRNA secondary structure) to scores against a suite of isotype-

specific covariance models, a strategy similar to TFAM (16). Now, alongside the predicted anticodon, 

the highest scoring isotype-specific model is also reported in the output details; any disagreement 

between the two functional prediction methods can be noted and more closely inspected by the user. 

Default tRNA prediction score threshold 
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The default score cutoff for tRNA predictions in tRNAscan-SE 1.3 using COVE (6) is 20 bits. To 

assess if this threshold can be applied to the new version with Infernal (19), we generated virtual 

genomes for E. coli K12, Halobacterium sp. NRC-1, Saccharomyces cerevisiae S288C, and Homo 

sapiens (representing a broad diversity of different GC contents and phylogenetic clades) by using a 

5
th
 order Markov chain to retain the base frequency of the original genome (Supplementary Table S1). 

tRNAscan-SE 2.0 default search mode and score cutoff 10 bits was used to search 260 virtual 

genomes. The highest scoring hit in this negative control sequence set scored 19.8 bits, and just 125 

other hits were found with scores ranging between 10-20 bits. For reference, 32,390 tRNAs were 

identified in the equivalent number of copies of real genomes using a score cutoff of 20 bits or 

greater. Based on these results, we did not alter the original 20 bit default score threshold used in 

prior versions of tRNAscan-SE. 

Domain-specific covariance models 

Using existing public predictions in GtRNAdb (4) and additional predictions from tRNAscan-SE 1.3, 

we assembled three sets of domain-specific genomic tRNA sequences from a total of over 4000 

genomes, representing a broad diversity of eukaryotes, bacteria, and archaea (Table 1, 

Supplementary Figure S1). Before using these tRNA sequences as training sets for building domain-

specific covariance models, multiple filtering steps were taken to ensure optimal results. To avoid the 

inclusion of common tRNA-derived repetitive elements that exist in many eukaryotic genomes, 

especially mammals (30-32), we first selected only the eukaryotic tRNAs with a COVE score greater 

than 50 bits (a threshold reflecting more conserved, canonical tRNA features). We then selected only 

the top 50 scoring tRNAs for each isotype per organism to avoid overrepresentation of highly 

conserved tRNA-like repetitive elements found in some species (for example, elephant shark has over 

9,500 tRNA
Ala

 scoring over 50 bits). For the bacterial tRNA training set, genes that have long self-

splicing introns were excluded to eliminate large alignment gaps in model creation that resulted in 

greatly increased search time for these rare cases. Similarly for archaea, pre-processing of sequence 

training sets was necessary. Some species within the phyla Crenarchaeota and Thaumarchaeota 

contain a number of tRNAs that are known to have multiple non-canonical introns (4,5,18,33). Atypical 

tRNAs such as trans-spliced tRNAs and circularized permuted tRNAs have also previously been 

discovered in crenarchaea and nanoarchaea (34-36). To accommodate these special archaeal 

features without sacrificing performance, both mature tRNA sequences (without introns) and selected 

atypical genes with multiple introns at different locations were included in the archaeal tRNA training 

sets. As a last step, anticodons of all tRNA sequences in all training sets were replaced with NNN and 

were aligned to the corresponding original domain-specific tRNA covariance models using Infernal 

(19). The resulting alignments were then used to generate the new set of domain-specific tRNA 

covariance models with Infernal. 

Isotype-specific covariance models 

The isotype-specific covariance models for the three phylogenetic domains were built iteratively 

through two rounds of training to account for sequence features specific to each tRNA isotype 
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(Supplementary Figure S1). In the first round, the filtered tRNA genes used for building the domain-

specific covariance models were divided into groups according to the tRNA isotypes determined by 

the anticodon sequence. For archaeal models, tRNA sequences of genes with noncanonical introns 

were “pre-spliced” to only include their mature sequences. The sequences of each isotype group were 

then aligned to the tRNA covariance model of the corresponding domain using Infernal (19). 

