
TROLL — A Language for Object-Oriented

Specification of Information Systems

RALF JUNGClAUS

Deutsche Telekom

and

GUNTER SAAKE

Universit~t Magdeburg

and

THORSTEN HARTMANN

Technische University Braunschweig

and

CRISTINA SERNADAS

Instituto Superior T6cnico

TROLL is a language particularly suited for the early stages of information system development,

when the universe of discourse must be described. In TROLL the descriptions of the static and

dynamic aspects of entities are integrated into object descriptions. Sublanguages for data terms,
for first-order and temporal assertions, and for processes, are used to describe respectively the

static properties, the behavior, and the evolution over time of objects. TROLL organizes system

design through object-orientation and the support of abstractions such as classification, special-
ization, roles, and aggregation. Language features for state interactions and dependencies among
components support the composition of the system from smaller modules, as does the facility of
defining interfaces on top of object descriptions,

Categories and Subject Descriptors: D.2.1. [Software Engineering]: Requirements/Specitica-

tion –languages; D.3.2 [Programming Languages]: Language Classifications- 7’ROLL; D.3.3.

[Programming Languages]: Language Constructs and Features; H.1.O [Models and Princi-
ples]: General

This work was partially supported by CEC under ESPRIT-III Basic Research Action Working
Group no. 6071 IS-CORE II (Information Systems-Correctness and Reusability), The work of
Ralf Jungclaus (until December 1993) and Thoraten Hartmann was supported by Deutsche
Forschungsgemeinschaft under Sa 465/ 1-3.

Authors’ addresses: R. Jungclaus, Deutache TeIekom AG, Information Technology, P.O. Box
2000, D-53105 Bonn, Germany; email: Jungclaus@ 1Lbonn02,telekom400. dbp.de; G. Saake, Insti-
tut fiir Technische Informationssysteme, University of Magdeburg, Universitatsplatz 2, D-39106

Magdeburg, Gmnany; email: saake@iti.cs.tu-magdeburg.de; T. Hartmann, Abt. Datenbanken,

Technical Universitiit Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany; email:
hartmann@idb.cs. tu-bs.de; C. Sernadas, Departamenta de Matem6tica— Instituto Superior

T6cnico, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal; email: css@inesc.inesc. pt.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee,

@ 1996 ACM 1046-8188/96/0400-0175 $03.50

ACM Transactionson InformationSystems,Vol. 14, No. 2, April 1996, Pages 175-211.

176 . Ralf Jungclaus et al.

General Terms: Design, Languages

Additional Key Words and Phrases: Formal specification, information system design, object-
onented conceptual modeling

1. INTRODUCTION

Information systems can be characterized as being reactiue systems that

store, process, and produce information about a portion of the real world. This

portion is usually called the Uniuerse oflliscourse (UOD). The UOD is a part of

the problem domain which also includes phenomena that are part of the

environment of the planned system. (By real-world phenomena we also mean

historical or planned or abstract phenomena which are not really “real” [Kent

1978].) Information systems do not describe an input-output function like

many programs do but are systems with a state that changes over time due

to interactions with the environment. Such systems are called reactive sys-

tems [Pneuli 1977; 1986]. Therefore, relevant information objects in informa-

tion systems are not only represented through values but also through

behavior (i.e., changes over time including interactions).

The domains represented by information systems tend to become larger

and larger and more and more complex (e.g., computer-integrated manufac-

turing, banking and stock exchange systems, or control systems). This fact

and recent trends toward distributed information systems and federated

information systems (without central control) make the need for modulariza-

tion and the modeling of interactions between components significant.

One can often observe that design implementation issues are addressed

already in the early stages of information systems design. It is well known,

however, that design flaws in the analysis phase that are revealed during

implementation are very costly to fix. Moreover, addressing implementation

issues too early restricts choices that could be made in later design

stages—the information system may not be of the quality expected by the

user.

TROLL is designed for use in the conceptual modeling or requirements

specification phase in the development of information systems [Dubois et al.

1992; Griethuysen 1982]. In this phase, we have already identified relevant

phenomena in our UOD. The task, however, is to develop a structured

representation of the aspects that are of relevance for the planned informa-

tion system. This representation must have the following properties:

—it must be unambiguous and precise, i.e., the specification must have a

consistent and rigorous semantics;

—it must be structured to support the management of the complexity of the

model;

—it must be independent of concrete implementation as far as possible.

A model of the UOD should be formal in the sense that mathematical

structures are used to represent real-world aspects. Only then it is possible to

ACM Transactionson InformationSyatema,Vol. 14, No. 2, April 1996.

TROLL . 177

assess a model formally [Cohen et al. 1986; Wing 1990]. Thus we need formal

specifications in a formal language that denote such models early in the

design process.

Unfortunately, formal approaches do not prevent system developers from

making mistakes in the design that are due to misunderstandings between

them and the users. Thus, it is essential to focus solely on conceptual issues

in the early phases of design. That is, developers should think in terms of the

application rather than in terms of the implementation.

Since system developers are in general not specialists in the application

domain, the process of collecting knowledge about the concepts in the UOD

should be interactive, i.e., the developer must work with the user. The result

of this process is a representation of the relevant static and dynamic aspects

in the UOD. In this phase, it is only relevant to know which aspects are

relevant and what are their properties. Thus a modeling approach should

support a declarative description.

We strive at supporting the conceptual modeling of information systems by

providing a conceptual modeling language with a formal semantics. One can

identify the following advantages:

—high-level language features along with a formal semantics help in a

formalization of a conceptual model;

—object-oriented conceptual model specifications are structured since proper-

ties are localized according to the concept of object.

The goal of this article is the presentation of a specification language for

the conceptual modeling of information systems. It aims at integrating a

declarative, logic-based style of system specification (and knowledge repre-

sentation) with structuring mechanisms known from semantic and object-or-

iented data models [Peckham and Maryanski 1988] and with approaches to

model processes and concurrent systems (with some operational flavor) [Hoare

1985; Manna and Pnueli 1992].

TROLL has a formal semantics in terms of a translation into a temporal

logic [Jungclaus 1993]. Thus, specifications have a precise and unambiguous

meaning. Using inference rules of the logic, we may deduce further knowl-

edge from a specification or prove assertions we might want to verify.

Furthermore, validation by prototyping of specifications and generation of

test data are made possible. The primary purpose of a conceptual model

(playing the role of a reference model for implementations) can only be

fulfilled by a formal specification, since only then are we able to prove that an

implementation fulfills the specification.

In the TROLL approach, we have tried to combine elements of several

different approaches to system specification and modeling. The basic concepts

were taken from the fields of algebraic specification, from semantic data

modeling, and from the specification of reactive and concurrent systems. The

approach is trying to integrate those concepts using object-oriented structur-

ing mechanisms. The result is a specification language that provides

—structuring concepts for entities/objects as known from semantics data

models;

ACMTransactionson InformationSystems,Vol. 14, No.2, April 1996.

178 . Ralf Jungclaus et al.

—formal structuring mechanisms for models as known from algebraic specifi-

cation; and

—event- and process-oriented specifications as well as the specification of

temporal evolution as known from the specification of concurrent and

distributed systems.

2. FOUNDATIONS

There is a long research tradition in fields like semantic data modeling and

knowledge representation for describing real-world aspects. Semantic data

modeling (for a survey see Hull and King [1987] and Peckham and Maryanski

[19881) came up when several researchers noticed that “pure” data models

were not suitable to be used in the design of database schemas [Kent 1978].

When designing a database schema, database designers should think of data

as descriptions of concepts in the problem domain—a higher level of abstrac-

tion is needed for that task. Knowledge representation has traditionally

focused on representing “knowledge” about an application domain like facts,

rules, strategies, etc. [Levesque 1986]. An important contribution of semantic

networks is the natural modeling of is-a-, is-part-of-, and is-instance-of

relationships, but they do not distinguish between schema and data.

A major drawback of the approaches described above is the lack of con-

structs to represent behavioral or dynamic aspects. Only very few approaches

address the problem explicitly, among them TAXIS and RML [Greenspan

et al. 1986; Mylopoulos et al, 1980]. In these proposals we are able to specify

transactions and even scripts that represent activities on entities (see also

Borgida [19851).

Approaches in other research fields have addressed the modeling of system

dynamics, especially approaches toward the modelling of concurrency [Hoare

1985; Milner 1980; Pnueli 1986]. Another approach toward describing the

behavior of reactive systems is temporal logic [Emerson 1990; Manna and

Pnueli 1992]. Here, a logical approach to specifying the change of validity of

propositions representing the state of a reactive system is presented. How-

ever, these approaches do not take into account structural aspects. Thus, very

often one model is chosen to represent the structural aspects of the UOD, and

another model is chosen to represent the behavioral issues. Object-oriented

approaches like the ones described in Booth [1990] and Rumbaugh et al.