“Intermediate” covariance models for each isotype were built using the resulting alignments. In a 

second round of model-building, the original training set from each domain was scored against the 

new intermediate covariance models. The sequences were then grouped according to isotype, this 

time based on which isotype-specific covariance model yielded the highest score for each sequence 

(regardless of anticodon sequence). These revised isotype-classified sequence groups were re-

aligned to the corresponding intermediate models to build the final isotype-specific covariance 

models. 

Covariance models for methionine tRNAs and isoleucine tRNAs decoding AUA 

In eukayotes and archaea, initiator methionine tRNA (tRNA
iMet

) and elongator methionine tRNA 

(tRNA
Met

) have distinct sequence features and functions but contain the same anticodon, CAU. 

Similarly, N-formylmethionine tRNA (tRNA
fMet

) in bacteria also contains the same CAU codon as the 

structurally distinct elongator methionine. At the same time, tRNA
Ile2

 which decodes the isoleucine 

AUA codon is also encoded by tRNA genes containing a CAU anticodon. However, these special 

tRNA
Ile2

 are post-transcriptionally modified on their wobble bases (lysidine in bacteria and agmatidine 

in archaea), effectively giving them isoleucine-specific UAU anticodons. The strategy of prior versions 

of tRNAscan-SE to identify tRNAs based on their anticodon failed to separate these three functionally 

distinct tRNAs.   

In order to develop accurate covariance models that represent these structurally and functionally 

different tRNAs, we applied the above two-round training method with carefully selected training sets. 

For eukaryptes, the sequences of tRNA
iMet

 and tRNA
Met

 were selected from the original 1415 tRNAs 

used for training tRNAscan-SE 1.3. For bacteria, we collected the sequences for tRNA
fMet

, tRNA
Met

, 

and
 
tRNA

Ile2
 from 234 genomes where these tRNAs were classified (37). For archaea, we curated the 

sequences based on known identity elements of these three different tRNAs (38). These sequences 

were aligned to the corresponding domain-specific covariance models for generating the first-round 

intermediate covariance models followed by the second-round training step, producing the final 

covariance models.   

Selenocysteine tRNA modelling 

Selenocysteine tRNAs (tRNA
SeC

) have secondary structures and sequence lengths that differ from 

other tRNA isotypes, and are only a component of the protein translation system of some species that 

employ selenoproteins. While eukaryotic and archaeal tRNA
SeC

 have a 9-bp acceptor stem and a 4-bp 

T-arm (9/4 fold) (39-42), bacteria have an 8-bp acceptor stem and a 5-bp T-arm (8/5 fold) (43,44). To 

build covariance models for these special cases, we curated the sequences of tRNA
SeC

 from genomes 
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where selenoproteins were previously identified and removed those that do not retain published 

canonical features: the special secondary structure of tRNA
SeC

, a UCA anticodon, and G at position 

73. The collected sequences (65 eukaryotic (45-56), 61 bacterial (57), and 13 archaeal (42,58-61)) 

were aligned to the original tRNA
SeC

 covariance models from tRNAscan-SE 1.3, with manual 

inspection and adjustments. The resulting alignments were used to build the domain-specific tRNA
SeC

 

covariance models.   

Identification of non-canonical introns in archaeal tRNAs 

tRNA candidates predicted with archaeal search model are analyzed for non-canonical introns 

(Supplementary Figure S2). Two covariance models that include the bulge-helix-bulge (BHB) 

secondary structure were built with manually curated non-canonical tRNA introns from (1) 

crenarchaea and euryarchaea, and (2) thaumarchaea, respectively. The tRNA candidates are 

extended with 60 nucleotides of flanking sequences in order to identify additional introns located near 

the 5’ and/or 3’ ends, and scanned with the BHB covariance models. Predicted non-canonical introns 

are confirmed when the score of the predicted mature tRNA with detected intron(s) removed is higher 

than the unspliced form. Some tRNAs contain two or three introns, with introns located in such closely 

proximity that one intron must be removed before a second BHB motif can be detected in the second 

intron; thus, multiple iterations of the intron search are required, and end when the final tRNA 

prediction score is higher than the previous iteration, or the length of the predicted mature tRNA is 

less than 70 nucleotides (the typical minimum length of archaeal tRNAs). Final reported scores in 

tRNAscan-SE 2.0 outputs are based on the predicted mature tRNAs.  

Custom search configurations 

To increase the flexibility of tRNAscan-SE 2.0, we include a configuration file that accompanies the 

software. This file contains default parameters such as score thresholds for the first and second-pass 

scans, file locations of covariance models, and legacy search mode settings. Advanced users can 

make changes to the settings as appropriate for their research needs. To further extend its capability, 

an extra search option was implemented in tRNAscan-SE 2.0 that allows researchers to use alternate 

covariance models specified in the configuration file for tRNA searching. If multiple alternate 

covariance models are included, the top scoring one at each overlapping locus will be reported. This 

new feature enables the use of custom-built covariance models that may better detect tRNAs with 

atypical unique features. 

Post-filtering of potential tRNA-derived repetitive elements and classification of high 

confidence tRNAs 

EukHighConfidenceFilter in tRNAscan-SE 2.0 is a post-scan filtering program for better distinguishing 

potential tRNA-derived repetitive elements in eukaryotic genomes from “real” tRNAs that function in 

protein translation. Three filtering stages are involved in the classification (Supplementary Figure S3). 

First, tRNA predictions that are considered as possible pseudogenes based on criteria defined in 

tRNAscan-SE (an overall score below 55 bits with the primary sequence score below 10 bits or the 
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secondary structure score below 5 bits, as used in the original version of tRNAscan-SE) are excluded 

from the high confidence set. Second, predictions with an isotype-specific model score below 70 bits, 

overall score below 50 bits, or secondary structure score below 10 bits are filtered from the high 

confidence set. Finally, if there are more than 40 predicted hits remaining for an isotype anticodon, a 

dynamic score threshold increases, starting at 71 bits, increasing one bit iteratively until the number of 

predictions is not over 40, or the score threshold reaches 95 bits. The score thresholds in stages two 

and three were manually determined by comparing score distributions of predictions between 

eukaryotic genomes with large number of tRNA-derived repetitive elements and those that do not 

have high portion of “false positive” predictions (Supplementary Figure S4). The remaining tRNA 

predictions are considered as part of the high confidence set if they have a consistent isotype 

prediction (inferred from anticodon versus the highest scoring isotype-specific model) and they have 

an “expected” anticodon -- based on known decoding strategies of synonymous codons in 

eukaryotes, 15 anticodons are not used (63).  

RESULTS 

The use of Infernal increases flexibility and speed 

One of the most substantial improvements to tRNAscan-SE 2.0 is the incorporation of Infernal 1.1 

(19) that allows us to improve tRNA prediction quality with comparable performance and sensitivity as 

earlier versions of tRNAscan-SE (see Methods). The original two-pass search strategy of tRNAscan-

SE utilized a rule-based detection method (8) and static, unchanging eukaryotic weight matrices (9) to 

increase the speed of tRNAscan-SE. The predicted candidates were further searched for primary 

sequence and secondary structure similarities using the first generation of covariance models (6) built 

for tRNAs. These effective but inflexible and computationally expensive methods proved difficult to 

adapt for detection and classification of specialized sub-classes of tRNAs, such as distinguishing 

between initiator methionine tRNAs and elongator methionine tRNAs. By contrast, Infernal makes use 

of modern computer architecture for parallelizing hidden Markov model dynamic programming 

algorithms (24), enabling fast similarity search and development of better-trained covariance models 

that include tRNA features from over 4000 genomes across the three domains of life (Table 1). 