[19911 aim at overcoming these problems but are mostly informal.
In our view object-oriented conceptual modeling should be integrating the

advantages of work on algebraic specification of data types [Ehrig and Mahr

1985] and databases [Ehrich et al. 1988], process specification [Hoare 1985;

Milner 1990], the specification of reactive systems [Emerson 1990; Pnueli

1986], and conceptual modeling [Engels et al. 1992; Mylopoulos et al. 1980;

van Griethuysen 1982]. In contrast to object-oriented programming lan-

guages that emphasize a functional manipulation interface (i.e., methods),

object-oriented databases put emphasis on the observable structure of objects

(through attributes) [Atkinson 1989; Beeri 1990]. We propose to support both
views in an equal manner (i.e., the stmctural properties of objects may be

ACMTransactionson InformationSystems,Vol. 14, No. 2, April 1996.

TROLL . 179

observed through attributes, and the behavior of objects may be manipulated

through euents which are abstractions of methods).

An object description is usually regarded as a description of possible

instances of the same kind which is similar to the notion of type in semantic

data modeling. In object-oriented programming, the notion of type is closely

related to (and sometimes even mixed up with) the notion of class, In our

view, a class defines a collection of instances of the same type.

Objects can be composed from other objects (aggregation). Aggregation of

objects imposes a part-of relation on a collection of object descriptions. Object

descriptions may also be embedded in a specialization hierarchy. Usually,

specialization implies reuse of specifications and allows us to treat instances

both as instances of the base class and the specialization class. A related

concept is generalization that allows us to treat conceptually different in-

stances uniformly as instances of the generalization class. The concept of role

as a (temporary) role played by a real-world object is another helpful struc-

turing mechanism [Pernici 1991; Wieringa 1990; Wieringa and de Jonge

1991].

Besides the structuring mechanisms mentioned above, a means to describe

the interaction of object instances is needed to specify system dynamics. For

conceptual modeling, we have to abstract from implementation-related de-

tails that arise from using message passing.

Last, but not least a means to relate relatively independent objects is

needed. It is not very natural to bury such relationships in objects instead of

making them explicit in a system specification. Additionally, the hiding of

relationships in object descriptions hinders reuse. Thus, a framework for

object-oriented conceptual modeling should support relationships among ob-

jects [Rumbaugh 1991]. Relationships among dynamic objects are, however,

not as restricted as relationships in, e.g., the Entity-Relationship model—

here, we must also be able to specify interactions among objects [Jungclaus et

al. 1993].

3. BASIC CONCEPTS OF TROLL

3.1 Concept of Object

Let us now briefly sketch the important features of the semantical framework

underlying the TROLL language. In TROLL, objects are specified as possible

sequences of events (basic state transitions) and attributes as observable

properties changed by events. Thus objects can be characterized as observ-

able processes. We will proceed by sketching the basic ideas of the object

model including the concept of classes.

Identification. Each instance (of an object class) is uniquely identified by

an identifier. An identifier is an element of the carrier set of an identifier sort

which provides identifiers for instances of the same kind.

Interface. The interface of an instance is described by the elements of a

template signature. A template signature contains (along with the identifier

ACMTransactionson InformationSystems,Vol. 14,No.2, April 1996

leo . Ralf Jungclaus et al.

—,

sorts being used) the attribute symbols and the event symbols describing

structural properties, and state transitions, respectively.

State and State Transitions. An observation is defined through a special

predicate over attribute terms denoting the fact that an attribute can be

observed as having a value. Observations may be restricted. Therefore, in

object descriptions we must be able to state constraints on the observations

and on the evolution of observations over time. The state of an instance is

defined as a set containing predicates describing

—the possible observations in that state;

—the enabled events in that state; and

—the actually occurring events in that state.

In each state, a set of events occur which define a state transition. In order to

occur, an event must be enabZed.

Life Cycle. The admissible behavior of an instance over time is defined by

formulas of a temporal logic which describe the evolution of local states in

terms of the valid predicates in states. As explained later on, temporal logic

serves exactly the purpose of describing how the validity of formulas evolves

over time.

Object Relations. The mechanisms to relate instances are the following

—Specialization describes a more detailed aspect of a conceptual entity.

Technically, specialization means that the specification of the base tem-

plate is conservatively extended, i.e., all formulas stated in the base

template have to be valid for the specialized template.

—Aggregation describes a composite object which is composed from several

base instances. Again, all properties of the incorporated components have

to be valid in the aggregation, i.e., we may refer to local properties in the

context of the aggregation.

3.2 Specification Units

The basic specification units of the TROLL language are the following

Template. A template describes the structural and behavioral properties

of possible object instances. A template consists of the following parts:

—Attribute and event symbols make up the logical signature.

—Valuation rules describe the effects of event occurrences on attributes.

—Permissions state preconditions that must be fulfilled in order to allow

certain events to occur. Events are not allowed to occur in the current stati

if their precondition is not fulfilled.

—Obligations state completeness conditions for life cycles of objecti. A life

cycle of an object can only end if the obligations are filfilled.

—Patterns describe explicit event sequences an object goes through.

ACMTransactionson InformationSystems,Vol. 14, No. 2, April 1996.

TROLL . 181

Class. A class specification defines a class by providing an identification

mechanism and a template for the possible instances.

Relating Objects. Various dependencies among objects can be specified in

TROLL:

—A role specification describes a possible role an object can play. When

playing a role, an object may have additional properties and may have

restricted behavior. A role template defines a special view on the same

conceptual object.

—A specialization specification is a role starting and ending with the cre-

ation of its base object. Roles and specialization describe is-a relations

among objects.

—Specifications of composite objects describe part-of relations among ob-

jects.

—Relationships describe interaction relationships among objects as well as

constraints over such related objects.

3.3 Specification Sublanguages

In TROLL, the properties of objects are specified using formal languages

based on (temporal) logic.

Predicate Logic. The data sublanguage is used for data terms that denote

a value of a particular data sort. In our approach, we use terms as they are

used in algebraic specifications [Ehrig and Mahr 1985]. The basic building

blocks of terms are constanta, variables, and functions. The state logic

sublanguage is a usual first-order logic. The basic building blocks are atomic

formulas which are predicates over data terms. Atomic formulas can be

connected using the usual first-order connective not, and, or, and implies

as well as quantifiers forall and exists.

Temporal Logic. In addition to the state logic, TROLL provides two

temporal logic dialects: the past-tense logic to make assertions over the

history of objects and the future-tense logic to state properties for evolution of

attribute values. For both variants we assume discrete linear time, i.e., a time

line isomorphic to the natural number line.

The past temporal logic contains operators like always, sometime, previ-

ous, always sincelast, and sometime sincelast; the latter two are bounded

temporal quantifiers that state properties for a particular period of (abstract)

time. Without giving a formal definition here we provide only an intuitive

description for two frequently used operators.

always p holds at position j iff p holds at position j and all preceding

positions.

sometime p sincelast q holds at position j iff q held in state i and p held

in some state between states i and j (exclusively i, inclusively j). The state i

is defined as the maximum state where q held in the past, or as i = – 1 if q

did not hold in the past.

ACM Transactionson InformationSystems,Vol. 14, No.2, April 1996.

182 . Ralf Jungclaus et al.

For example we may use a formula always Balance > = O in an account

object specification to describe that a balance attribute has never had a

negative value. Additionally TROLL provides a predicate after, after(evt) is

true in all states reached by occurrence of the event denoted by event term

evt. For example we may use the formula (sometime after(deposit(m))

sincelast Balance < O) and m > Balance as a condition for a withdrawal to

state that we assume an account object has to be brought back to a positive

balance before the next withdrawal can take place.

The future temporal logic contains operators like alwaysf, sometimef,

next, until, and before; again the latter two state properties for a particular

period of (abstract) time. The future-tense operators are dual to the past-tense

operators and are used to describe possible attribute evolutions—the inter-

ested reader may refer to Jungclaus et al. [1991] for a detailed explanation of

the temporal logic used in TROLL.

Process Declaration. Object processes can be described using an explicit

process language that draws on CSP [Hoare 1985]. This process language

contains the usual operators for sequencing, choice, and recursion. We will

provide an example for this sublanguage in the next section.

Interaction. Synchronization of events is supported in TROLL by two

language constructs: event sharing and event calling. Event sharing (denoted

by ==) declares two event terms to denote the same event. Event sharing is

a symmetric declaration. Event calling on the other hand is asymmetric, a

declaration el > e2 enforces e2 to occur each time el occurs but not vice

versa [Hartmann and Saake 1993]. In fact, the temporal logic semantics of

el > e2 is given by the following formula:

always(occurs(el) - occurs)

where occurs(e) denotes the occurrence of e in a particular state.