Although tRNAscan-SE 2.0 does not provide significant speed advancement when predicting 

tRNAs in organisms with small genomes such as E. coli and Saccharomyces cerevisiae (budding 

yeast), the total run time for large eukaryotic genomes improves as the number of predicted genes 

increases. Searching the human and mouse genomes using the new version with ten computing 

cores in our test server (dual 10-core/20-thread 2.3GHz processors with 128GB RAM) reduces the 

processing time by 40%. The speed improvement is even more extreme with the use of the maximum 

sensitivity mode. When the tRNAscan-SE was first released, it was estimated that searching the 

human genome with covariance-model-only analysis would take nine-CPU years. Although the 

computer technology has been significantly advanced over the years, the covariance model searching 

program, COVE (6), used by tRNAscan-SE 1.3 was not designed to take advantage of the available 

multi-core parallel processors in our test, resulting in an estimate of over 3 months to complete the 
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search of the human genome in our test server (dual 10-core/20-thread processors with 128GB 

RAM). Whereas, using the new version of tRNAscan-SE with Infernal (19), the processing time for the 

human genome will be within four days and even less than 15 minutes for E. coli, making the 

covariance-model-only search feasible to be used by researchers who would like to maximize the 

sensitivity. 

When comparing the detected tRNA genes in microorganisms, we found that the ones in 

Saccharomyces cerevisiae (budding yeast) and Pyrococcus furiosus (archaea) are the same using 

both versions of tRNAscan-SE. Yet, an extra predicted tRNA gene was identified by the new version 

in Escherichia coli. With the score cutoff as 20 bits (see Methods), this very low-scoring prediction 

(29.6 bits) with undetermined anticodon and isotype calls for investigation. In fact, we found that it is 

part of gene b2621, a tmRNA that is known to have tRNA-liike properties. Moreover, out of the 500+ 

predicted cytosolic tRNAs in the human genome, tRNAscan-SE 2.0 detects 56 more candidates but 

misses 49 originally predicted by the previous version. Of which, 57% and 73% respectively are 

classified as possible pseudogenes. The highest score of extra candidate is 47.6 bits whereas that of 

the missing one is 34.44 bits, both lower than the minimum score of a high-confidence eukaryotic 

tRNA (see Methods) that functions in translation. We further studied the sequencing results of those 

non-pseudogenes from ARM-Seq (64) and DASHR (65) and found that almost none of them shows 

significant expression level in multiple samples and conditions with only a few exceptions. For 

example, a predicted tRNA
Tyr(GTA)

 gene with a score of 22.8 bits has low level of abundance across 

the precursor tRNA region in all the ARM-Seq samples (Supplementary Figure S5) (64). Uniform 

coverage is observed between the mature tRNA region and the 12-nt intron, suggesting that this 

candidate may not be processed as a typical tRNA. This shows increased sensitivity of the newly built 

covariance models and tRNAscan-SE 2.0 without losing the specificity to determine real tRNA hits. 

While there seems to be more differences in the number of detected tRNAs in other mammalian 

genomes such as mouse and cat, most of those have a low score especially due to the abundance of 

tRNA-derived repetitive elements, which will be discussed later in more details.  

Enabling discrimination between initiator methionine, elongator methionine, and tRNA-Ile2 

When tRNAscan-SE was designed almost two decade ago, only a limited number of tRNA genes 

were identified and available in the 1993 Sprinzl database (10), which were not sufficient to be used 

as a training set for creating robust isotype-specific covariance models. With thousands of new 

genomes in public databases, we estimated that there would be sufficient tRNA gene diversity to train 

specialized models for different functional classes of tRNAs. Sequence-based positive and negative 

determinants are used by tRNA aminoacyl synthetases to establish tRNA identity, and have been 

characterized in a number of model species (66). Previously, the original version of tRNAscan-SE 

used the anticodon exclusively to predict isotype because anticodon-isotype pairings are highly 

conserved and the anticodon is easily detected in a tRNA gene. However, this method does not 

provide the capability to distinguish between the three different tRNA types with anticodon CAT in 

genomic sequences: initiator methionine/N-formylmethionine tRNA (tRNA
iMet 

and tRNA
fMet

), elongator 

methionine tRNA (tRNA
Met

), and isoleucine tRNA decoding AUA codon (tRNA
Ile2

) in bacteria and 
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archaea. By creating specialized models for these sub-groups of tRNAs in each domain of life, we 

were able to distinguish them with high certainty.  

When comparing the isotype-specific covariance model scores of the predicted tRNAs in a 

total of almost 4,500 genomes across Eukaryota, Bacteria, and Archaea domains, we found that the 

three tRNA
iMet/fMet

, tRNA
Met

, and tRNA
Ile2

 form distinct clusters (Figure 2) with tRNA
iMet/fMet

 cluster 

conspicuously separated from the other two tRNA groups in bacteria and archaea. This reflects that 

the consensus sequence of tRNA
iMet/fMet

 is relatively less similar to those of tRNA
Met

, and tRNA
Ile2

 (38). 

We checked the number of identified tRNAs in each studied genome and found that 3.5% (6 of 173) 

eukaryotes and 3.6% (144 of 4034) bacteria miss at least one of the three AUA-anticodon tRNAs. Of 

the 6 eukaryotic genomes that belong to three different fungal genera, all of them have tRNA
iMet

 mis-

annotated as tRNA
Met

 because iMet covariance model has the second highest score, suggesting that 

these tRNA sequences are relatively atypical when comparing to the consensus and may need further 

studies on the differences. On the other hand, missing tRNA genes in bacterial genomes could be a 

result from the insertion of self-splicing group I introns that tRNAscan-SE was not designed to detect. 

For example, tRNA
Ile2

 was not detected in two Burkholderia pseudomallei strains (NAU35A-3 and TSV 

48) but was found in reference strain K96243. Close inspection with manual sequence alignments 

and RNA family similarity search (7,19) shows that group I introns of 7,726bp and 7,730 bp 

respectively exist between positions 31 and 32 of tRNA
Ile2

 in the two strains, causing the failure to 

correctly identify the tRNA genes.  

Isotype-specific covariance models improve functional annotation of tRNAs 

Besides distinguishing tRNA genes with anticodon CAT, isotype-specific covariance models can also 

help better classify predicted genes. For example, previous studies identified “chimeric” tRNAs that 

have identity elements recognized by one type of tRNA synthetase, but with altered anticodon 

corresponding to mRNA codon of a different amino acid (67,68). Although the biological significance 

of chimeric tRNAs is not well understood, it is valuable to identify a conflict between the anticodon and 

other structural features that may be related to protein “recoding” events.  

Among the genomes we studied, over 95% of the typical predicted tRNA genes have 

anticodons that match with the highest scoring isotype-specific model (Supplementary Figure S6). 

When inspecting some of the cases with isotype-anticodon disagreement, we noticed that the 

uncertainty may be caused by various reasons or have different possible influence in translational 

events. In human, two high-scoring predictions, tRNA-Val-AAC-6-1 and tRNA-Leu-CAA-5-1 (69.9 bits 

and 66.5 bits respectively), are inconsistent with the isotype-specific model. tRNA-Val-AAC-6-1 has 

an anticodon for encoding Valine but scores much better with the tRNA
Ala

 model (88.1 bits vs 45.0 

bits). tRNA-Leu-CAA-5-1 is an exemplar chimeric tRNA that scores better with the tRNA
Met

 model 

than tRNA
Leu

 model (98.4 bits vs 2.6 bits). Its secondary structure (Figure 3B) shows the lack of a long 

variable arm, a typical character of a type II tRNA as the other tRNA
Leu(CAA)

 (Figure 3C), and has only 

six nucleotides different from tRNA-Met-CAT-3-1 (Figure 3A, Supplementary Figure S7A). The gene 

is conserved in most of the primates. However, only human, chimp, and gorilla have A36 while the 
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other ancestral genomes have T36 that would transcribe into a tRNA
Met(CAU) 

(Supplementary Figure 

S7B). This suggests that the mutation was acquired relatively recent and it is interesting to 

understand its significance in the human genome. 