4. OBJECT AND CIASS SPECIFICATION

4.1 Templates

In this section we are only concerned with the specification of single, isolated,

noncomposite objects. All issues about semantic links or abstractions among

descriptions, specification of communication, description of composite objects,

and description of systems composed from components are postponed.

Simple templates have sections for specifying data types, attributes,

event, constraints, effects of events on attributes (valuation), and behav-

ior. Behavior is specified either with permissions and obligations or using

an explicit process language (patterns). Templates may be given a name.

Thus, we can reuse template specifications just by giving the name. Most of

the beforehand-mentioned sections of a template are optional. The listed

template sections are explained for a simple BankAccount template in the

following subsections.

ACM‘1’ransatiionson InformationSystems,Vol. 14, No, 2, April 1996.

TROLL . 183

4.1.1 Signature. The data types, attribute, and event sections make up

the signature of a simple template definition. The symbols declared or

imported in the signature are the elements of the alphabet that can be used

in specification formulas of the template.

In the data types section, we import the signatures of data type specifica-

tions. The data type signatures contain the constant symbols and the opera-

tion symbols along with their parameter types for a data type. Data types are

imported using their unique name. As an example, suppose we want to

import the (predefine) data types nat (for the natural numbers) and string

(for strings of characters).

data types nat, string;

The next section of the signature of a template is the attributes section.

Attributes (as mentioned earlier) are observable properties of objects. Each

attribute takes values of a sort. Aa an example, consider attributes of a

template that describes accounts maintained by a bank. We use a data type

money that has the expected properties of data values describing amounts of

money.

attributes
Balance: money; Red: bool; CreditLimit:money;

We may declare also constant attributes by marking them with the key

word constant. Consider for example the holder of an account—in our

miniworld at hand, we may want to require that the holder of an account

never changes (once it is assigned a value):

constant Holder:lBankCustomerl;

In this example the codomain of the attribute Holder is a special data type: it

is the type of identifiers for instances of the class BankCustomer written as

lBankCustomerl. Thus, the elements of this type are ualues that identify

object instances of type BankCustomer. However, identifiers are not refer-

ences to objects. To refer to the object properties of bank customers, for

example, we have to use components or relationships. Components make it

possible to access objects from other classes that are closely related whereas

relationships are used to connect loosely related objects; see the relevant

sections below.

The codomains of attributes can also be domains of complex structured

ualues like sets or lists of values. Please recall that these are only data

values. Consider for example a customer of a bank. Each customer may be the

holder of a number of accounts. Thus, the specification of a template for bank

customers may include the following attribute specification:

Accounts: set(lAccountl);

Furthermore, attributes can be declared to be deriued, The values of

derived attributes are computed from the values of other attributes. In our

example, we want accounts to be able to provide information about the

ACM Transactions on Information Systems, Vol. 14, No. 2. April 1996.

1B4 . Ralf Jungclaus et al.

maximum amount that can be withdrawn from an account without overdraw-

ing it

derived Maxwithdrawal:money

The rules that speci~ the derivation of the values of derived attributes are

specified in the derivation section. It is possible to state (optionally) corzd-

tional derivation rules. Conditional derivation rules are only applicable if the

condition is valid in the current state. They have the following general form:

‘~(cordition)’)’ ‘ = - ‘ (attribute_ ternz) ‘= ‘ (data _term)

That is, every data term yielding a result of the appropriate type (of the

attribute) may be used to compute the value of a derived attribute.

A an example consider the following conditional derivation rules that

describe the computation of the attribute MaxWithdrawal of the BankAccount

template. Since the value of the attribute Balance is always positive even if

the account is in the red, two rules are required that state the computation in

the Red case and in the not Red case:

derivation
{ Red } = - MaxW[thdrawal = CreditLimit – Balance;

{ not Red } = - MaxWithdrawal = Balance + CreditLimit;

Another type of symbol that can be declared in the attributes section is an

attribute generator. An attribute generator is a parametrized attribute

name. This way, we may speci~ arrays of attributes or even infinitely many

attributes. Consider for example that we want to have an attribute for the

balance of an account at the end of each year. We may model that by an

indexed attribute symbol in the following way:

Balance(nat):money;

In the events section of a template, the event symbols of a template

specification are introduced. Event symbols may have parameters. Similar to

attributes, these may be refereed to as event generators or simply events.

Event parameters may be used to define the effects of an event occurrence on

the current state of an object, or they maybe used to describe the exchange of

data during communications. Consider the events section of the BankAccount

template:

events
birth open(in Holder:lBankCustomerl, in Type: {checking, saving});

death close;
new_credit_limit(in Amount: money);

accept_ update(in Type: UpdateType, in Amount: money);

withdrawal (in Amount: money); deposit (in Amount: money);

update _failed;

For a template, we require that at least one creation event be specified.

Creation events are marked with the keyword birth. The values of constant

attributes that are not defined by constraints (see Section 4.1.2) must be

provided as parameters of a birth event generator, here the attributes Holder

and Type. The key words in and out refer to the data flow when eventa are

ACM Transactions on Information Systems, Vol. 14, No. 2, April 1996

TROLL . 185

invoked. This is only useful in communications, Briefly, in parameters are set

by the environment, i.e., the data flows into the object. The values of out

parameters are set by the object, i.e., the value is delivered by the object.

Events that put the life of an object to an end (death events) are marked

with the key word death. It is not required to declare death events—if no

death events are specified, objects with this template cannot be destroyed.

Finally we may have active euents. Active events represent initiatives, i.e.,

they can be invoked by the object on its own initiative. For a discussion about

activity of objects see Section 4.1.5. Briefly, active events are the only events

that can occur without being called by other events. Thus, for a society to be

able to evolve at all, at least one active event must be declared in some

component. Active events are declared by marking an event with the key

word active.

4.1.2 Constraints. In the constraints section, we may impose restrictions

on the observable states and on the evolvement of attribute values over time.

Constraints that restrict the possible observable states are called static

constraints or inuariants. Constraints that restrict the possible evolutions of

attribute values over time are called dynamic constraints. Static constraints

are formulas of first-order logic. Dynamic constraints are formulas of future-

tense temporal logic [Lipeck 1990; Saake 1991; Saake and Lipeck 1989;

Sernadas 1980]. Constraints that are implicit restrict also the admissible

behavior of objects in that certain state transitions (i.e., event occurrences)

are not permitted.

For accounts, we may state the following:

constraints
initially Red = false;

initially CreditLimit = O;

initially Balance = O;

initially ((Balance > 100) before Red); /* (1)
Red ~ (Balance < = CreditLimit);

Red ~ sometimef(not Rsd); /* (2)

Constraints with the key word initially state conditions to be fulfilled

relative to the initial state. Consider the initial constraint (1) which says that

after an account has been opened, the balance must have been more than 100

once before it can be overdrawn. The formula (2) states that if an account is

in “red conditions, ” it has to leave this condition sometime in the future.

4.1.3 Effects of Events. The values of attributes may change with the

occurrence of events. Thus, to describe the change of objects over time, we

have to describe how the occurrence of events affect the values of attributes.

Valuation formulas in the valuation section of a template are based on a

positional logic [Fiadeiro and Sernadas 1990]. The sentences in the valuation

section refer to positions in a sequence of state transitions. Valuation rules

have the following form (the condition is optional; there may be several

effects; see below):

{guarding condition} = - [event term] attribute term = data term,...;

ACMTransactionson InformationSystems,Vol. 14,No.2, April 1996.

186 . Ralf Jungclaus et al.

The rule says: immediately after the event denoted by event term the

attribute denoted by attribute term has the value denoted by data term

evaluated in the previous state. In more traditional terms, this describes an

assignment by an event occurrence. The term on the right side of the equality

sign is evaluated in the state before the event occurred. Implicitly we use a

frame rule saying that attributes for which no effects of events are specified

do not change their value after occurrences of such events.

For our BankAccount template we may have valuation rules such as:

valuation
variables m:money;

[new_ credit_ limit(m)] CreditLimit = m;

{ not Red and (rn> Balance) } = =
[withdrawal(m)] Balance = m – Balance, Red= true;

The first rule states that the event new_ credit_ limit(m) changes the value of

attribute CreditLimit to the value denoted by m. The second rule is only

applicable if the guard holds and changes two attribute values in a straight-

forward manner.

4.1.4 Behavior Specification. A major part of a template specification is

made up of the behavior specification. By behavior specification we mean

here the specification of the permitted event sequences. That is, we have to

specify precedence relationships for events, completeness requirements for

life cycles, and some form of activity. Each event trace must satis~ the

behavior specification.