When studying the tRNAscan-SE results in archaea, we noticed Methanobrevibacter 

ruminantium has a tRNA
Arg

 with anticodon ACG that is not found in its closest sequenced relatives, 

Methanobrevibacter smittii and Methanobrevibacter sp. AbM4. This is unusual, as A34 in tRNA
Arg

 is 

generally found in bacteria and eukaryotes but not archaea that use G34-containing tRNAs to decode 

pyrimidine-ending codons (63). The isotype prediction also disagrees with the anticodon with the 

highest scoring isotype as tRNA
Trp

. In the previous genome analysis, over 13% (294 out of 2217) of 

the coding genes in M. ruminantium were identified to be originated from other species including 

bacteria and eukaryotes (72). Horizontal gene transfer commonly occurs in microbes that share the 

same or similar habitats (73,74). Although research have been focused on protein coding genes, we 

hypothesized that it is possible for non-coding RNA genes transferring between organisms. Applying 

the bacterial and eukaryotic models, the predicted tRNA
Arg(ACG) 

scores 53.4 bits and 55.1 bits 

respectively, compared with 37.6 bits using the archaeal model. In addition, the predicted isotype is 

consistent with the anticodon, suggesting that this gene may be transferred from a species in another 

domain of life.  

New process helps identify archaeal tRNA genes with noncanonical introns  

Some tRNAs in eukaryotes and archaea have introns that are removed by tRNA splicing 

endonuclease during maturation. Although the majority of the archaeal tRNA introns are located one 

nucleotide downstream of the anticodon (position 37/38), some have been found at seemingly 

random, “noncanonical” positions in the tRNA genes (5,18,75,76). Pyrobaculum calidifontis has the 

highest number of introns  (71 introns in 46 tRNA genes) found in complete genomes and an archaeal 

tRNA can have up to three introns. These noncanonical introns have presented a challenge for 

predicting the archaeal tRNA genes correctly. The introns preserve a general bulge-helix-bulge (BHB) 

secondary structure (75) that can be modelled using Infernal (19) for similarity search. In the previous 

version of tRNAscan-SE, we included a search routine and a covariance model to detect the 

noncanonical introns in archaea. The model was built using the known intron sequences at the time 

mostly identified in crenarchaea. Due to slower performance of the previous Infernal versions, we only 

made the routine as an optional feature to avoid the significant increase of default search time. In 

addition, the original covariance model cannot effectively detect the noncanonical tRNA introns in 

recently sequenced genomes that are more distantly related from those used as the training data. 

Therefore, we have redesigned the search process (see methods; Supplementary Figure S2) by 

including two covariance models: one further optimized from the existing model, and the other one 

newly trained with introns in thaumarchaea. Both models were built with the latest release of Infernal 

with the performance improvement that makes the process feasible to be included in the default 

archaeal search mode.  
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Among the 216 archaeal genomes studied, we found 1,527 canonical and 667 noncanonical 

introns in a total of 10,334 predicted tRNA genes (Supplementary Table S2). Previous study results 

and manual inspection show that our process has a low error rate, with 2.9% of the noncanonical 

introns misisng in the search due to low similarity to the consensus, and four noncanonical introns 

located at the anticodon loop misannotated as canonical introns. Although almost 70% of the 

identified introns are canonical, a small number of clades illustrate the opposite. As described in 

previous studies, a lot of tRNA genes in Thermoproteales have been known to harbour multiple 

introns (18,33). In our analysis, we found an average of one intron per 0.84 tRNA gene in 

Thermoproteales as compared with the overall 1-to-0.21 ratio. In addition, two-third of these introns 

are located at noncanonical positions of the tRNA genes while Euryarchaeota, the phylum with the 

least amount of noncanonical introns, have over 95% introns at canonical position. Similar to 

Thermoproteales, genomes in Thaumarchaeota only possess a majority of noncanonical introns. 

Although, in total, only about 2% of the tRNA genes have two or more introns, the 16 tRNA genes 

with three introns belong to Thermoproteales, which is consistent with the overall high number of 

introns identified in this clade.  