Permissions. Permissions ensure that nothing bad does occur in the life of

an instance. They are stated in the permissions section of a template. The

general form of permissions is

{(temporal)condition}event _term;

For convenience, it is possible to have a list of event terms after the

condition if the same condition applies for all the event terms listed. Permis-

sions may refer to the current observable state (simple permissions) or to the

history of events that occurred in the life of an instance so far (temporal

permissions). In simple permissions, the condition is a formula of first-order

logic over the signature of a template. Aa an example for a simple permission

look at the following rule that requires an account to be empty before it can

be closed:

{ Balance= O } close;

Simple permissions may refer to the parameters of the event which is

guarded by a permission condition. Here, for example, we have a precondition

that prohibits withdrawals of more than the maximum withdrawal being the

current value of the attribute MaxWithdrawal:

variables m:money;

{ m < = MaxWtihdrawal }withdrawal (m);

By default all variables are quantified universally, i.e., this condition holds

for all possible values of m. Temporal permissions have a condition that

ACM Transactionson InformationSystems,Vol. 14, No. 2, April 1996.

TROLL . 187

refers to the history of the instance. Thus, the condition is a formula of

past-tense temporal logic.

Very often, the condition refers to event occurrences in the past. The after

predicate is used to state that an event just occurred. An example for a

temporal permission is the rule that the credit limit can only be updated if

there has been at least one deposit before:

variables ml :money;

{ exists(m:money) (sometime(tier(deposit(m)))) }new_credit_limit(m l);

We have to bind the variable m with an existential quantifier since we only

require the precondition to be true for at least one value for m. Additionally,

there are a number of implicit permissions that need not be specified, e.g., for

birth events: they are not allowed to occur afler a birth event has already

occurred in the life of an instance.

Obligations. In the obligations section, we state completeness require-

ments for life cycles. These requirements must be fulfilled before the object is

allowed to die. The simplest form of an obligation is an event term. This

means that the events denoted by the event term must occur in the life cycle

of an object. A simple example of this is the requirement that each account

must be closed sometimes, i.e., an instance must die eventually:

obligations
close;

Parameters of events are universally quantified implicitly if not otherwise

stated. This is not always suitable. An obligation may have to be fulfilled for

at least one element of a set. An example for this may be that a deposit must

be made at least once:

exists(m:money) (deposit(m));

Obligations may also be whole processes that must occur in a life cycle of

an object. Thus, also a process description may be stated as an obligation. For

accounts, this may be that at least one deposit transaction must be performed

successfully:

exists(m: money) (accept_ update(deposit,m) + deposit(m));

We also admit combinations of simple obligations. Obligations may be

combined disjunctively and conjunctively. For a disjunction, at least one of

the alternatives must be fulfilled. As an example consider the obligation that

at least one update (a withdrawal or a deposit) must occur in the life of an

account:

exists(m:money) (deposit(m) or withdrawal(m));

For a conjunction all the alternatives must be fulfilled. Usually, obligations

depend on the history of the object. The following requirement states that

once an event accept_ update(t, m) occurs this update must be completed

ACMTransactions on Information Systems, Vol. 14, No. 2, April 1996.

I

laO . Ralf Jungclaus et al.

eventually by an occurrence of one of the events update _failed or deposit(m)

or withdrawal(m):

variables t:{deposit, withdrawal}; m:money;

{ after(accept_update(t, m)) } = =
deposit(m) or withdrawal(m) or update _failed;

A complete life cycle is only admissible if the obligations are finally

satisfied before the death event.

Patterns. Patterns describe explicitly how events are ordered in the life

cycle of an object. Usually, patterns are used to describe processes, i.e.,

sequences of events. In TROLL, patterns do only restrict the occurrences of

events appearing in the process declaration: events that are not covered by a

process definition may interleave the process defined by a pattern specifica-

tion.

In principle it is possible to specifi arbitrary behaviors with permissions

and obligations. The motivation to introduce the specification of patterns as

yet another means to specifi behavior is convenience. If we have to speci~ a

very determiwd behavior, then we must specifj many permissions and

obligations—the specification of patterns is just more concise and more

natural. The patterns section of a template consists of variable and process

declarations along with process definitions.

To illustrate the use of the process sublanguage consider the description of

automatic teller machines (ATMs) (we only show the pattern specification

here);

patterns
variables n, p:nat; m:money; C:lCashCardl;

process ATM_ USAGE = read_ card(C) ~ check_card_w_bank(n, p)

+ GO_ON + eject + ready
where process GO_ ON = case

bad _card_msg;

card _accepted ~ case

cancel;

DO_lT;

esac;

eeac

where process DO_ IT = issue _TA(n, m) + case

dispense(m);

TA_failed_msg

eeac

end process
end process

end process;

The events denote the start of a service session (read_ card), the request for

checking a cash card (check _card _ w_ bank), various messages to the ATM

user (card _accepted, bad_ card_ msg), the issuing of a transaction request to

the bank (issue _TA), the ejection of the inserted card (eject), and the dispens-

ing of cash.

Atl.er the card has been read, the session proceeds with the check _card _

w_ bank event. Through the variables we are able to use the values read by

ACM ‘lhnsact.ions on InformationSystems,Vol. 14, No. 2, April 1996,

TROLL . 189

the read _ card event (i.e., variables are not universally quantified but chosen

by the environment; they are existentially quantified implicitly). The key

word case indicates such an externai choice, i.e., the decision for one of the

alternatives is left to the environment. The GO_ ON, pattern starts with

another external choice which depends on whether the inserted card is valid

or not (a decision which is not made by the ATM). If the card is accepted, the

process may be canceled or may go on with the launch of a transaction that

can either be terminated with dispensed of cash or a failure message. That

decision is again not made by the ATM but by the environment. In any case,

the service session with an ATM ends by the ejection of the cashcard. An

external choice requires communication with the environment that decides on

how to proceed.

4.1.5 Actiuity. Let us now briefly comment on the specification of object

activity. From our point of view we identified the following forms of object

activity [Saake 1993]:

—An object triggers another object or a collection of other objects.

This is the classical case of objects being regarded as either active or

passive entities. An active object may initiate something whereas a passive

object suflers something. Note that the classification of objects using this

criterion is valid only in the current instant of time since an object that

triggers something can be requested to do something by another object

immediately after having been active in this sense. The object that triggers

has the authority to cause activity. A trigger can be regarded as a directive.

In TROLL this kind of activity is modeled as calling events in other objects

[Hartmann and Saake 1993].

—An object performs a number of actions as a reaction on being triggered.

This is the traditional computer system view of activity. Programs need to

be triggered (i.e., started) to do a number of tasks that have been specified in

a certain order (i.e., programmed) before. In TROLL this kind of activity is

modeled with process patterns that are valid after events that cause such a

reactive behavior, i.e., obligations with suitable past temporal logic condi-

tions.

—An object can do something on its own initiative without being asked to do

it.

While modeling the real world it is often the case that system components

(e.g., users or models of entities whose behavior is unpredictable) may do

something in a nondeterministic way. A formalism has to offer a means to

describe such spontaneous activity. Spontaneous activity often arises in

abstracting from causality of actions. Take for example a user of the library:

if we say that he or she may spontaneously decide to borrow a book, we

abstract from reasons that cause this behavior. Events with initiative have to

be modeled as active events in TROLL.

ACMTransactions on Information Systems, Vol. 14, No. 2, April 1996.

190 . Ralf Jungclaus et al.

4.2 Temporal Semantics of Template Specifications

In this section, we want to give some ideas toward the semantics of template

specifications in terms of a temporal logic [Manna and Pnueli 1992]. In fact,

we use a general temporal logic which includes the past-tense and future-tense

temporal quantifiers. A possible object evolution can be described by a state

sequence, and therefore linear temporal logic is appropriate for giving a

logical semantics to object specifications. Here, we want to give some hints

toward a translation of template specifications in sets of sentences over some

temporal logic which we want to call a temporal object specification in the

sequel.

The signature of a temporal object specification is composed from the data

type signatures imported in the template specification and the signature of

the local events and attribute (attribute generators). Let us now briefly

sketch the translation of the sections of a template specification.

In the derivation section, we have stated equations between derived

attributes and data terms. These equations are first-order formulas. They

have to be valid in every state the object goes through—thus, they are

translated into invariants. A derivation @ can be handled as a (static)

constraint.

In the constraints section, we have stated formulas of future-tense tempo-

ral logic. Additionally, we are able to state initial constraints. Initial con-

straints do not have to be translated. Other constraints are invariant, i.e.,

they are valid for the whole lifetime of an object. Let #J be a constraint

formula (or a derivation equation). It is translated into

alwaysff +).

Valuation rules describe the effects of event occurrences on attribute values

depending on the old state. Let e an event term, a an attribute term and t a

data term. Then a valuation rule

[ela = t

is transformed into a temporal formula of the following form:

Vx:sort(a):(alwaysf((t =x) = (next(after(e) ~ (a= x)))))

where the variable x is used to save the value of the term t evaluated in the

old state. All free variables in valuation rules have to be bound explicitly by a

universal quantifier. We use the notation sort to denote the sort of an

attribute.

Recall that we employ a frame rule: each attribute which is not affected by

an event occurrence does not change its value in such a transition. This has

to be stated for all transitions e modifying a in a formula like

VX:SOrt(a):&Vayd(((a =x) A next(a # x)) = next(after(e) V . ..))

The disjunction “after(e) v . ..” lists all events which are allowed to change

attribute a. Note that attributes are assumed to have valued undefined

upon creation of an object if not explicitly initialized. Undefined is assumed

to be element of all data sorts used in TROLL.

ACMTransactionson InformationSystems,Vol. 14, No. 2, April 1996.

TROLL . 191

For the behavior section, the translation is more complicated. First of all,

we have to ensure that the initial state is reached by a birth event transition

and that no following transition includes a birth event. Let s,, , . . . S. be data

sorts and b(sl, ..., s,) be a birth event generator. Then the temporal object

specification must include the following two formulas:

3x1:s1, ,.. ,xn:sn:after(b(x 1,. ... xn))
Vxl:sl,..., xfl:sflmext(alwaysff lafter(b(x,,... ,X.))))

For death events, we must ensure that transitions including them will lead

to an empty state, i.e., the only state where the constant false is valid. Let

S1, ..., S. be data sorts and d(sl,... , s.) be a death event generator.

VX1:S1, s~:s~:alwaysf(after(d (xl,. . . . x“))) = next(false)

Permissions have the general form { ~ } e, where + is a formula of

past-tense temporal logic, and e is an event term. Permissions are translated

into

aIwaysfi T ~ = next(- after(e)))

In a second step, all free variables must be universally quantified. In the

temporal object specification, permissions are formulas combining past-tense

and future-tense temporal operators.

For obligations, we have several forms. An event term e as an obligation is

translated into

sometimeffafter(e))

For an obligation of the form

exists(x:asort) . . e(. ... x, ...)

with an event generator e the following temporal formula is created:

3x:asort: . . . sometimeffafter(e(..., x, . . .)))

Conjunctions and disjunctions of obligations are translated to conjunctions

and disjunctions of the translations of the components, respectively. Con-

ditional obligations are translated to an implication bound by alwaysf

[Jungclaus 1993; Saake 1993].

We do not want to go into detail on the transformation of process defini-

tions into temporal logic formulas. In general it is known that explicit process

formalisms like CSP can be translated into temporal logic with the possible

necessity to use an extra variable to encode the current state [Jungclaus

1993].

4.3 Classes

A class type defines the potential instances of a class of that type. Thus, it

can be regarded as being the schema for a class. An instance is specified by a

template identified by an identifier. Thus, a class type is defined by a

template along with a set of possible identifiers (the identification space). An

ACMTransactionson InformationSystems,Vol. 14, No.2, April 1996.

—

‘1

192 . Ralf Jungclaus et al.

instance identifier is a value of a special data type, the type of identifiers of a

class type.

A class can be seen as a container for instances of the corresponding class

type. The class type defines the possible extensions of a class. In general,

class types may not be specified separately but their specification is part of a

class specification,

Basically, a class type consists of a template and a data type for the

possible identifiers of instances. Objects are identified by values in our

framework. An object identifier remains unchanged for the whole lifetime of

an instance. Moreover, it is unique in the system. For each type an associated

identification space is defined. An identifier along with the class name then

identifies an instance of a class uniquely.

For the definition of identification spaces, we use an approach that com-

bines the advantages of key mechanisms known from the database field (e.g.,

Date [1986]) and surrogates (e.g., Codd [1979] and Kent [1978]). The ap-

proach is based on abstract data types. The idea is to characterize a type of

invisible identifiers (i.e., surrogates) by operations that construct these values

from key values. The basic advantages are:

—the identifier is not directly visible;

—the construction of identifiers is based on key data types;

—key values can be obtained from an identifier, and

—identifiers are typed.

For identification spaces, we use the following notational convention: for a

class type class the identification space is notated as lclassl. The name of the

identification space can be used in template specification like an ordinary

data type name.

We implicitly have some operations on a data type Iclassl, namely the

operation class to construct a Iclassl value from key values and fimctions to

map [class Ivalues to the corresponding constructor key values. In the sequel,

we will call these constructor values key values, their types key types, and the

cartesian product of the key types key domain. The result of this is that

—the data type Iclassl is isomorphic to the type

tuple(key-type_ 1,..., key-type_ n);

—if not explicitly specified in the identification section (see below) Iclassl is

isomorphic to nat (no primary keys are specified);

—we do not say anything about the representation of lclassl-values; and

—the carrier set of Iclassl is the set of possible identifiers.

Since we use key values to construct identifiers, the language features to

specifi identification spaces in TROLL are similar to the definition of key

attributes in data definition languages. For a class type as explained above,

we may speci~ one or more classes. The class type in general is specified

along with the specification of the corresponding class. The class type then

has the name of that class. As an example for a class definition let us give the

specification of an object class Account that describes accounts. This object

ACMTransactionson InformationSystems,Vol. 14, No. 2, April 1996.

TROLL . 193

class reuses the BankAccount template discussed in Section 4.1. Implicitly we

define the class type Account with the identification space IAccountl.

object class Account

identification
data types nat;

No: nat;

template BankAccount

end object class Account;

Single objects are special classes that have at most one instance. In

TROLL, we have a special syntactic construction to specifi single objects.

As an example consider a system which models exactly one bank. Then, we

would specifi a single bank object identified by a name like “BankOfTroll.” We

do not give a complete specification here, however.

object BankOffroll

template
. . .

end object BankOfT roll;

For single objects, the identification space consists only of the name of the

object.

5. ROLES AND SPECIALIZATIONS

Up to now we only talked about object templates, individual objects, object

identities, and object classes. But an object is more than a template with an

attached identity. If we look at an object from different perspectives, we are

able to see special facets or concentrate on special properties. This way, we

can speak about aspects of objects [Ehrich and Sernadas 1991; Saake et al.

1992]. Different aspects may be specified separately in TROLL. We may start

with some general information about a real-world entity and construct a

basic object description for this entity. For example a person may be de-

scribed by name, birthday, etc.

As a next step we concentrate on special aspects of this entity and con-

struct specialized object descriptions. These aspects may be either static, a

person can be looked at as male or female, or dynamic, a person may show

specialized behavior for some time in its life (he or she may become a

customer, car driver etc.). The former case is modeled as a specialization of

person, the latter as a role of person.

Modeling real-world entities using specialization and roles imposes a struc-

ture on the specification. Structuring mechanisms in object-oriented lan-

guages are usually described using inheritance hierarchies. TROLL supports

two different levels of inheritance:

—syntactic inheritance denotes reuse of specification code. This means, at-

tribute and event symbols of the parent object are visible in its ancestors.

For example the birthdate attribute is known by a role or specialization of

person;

—semantic inheritance denotes reuse of the objects itself, meaning that the

behavior, i.e., the dynamic part of a parent object, is known by its ances-

ACMTransactionson InformationSystems,Vol. 14,No. 2, April 1996.

194 . Ralf Jungclaus et al

tors. For example, role and specialized objects can refer to attribute values

and the current state of their parent objects.

The next two sections introduce the main abstraction mechanism sup-

ported in TROLL: roles and specialization as temporary and static aspects of

objects.

5.1 Semantic Inheritance

The concept of role describes a dynamic (temporary) specialization of objects

[Pernici 1991; Wieringa 1990; Wieringa and de Jonge 1991]. As an example

consider the roles customer and employee of persons. For instance, a given

person may be looked at as an employee or a customer for a given period of

time. Even more, the person may play different roles at the same time. For

role object specifications we require the following conditions to hold:

—The role object will optionally introduce a set of new attribute symbols.

Since the inherited attribute symbols can be identified by qualifying their

names with the name of the base object\ class, we may avoid name

conflicts. If there are no name clashes, the qualification can be omitted.

—The role object has birth and optional death events. An object may play a

role several times. We require the birth and death events either to be

inherited from the parent of the role or be locally defined. The two

mentioned possibilities reflect that the creation may be under local control

(first case) or due to communication with the environment (second case). As
usual we require the birth event to be the first event of a life cycle and a

death event the last event of the life cycle of a role object.

—Valuation rules may be specified as usual. They can only be applied to

locally defined attributes (otherwise the update of an inherited attribute

violates the locality of attribute updates). On the other hand, valuation

rules may contain inherited events. The role object may suffer from events

occurring in the base object and change state according to the state

changes in the base object. As an example consider the birthday event of a

person object which may have effects on the role employee of person (for

example, a salary increase).