A post-filtering tool distinguish high confidence predictions from tRNA-derived repetitive 

elements 

Short interspersed repeated elements (SINEs) that are derived from tRNAs have conserved 

RNA polymerase III promoters internal of tRNA genes but not necessary the typical cloverleaf 

secondary structure (30-32). This causes the covariance model analysis being able to identify them in 

a lower score than true tRNA genes but still above the default score threshold (20 bits) as described 

in the original version of tRNAscan-SE (1). The tRNA-derived SINEs are numerous in mammalian 

genomes and some other large eukaryotes except primates (30,77-80), resulting in huge number of 

predictions that may not be accurate. For example, the cat genome has over 403,500 tRNA 

predictions (the largest amount in the studied genomes) while the rat genome that has been 

previously reported with many tRNA pseudogenes due to repetitive elements (77) has over 211,000 

predictions in the latest assembly (Table 2). Although tRNAscan-SE classifies over 80% of the 

predictions in these mammals as pseudogenes, the remaining still exceeds our expectation of true 

tRNA genes in a genome given that there are only about 600 human tRNA gene predictions. When 

comparing the non-pseudogene prediction score distributions between primates and other mammals, 

we noticed that the median scores in mammals such as cow and armadillo are significantly lower than 

those in primates like human (Supplementary Figure S4). In addition, plants like maize that is known 

to contain repetitive elements also have lower prediction median scores. By checking against the 

repetitive elements annotated in mouse (one of the most-studied model organism) (79), we found that 

the low-scoring non-pseudogene tRNA predictions are mostly part of the B1 or B2 repeats. However, 

due to the different evolutionary age of the repetitive elements that leads to various mutation rates, 

SINE-origin predictions in marine mammals like minke whale and dolphin tend to have relatively 

higher tRNA (domain-specific) and isotype-specific scores but retain low secondary structure scores. 

We therefore developed a filtering tool that can be optionally applied to the tRNAscan-SE results for 
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better classifying the real tRNA genes. The tool assesses the predictions with a combination of 

domain-specific, isotype-specific, and secondary structure scores in two filtering stages on top of the 

pseudogene classification (see Methods), and determines the “high confidence” set of genes that are 

most likely to be functioned in the translation process. A small number of the predictions that have 

high scores but atypical features such as unexpected anticodons are separately marked for further 

investigation. In our study, the high confidence set remains below 1,000 tRNA genes in most 

genomes (Table 2), which provides researchers a stricter, more conservative set to better focus their 

experimental efforts. 

DISCUSSION 

With the improvement of technology, processes and methods that used to take very long execution 

time have become practically possible. The employment of multi-threaded Infernal v1.1 (19) has 

allowed us to eliminate the use of the two pre-filters in the original version of tRNAscan-SE without 

sacrificing performance. The multi-model strategy applied in tRNAscan-SE 2.0 also provides 

additional annotations through the isotype-specific covariance model classification to better identify 

functional ambiguity as well as atypical tRNA genes that are worthy of further investigation. The 

increased availability of genomes in clades that were not previously studied may reveal new trends of 

sequence features. Although the small number of genes with isotype uncertainty may be resulted 

from special scenarios demonstrated with examples above, unexpected features in some poorly 

represented clades may cause inaccurate classification with the current models which were mostly 

trained with tRNA genes in well-studied clades. This issue could possibly be addressed with new sets 

of clade-specific models developed with additional analyses.  

 Previously, three types of “interrupted” but functional tRNA genes have been identified: (1) 

genes with one or more introns, (2) trans-spliced tRNA genes, and (3) circularized permuted tRNA 

genes (18,34-36,76,81-84). Using tRNAscan-SE 2.0, researchers can now detect archaeal tRNA 

genes with noncanonical tRNA introns in addition to those with canonical introns. However, 

tRNAscan-SE was not designed to detect self-splicing group I introns found in cyanobacterial tRNA 

genes (81,82) due to the computational demands of aligning very large RNA structures to covariance 

models. During our analysis, we noticed that group I introns also exist in tRNA genes of other 

bacterial clades such as Proteobacteria, causing misannotation or failure to identify those genes. In 

addition to the Rfam model (7), a new set of covariance models has recently been built based on the 

group I introns identified in archaea (85). The need for detecting these missing genes and 

improvements to covariance model search software have motivated new work to the detect tRNA 

genes with group I introns in the next major software release. We also plan to add a process to detect 

the trans-spliced and permuted tRNA genes, but the rareness of these special classes make it a lower 

priority among other features that could have greater biological significance. 

  Since the initial release of tRNAscan-SE, the tool has been part of standard routines for 

annotating genomes decoded at national genome centers. While knowledge of basic tRNA function 

has been long known, the discovery of alternate regulatory functions and tRNA-derived small RNAs 
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has stimulated new interest in understanding the regulation and processing of this ancient RNA 

family. Together with experimental analyses, tRNAscan-SE serves as a key tool for expanding the 

world of tRNA biology.  
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TABLES 

Table 1. Diversity of genomes used as training sets for tRNA covariance model creation. The tRNAs 

in the genomes were grouped by domains for building the domain-specific covariance models. For 

tRNAscan-SE 2.0, tRNA sequences from genomes of each domain were further grouped into different 

isotypes for the generation of isotype-specific models.  

Domain 
Models in tRNAscan-SE 1.3 Models in tRNAscan-SE 2.0 

No. of genera No. of genomes No. of genera No. of genomes 

Eukaryota 88 115 110 155 

Bacteria 23 33 647 4,016 

Archaea 13 18 75 182 

Total 124 166 838 4,285 

 

Table 2. tRNA predictions and post-filtered high confidence set in eukaryotic genomes with numerous 

repetitive elements. Top ten genomes with large amount of raw predictions are shown in comparison 

with human and mouse. High confidence predictions are determined as a result of the three-stage 

post-filtering process. The values in the table represent the number of gene predictions at each 

category. 

Genome All tRNA 
predictions 

tRNAscan-SE 
Predicted 

pseudogenes 

Secondary 
post-filtered 
predictions 

Tertiary  
post-filtered 
predictions 

High 
confidence 

set 

Cat 403,590 392,312 10,552 126 549 
Cow 263,431 232,442 29,617 562 593 
Sheep 256,819 225,920 29.710 420 534 
Armadillo 227,726 154,522 72,576 89 462 
Minke whale 212,492 194,977 13,916 2,879 428 
Rat 211,167 198,126 12,605 51 364 
Panda 187,373 183,250 3,548 143 398 
Ferret 182,506 179,919 2,167 40 360 
Dolphin 172,909 157,354 12,694 2,236 368 
Squirrel 165,970 146,252 19,221 85 349 

Human 596 85 91 0 417 
Mouse 40,912 36,415 4,087 2 401 
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FIGURE LEGENDS 

Figure 1. Schematic diagram of tRNAscan-SE 2.0 search algorithm. Three pathways were developed 

for cytosolic tRNA search modes with the addition of the mitochondrial tRNA search mode. The 

default method employs Infernal 1.1 (19) with newly built covariance models for similarity search while 

the legacy search remains the same as tRNAscan-SE 1.3 (1) for backward compatibility. 

Figure 2. Isotype-specific covariance model score comparison between tRNAs with anticodon CAU. 

Dots represent individual tRNAs of initiator methionine/N-formylmethionine (tRNA
iMet/fMet

), elongator 

methionine (tRNA
Met

), and isoleucine decoding AUA codon (tRNA
Ile2

). Each tRNA was scanned with 

the isotype-specific covariance models of the corresponding domain. The axis of the plots shows the 

bit scores of the tRNA gene scanned with the isotype-specific covariance models for eukayotes, 

bacteria, and archaea. 

Figure 3.  Isotype uncertainty in human tRNA-Leu-CAA-5-1. The primary sequence and the 

secondary structure comparison of (A) tRNA-Met-CAT-3-1, (B) tRNA-Leu-CAA-5-1, and (C) tRNA-

Leu-CAA-1-1 show that tRNA-Leu-CAA-5-1 is more similar to a tRNA
Met

 than a tRNA
Leu

 even though it 

has an anticodon decoding leucine. The bases highlighted in orange and green represent the 

differences between the respective sequence and tRNA-Leu-CAA-5-1. 
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