—However, update of attribute values of the parent object is still possible—

but not directly! For this purpose, inherited events may be triggered by

events of the role object. Note that the locality of attribute updates may not

be violated in this way since state changes of the parent object take place

under local control, i.e., may be prohibited by permissions.

—Attribute values from inherited objects may be read; they are visible. All

data terms defined in the role object may therefore contain inherited

attributes.

—Constraints may be specified for local and inherited attributes. An object

playing a role can thus have a more restricted behavior. Some attribute

updates may be allowed; others, violating the newly specified constraints,

are forbidden. For example, we may have specified that an employee must

not be older than 65 years.

ACM Transactionson InformationSystems,Vol. 14, No. 2, April 1996.

TROLL . 195

—For permissions we can state the same as for constraints: the possible

occurrences of events inherited from the parent object may be further

constrained during the life time of the role instance.

—New interactions using calling can be added because an added interaction

corresponds to stronger permissions.

—Obligations can be added, too (they can be seen as permissions for the

death event).

These requirements follow from a monotonic inheritance relation as de-

fined on a logical level: an object instance corresponds to a temporal theory

defined as a consequence of some axioms, and inheritance means adding new

propositions but keep all old logical consequences (strengthening of condi-

tions).

5.2 Role Specification

After having discussed the general requirements for semantics inheritance,

let us consider the following example. Assume, that we specified a template

person having attributes like Name, Birthdate, Address, Age, etc. In a bank

world, the person may play the role of a customer. The role object BankCus-

tomer is described by the following specification:

object class BankCustomer

role of Person;

template
data types nat, set(nat);

attributes

Accts:set(nat);

events

birth become_ bank _customer;

death cancel;

open _ account(out Acct :nat); close_ account(in Acct:nat);

constraints
Age >= 14;

valuation
variables n:nat;

[become –bank_customer] Accts = ernptyset();
[open _account(n)]Accts = insert(n, Accts);

{ in(n, Accts) } = - [close_ account(n)lAccts = twrnove(n, Accts);
behavior

permissions
variables n:nat;
{ sometime(after(open _account(n))) } close_ account(n);

end object class BankCustomer;

The role introduces new attribute and event symbols extending the signa-

ture of the original person object. The event become_ bank _customer induces

the object Person playing the role BankCustomer and creates the role object.

Clearly, the newly introduced events for opening and closing accounts make

sense only for bank customers. The only attribute Accts registers the current

available accounts for this person.

ACM Transactionson InformationSystems,Vol. 14,No.2, April 1996

196 . Ralf Jungclaus et al.

In the constraints section we refer to an inherited property. Bank cus-

tomers in our example at hand must be older than 13 years. The mentioned

constraint may also prevent the birth event of the role to occur. The seman-

tics of role specifications is formally given by seeing the parent object as an

(inherited) part of the role object [Jungclaus 1993; Jungclaus et al. 1991;

Saake 1993].

Recall that multiple inheritance can also be formulated in this context. On

the level of the role class, we have an intersection of the class populations of

the parent classes. Thus we require that all parent classes of a role inherit

from some shared object class located higher in the inheritance graph. On the

level of instances, we require that an inherited property can be traced back to

exactly one node in the inheritance graph.

5.3 Specialization

Another case of an object aspect is specialization. A specialization is a special

case of an object role, namely a role played for the whole life of an object.

Therefore, we do not have birth and death events for a specialization. The

general requirements introduced for role object specification also apply to the

specification of specialized objects.

The concept leads to a structured specification, factoring out the common

properties in the description of the base objects, describing the special

properties in the specialized objects. In conceptual modeling this concept is

known under the term is-a or kind-of relationship. In this context, roles may

be looked upon as being event driven whereas specialization is value based

(see below).

With the birth of an object we must be able to decide to which class the

object belongs. This is done using a specialization condition, a predicate over

the constant attributes and identification components. Restricting the spe-

cialization predicate to constant properties of the object implies that no

change of object classes is possible for a specialized object.

As in the case of object roles, an object may belong to different specialized

classes of objects at the same time; it may be a specialization of several

objects/classes; and specialization may be specified for single objects and

class types. For a specialization, as a special case of a role, the same

conditions as stated above apply. The membership of objects to specialized

classes is determined with the birth of the parent objec~ this way we need no

local birth and death events for specialized objects.

As an example, consider a CheckingAccount, a specialization of our Ac-

count. A CheckingAccount has special properties in addition to its base

template Account. With each checking account, a constant personal identifica-

tion number PIN and a set of cashcards is associated:

objeet class CheckingAccount

specializing from Account where Type = checking

template
data types nat, lCashCardl,set(lCashCardl);
attributes

constant PIN:nat;
Cards:set(lCashCard 1);

ACM Transactionson InformationSystems,Vol. 14, No. 2, April 1996.

TROLL . 197

eventa
assign _ card(in C: lCashCard 1);cancel_ card(in C: lCashCard 1);

constraints
initially Cards = empt yset;

valuation
variables C:lCashCardl;

[assign_card(C)]Cards = insert(C, Cards);
{ in(C, Cards) } = - [cancel_ card(C)]Cards = remove(C, Cards);

end object class CheckingAccount;

With the creation of an Account (once and for all the life of the object) it is

determined whether the instance belongs to the class CheckingAccount de-

pending on the value of the (constant) attribute Type of the base class.

Since specialization is only a special case of a role, namely a role played for

the whole life of the object, the semantics of specialized class specification can

be directly transferred from the general case of object roles.

6. COMPOSITE OBJECTS

Composite objects are a means to describe aggregation of subobjects into

structured objects. This construction known from semantic data models is

especially useful for the description of nonstandard applications, e.g., in

engineering and office automation. For composite objects the components are

encapsulated in the sense that their state may only be altered by events local

to the components. Their attribute values, however, are visible. The coordina-

tion and synchronization between the composite object and its components

must be performed by communication.

The semantics of composite objects is based on the concept of safe object

embedding. The concept of embedding defines the inclusion of an object into

another object without violating any of its properties [Hartmann et al. 1992;

Sernadas 1987]. The semantics is the following. On the one hand the signa-

ture of the composite object is obtained by disjoint union of the local signa-

ture of the composite object (without the components) and the local signature

of the components. On the other hand we must also deal with the included

instance, that is, the effects of this construction on the process and observa-

tions of the participating objects. For all possible life cycles and the associated

observations of attribute values of the composite object we state the following

properties:

—For any life cycle of the composite object we obtain a valid life cycle of a

component object if we restrict this life cycle to the events local to the

component. This means that a valid life cycle of the composite object

contains the life cycle of a component as a “subprocess.” Thus, the aggrega-

tion does not change the behavior of the parts; it may however restrict the

set of life cycles of the part.

—A somewhat similar condition must hold for the observation of the parts.

An observation for a given life cycle denotes the binding of attributes to

associated data sort values. Suppose that we have an observation of the

ACM Transactions on Infonm .,on Systems, Vol. 14, No. 2, April 1996.

—

198 . Ralf Jungclaus et al.

composite object derived from one of its possible life cycles. Then we take

into account only those attributes local to some subobject. We require this

(subobject) observation to be the same as the observation of the part object

derived from the life cycle of the composite object restricted to the events of

the part. That is, an observation of the part does not change in the context

of the composite object.

A more detailed formal treatment of embedding relationship and calling

can be found in Ehrich et al. [1990], Hartmann et al. [1992], Saake [1993],

and Saake and Jungclaus [1992a]. To guarantee the stated properties on the

language level, it is not allowed to have valuation rules for inherited at-

tributes. The set of possible life cycles of the embedded objects maybe further

constrained by means of communication if it is part of a composite object.

Communication is possible using event calling. Event calling denotes the

synchronization of object life cycles by stating constraints on the occurrence

of events in the components. This way calling expressions imply further

restrictions on the behavior of the component objects: some of their life cycles

may not be possible in the context of the enclosing composite object and the

specified communication structure.

Object embedding is used as the basic mechanism to describe the semantics

of other high-level language constructs throughout this article. In our frame-

work it is the only way to relate different objects on the semantic level. We

will now proceed with the syntactic representation of components (dynamic

composite objects). Dynamic composite objects allow for high-level description

of object composition. Components may be specified as single components as

well as sets or lists of components. They have a life of their own and may be

shared by other objects as well.

With the specification of a dynamic composite object denoted with the key

word components we have implicitly defined events to update the composi-

tion. Additionally, we have implicit attributes to observe the composite object.

This view of composite objects is operational. In another terminology we can

say that dynamic aggregation is event driuen.

We now give an example of a specification of a bank including accounts as a

set component and a single instance of class Person denoting the manager of

the bank. Some parts of the bank specification are omitted since we want only

to deal with the important parts of a component specification:

object Bank

template
data types nat, lATMl, UpdateType, money, lCashCardl;

components
Manager: Person;

Accounts: SET(Account);

eventa

birth establish;

death close_down;
open _account(in Nomat); close_account(in No:nat);
card_ request(in AcctNo:natl; card_ return(in C:lCashCard!);
. . .

ACM Transactionson InformationSystsms,Vol. 14, No. 2, April 1996

TROLL o 199

behavior
permissions

variables n:nat;
{ not Accounts.lN(Account(n)) }open_account(n);

{ sometime after(open _account(n)) } close _account(n);
,..

interaction
variables n:nat; C:lCashCardl;

open _account(n) > Accounts.lNSERT(Account(n));

open _account(n) > Accounts(Account(n)).open; . .

{ Accounts.lN(Account(n)) and not in(C, Account(n) .Cards)} = =
card_ request(n) * Accounts(Account(n)) assign _card(C);

card _ return(C) *

Accounts(Account(CashCard(C).ForAccounti).cancel_card(C);

. .

end object Bank;

Initially, the Bank has no component. To manipulate the set of component

accounts, the events Accounts.lNSERT(lAccount [) and Accounts. REMOVE

(lAccountl) are automatically added to the signature of the Bank object. For

set components a parameterized, bool-valued attribute, in this example Ac-

counts .lN(lAccount 1):bool, is included in the signature of Bank.

For the behavior of the composite object the communication inside the

composite object must be specified. Communication can take place among the

component objects and between the composite object and the component

objects. See for example the clauses

open _account(n) * Accounts .lNSERT(Account(n));

open _ account(n) * Accounts(Account(n)).open;

which state, that every time an account identified by the natural number n is

opened, it becomes a member of the set of components, and the event open is

called in the corresponding object Account(n). The event open _account in the

Bank object may only occur if the expression (not Accounts.lN(l.4ccountl))

evaluates to true. Calling in the opposite direction—from the component to

the composite object—is also supported in this framework.

As mentioned above, with the definition of components, implicitly gener-

ated events and attributes are added to the signature of the base object.

These special events are used to update the composition, i.e., to alter the

structure of the composite object. Similarly the attributes are used to observe

this structure. In case of single-object components we have attributes to test

if a component is assigned (DEFINED), to retrieve the object identifier of the

component (ID) and events to assign and remove components (ASSIGN, RE-

MOVE). Similarly for set- and list-valued components there are attributes like

EMPTY and CARD, and events like INSERT and REMOVE, etc. For list

components we provide means to access the component objects, for example

FIRST (the first element of the list). For a detailed list and description of the

generated attributes and events see Jungclaus et al. [1991] and Saake [1993].

The semantics of dynamic composite objects may not be described with safe

object inclusion directly, since this concept only allows for static object

ACM Transactions on Information Systems, V(JI 14, No !2, April 1996.

—

200 . Ralt Jungclaus et al,

composition. Nevertheless, we may introduce a two-level translation to de-

scribe the semantics of dynamic composite objects regarding the possible

compositions induced by a specification of dynamic components [Jungclaus

1993; Jungclaus et al. 1991].

7, SPECIFICATION OF SYSTEMS

When it comes to describing systems of interaction objects, it is not sufficient

to provide only the structuring mechanisms described in the previous section.

In system specification, we have to deal with relationships among objects,

with inter/hces to objects and with object societies. In other words we have to

describe the interconnections among relatively independent objects that only

synchronize sometimes in their life. Interfaces together with relationships

define these interconnections.

Object descriptions are the units of design corresponding to real-world

entities. In the case of complex real-world structures, these design units may

be aggregated to composed object. The parts of a complex object may commu-

nicate, interchange data values, and show restricted behavior.

TROLL supports the specification of communication and integrity relations

among objects via the relationship construct. Relationships on the one hand

are used to depict the interconnection among separately defined objects,

defining the communication patterns among these objects. On the other hand,

relationships can be used to describe integrity constraints among instances of

(possibly different) classes.

Another important topic in structuring complex systems is the declaration

of interfaces or abstractions to objects hiding details of object classes. TROLL

provides the interface concept to define object interfaces offering construction

principles similar to those for views in relational databases.

7.1 Relationships

Relationships connect objects that are specified independently. Basically,

relationships are language constructs to describe how system components are

connected in order to describe the whole system.

Global Interactions. Global interactions describe communication among

objects. We use the syntax for interactions depicted for complex objects.

Global interactions along with the specification of the connected objects

describe patterns of communication among objects.

Global interactions and constraints are specified with a special language

construct, the relationship. First, the relationship is given a proper name.

Second, the participating objects are specified giving their object names or

class names. In the third part of a relationship specification, the possible

calling relations are given.

For an example for a relationship describing interactions, consider the

following relationship between banks and ATMs:

relationship RemoteTransaction between Bank, ATM;

data types lATMl,nat,money, UpdateType;

interaction

ACM Transactionson InformationSystems,Vol. 14, No. 2, April 1996.

TROLL . 201

variables atm:!ATMl; n,p:nat; m:money;
ATM(atm) .check_card _ w_ bank(n,p) > Bank. verify _card(n,p,atm);

Bank. no_ such _account(atm) * ATM(atm) .bad_account _ msg;

.,.

end relationship RemoteTransaction;

From a process point of view, such a relationship describes how the in-

volved processes synchronize. The event check_ card _ W_ bank occurring in

an ATM denotes a request to the bank to verify the inserted cash card. The

other clause concerns the result of the card checking at the bank which must

be transmitted to the corresponding ATM.

In interaction specifications, we may want to refer to the history of events

in the connected objects. Consider the interaction between an ATM customer

(of which the specification may become the description of a user interface

later) and an ATM. Here, we must put precedence rules into conditions for

interactions to model the process of communication:

relationship UseATM between ATM Customer, ATM;

data types !ATMCustomerl, IATMI, lCashCardl, nat, money;

interaction
variables C: ~TMCustomerl; atm: !ATMI; CC: lCashCardl; p:nat;

Customer(C) .insert_card(CC, atm) * ATM(atm).read_card(CC);

{ sometime after(Customer(C) .insefi_card(CC, atm)} = =
Customer(C) enter_ PIN(p, atm) >

ATM(atm) .check_card_ w_bank(CashCard(CC) .ForAccount, p);

end relationship UseATM;

For precedence rules, we may use the after predicate. The above-mentioned

rule states that once a particular ATM customer inserted a cash card, the

input of the PIN calls for the check_ card_ W_ bank event in the same ATM.

We use a simple execution model where a chain of calls may only be carried

out if all called events are permitted to occur (atomicity principle). More

details on this model, for example, data transfer among events of a calling

chain, can be found in Hartmann and Saake [1993]. We are aware of the

limitations of this approach with respect to exceptions and long transactions.

Global Constraints. When we model systems by putting together objects,

we sometimes have to state constraints that are to be fulfilled by related but

independently specified objects. Such global constraints set up another kind

of relationship among objects.

To specify global constraints, we need to know the participating objects. It

is also possible that we want to describe constraints among different objects

of the same class. The two points mentioned lead to the decision to use the

same construct for the specification of global constraints as for global interac-

tions. The close relationship between constraints and interactions (in fact,

global interactions are a special kind of global constraints on the life cycles of

participating objects) leads to two blocks: an interaction and a constraints

block inside a relationship construct.

ACM Transactions on Information Systems, Vol. 14, No. 2, April 1996.

202 . Ralf Jungclaus et al.

Consider the following example. When modeling our banking world, there

may be a regulation that one particular bank customer may only be holder of

at most one checking account. In TROLL, this would be specified as follows:

relationship CheckingHolder between CheckingAccount Cl, CheckingAccount

C2;

data types lBankCustomerl, na~

constraints (Cl .Holder = C2.Holder) * (Cl .No = C2.NO);

end relationship CheckingHolder;

This constraint is an example for a global relationship since it cannot be

specified to be local to one instance of the class CheckingAccount. Here we

also have an example using two different object variables for instances of the

same class.

7.2 Interfaces

Objects in TROLL such as those introduced up to now consist of a behavior

and an observation component. The former is specified as the possible evolu-

tion of objects in terms of allowed events in some given object state, the latter

corresponds to attribute values for a given state and their change according

to the occurrences of events. Both components may be seen from outside the

object; that is, all attribute values may be read, and event occurrences may

be observed or triggered. Specifying a system of objects, we sometimes want

to hide details of objects. It may be necessary to encapsulate some attributes

and events explicitly since they must not be known outside the object if we

specifi interconnection channels with other objects that only have to observe

a special facet needed for communication. This is particularly true for imple-

mentation and refinement issues, where the user must not know about

complicated data structures or event traces used to described internal activi-

ties of the system. In TROLL such restricted interfaces may be defined as

projection interfaces.

When specifying object (class) types, we describe possible extensions in

terms of object instances with a structure and behavior according to the type

specification. These objects are classified into object classes with the cor-

responding type. Object classes may be further structured when we se-

lect subpopulations of class instances. In TROLL this is achieved in defining

selection intetiaces.

Projection Interfaces. When specifying a system of objects, we sometimes

want to hide or encapsulate some details. In the process of implementing

objects, an event Bank _TA may be further specified in terms of other events

occurring in sequence or parallel. We do not want to see these additional

events on the level described so far. This way, we may speci& encapsulated

modules where the internal behavior is not relevant for the user of these

parts.

ACM‘Transactionson InformationSystems,Vol. 14, No. 2, April 1996.

TROLL . 203

In the case of our banking world, we need object interfaces, for example, if

we want to describe ATMs for a specialized class of users (in this case

customers). Here, customers must not know about all the functionality of

ATMs:

interface class ATMToCustomer

encapsulating ATM;

data types bool, lCashCardl, nat, money;

attributes
dispensed: bool;

events
ready; read _ card(in C: lCashCard 1);

cancel; card _accepted; bad_ PIN_ msg; bad_account _msg;

issue _TA(in Acct:nat, in Amount: money); . . .

end interface class ATMToCustomer;

The only observation for customers is the status of the ATM in terms of the

bool-valued attribute dispensed. Information about the amount of money

available inside the machine should (for obvious reason) not be visible.

An interface to dynamic objects defines also the possible events visibie at

this level of system description. Here a customer should only be able to talk to

the ATM at “customer level,” i.e., he or she must be able to insert cards, issue

transactions, and so on. Customers must not be able to refill a machine or

even remove it. Also they should not see details of the internal operations; for

example, the event check _card _ w _ bank is not relevant at “customer level.”

Additional to simple projections, TROLL allows the definition of derived

attributes and events in interface declarations [Jungclaus 1991; Saake and

Jungclaus 1992b].

Selection Interfaces. Another kind of access restriction is the selection

interface. In contrast to projection interfaces that may be applied to single

objects or object classes, selection interfaces may only be used for object

classes. Here we can restrict the access to subsets of objects contained in

object classes.

In this language version we support only selections based on constant

properties of objects (see Saake and Jungclaus [1992b] and Saake et al. [1992]

for selection based on arbitrary object properties). For example we may define

an interface for another class of customers. Since ATMs only have the

constant key attribute ldentNo, we can specify an (artificial) interface for a

proper subset of ATMs with an identification number between 100 and 199:

interface class ATMToCustomer2

encapsulating ATM;

selection where ldentNo > = 100 and ldentNo < = 199;

. . .

end interface class ATMToCustomer2:

Here the actual visible population is limited using a predicate over the key

attributes. Naturally, the selection interface can be combined with the projec-

tion interface.

ACM Transactions on Information Systems, Vol 14. No. 2, April 1996

—

204 . Ralf Jungclaus et al.

The semantics of a selection interface definition is given by an object class

specialization determining the proper subset of the encapsulated class. The

condition in the where clause can directly be used as specialization predicate

(see Section 5.3).

As mentioned above, interfaces resemble the well-known view construction

in relational database systems. Views in relational systems may be defined

for joins among different relations. In our approach, joins are described by

aggregations. Therefore we support another kind of interface, the join inter-

face which is based on selection interfaces. In the case of join interfaces, the

encapsulation clause describes the joined class populations whereas the

selection condition represents the join predicate. Naturally, this kind of

interface can be combined with the projection interface.

8. RELATED APPROACHES

In this section, we give a brief overview of the key features of a number of

languages (both graphical and textual) that follow a similar object paradigm.

The list provided is by no means complete but sketches the main approaches

that influenced the language TROLL. The order of the presentation is not an

assessment, but tries to group languages according to similar concepts and

features (as far as possible in a linear text).

OBLOG [Sernadas et al. 1987] was presented in 1987. It was the starting

point for the development of a number of languages which were precursors of

TROLL. The language was based on an algebraic framework for the dynamics

of objects.

The basic unit of specification in OBLOG are object types. An object type

defines a set of potential instances, their structure, and admissible behavior.

The potential instances are specified by explicitly constructing the name

space. The structure is defined by attributes. The behavior is defined by

events and trace specifications where the admissible sequences of events are

specified along with the effects of events on the values of attributes. Interac-

tion among objects are defined by calling events (the event space is global).

Relationships of any kind among objects are specified explicitly by links.

Links describe morphisms among object descriptions [Sernadas et al. 1987].

A link is always described in the source specification of a morphism and

consists of a surrogate map defining the relationship among the surrogate

spaces, and a template map where maps between event and attribute terms

are defined which describe identical attributes and events.

Historically OBL-89 is the revised version of Sernadas et al, [1987] and is

defined in Costa et al. [1989]. A graphical language based on the ideas of

Sernadas et al. [1987] is GraphicalOblog [ESDI 1993]. A simplified version,

TROLL light, is defined in Conrad et al. [1992] and Gogolla et al. [1993].

TROLL light emphasizes the verification of object properties.

CMSL [Wieringa 1990; 1991] is a language for the specification of concep-

tual models. CMSL combines approaches tc algebraic specification of data

types, semantic data modeling, and algebraic specification of processes. An

ACMTransa&lonsonInformationSystems, Vol. 14, No. 2, April 1996.

TROLL . 205

object type is specified through attributes (which are modeled as functions

mapping an object identifier to a data value), events (being the update

operations on attributes), and life cycles or processes (which define the

admitted sequences of events).

Events are modeled as functions where the parameter sorts are domains

while a special event sort is the codomain. The effects of event occurrences on

attribute values are specified by positional terms like in TROLL. Further-

more, events can be synchronized using an explicit synchronization operator

and messages to define the local effects of (global) communication events. Life

cycles of objects are specified as processes, i.e., similar to our pattern specifi-

cations.

CMSL Version 1 supports the concept of role besides static specialization. It

has been one of the first proposals to define this concept formally. However,

the latest version now called LCM [Feenestra and Wieringa 1993] does not

support roles. The language is fully based on algebraic specification. The

interpretation structures are version algebras: each possible state (in terms

of a tuple of attribute values) is represented by an element of the algebra,

and admissible state transitions are defined as functions among states. The

algebra of all possible states and state transitions makes up the semantics of

an object.

TLOOM (temporal / ogic-based object-oriented model) [Arapis 1991] is a

language for the modeling of dynamic aspects of database applications that

combines approaches for the temporal logic-based specification of database

behavior and object-oriented approaches. TLOOM emphasizes the description

of the temporal evolution of object behavior and the temporal composition of

object behavior. The fundamental notions in TLOOM are Objects which

directly model real-world entities, Messages that can be sent and received

from objects, and Roles to describe particular aspects or behavior that an

object exhibits during a period of time. Contexts comprise roles and public

constraints. Public constraints here describe the global relationships between

the components and their local behaviors.

TEMPORA [Theodoulidis et al. 1990] is another approach putting empha-

sis on the modeling of temporal behavior. In TEMPORA, a conceptual model

has three components: a structural model (called Entity-Relationship-Time

model ERT), a Rule Model, and a Process Model. The structural model is an

ER model extended with concepts to describe composite objects and special-

ization. Additionally, concepts to timestamp constructs are offered. The Pro-

cess Model is based on data flow diagrams. The Rule Language is used for the

declarative specification of constraints, derivations, and behavior and may

constrain both the Process Model and the ERT model. The Rule Language is

based on first-order temporal logic.

ALBERT (agent-oriented language for building and elicitating require-

ments for real-time systems) [Dubois et al. 1993] is a language that provides

graphical features for structural descriptions and declarations and textural

features for expressing various types of constraints. The main concepts

behind ALBERT are those of agent, action, and perception where the notion

ACM Transactions on Information Systems, Vol 14, No 2, April 1996

206 . Ralf Jungclaus et al,

of agent is close to the notion of object in TROLL. An agent models an entity

having local contractual responsibilities. An action models a discrete change

occurring in a system. Perceptions allocated to agents model the knowledge

an agent has about the behavior of other agents (its environment). An agent

specification consists of a declaration part and a constraints part.

ERAE [Dubois et al. 1991] is a formal specification language for the

conceptual modeling of dynamic systems. It is basically a many-sorted first-

order real-time temporal logic and supports the declarative specification of

systems composed from entities. Furthermore, ERAE provides the notion of

event which is modeled as a special sort denoting (global) occurrences of

events. It provides some structuring mechanisms which, however, do not rely

on the notion of object.

Taxis and TDL [Borgida et al. 1993; Mylopoulos et al. 1980] as well as

RML and Telos [Greenspan et al. 1986; Mylopoulos et al. 1993] support the

description of data classes, and functions and transactions manipulating

them. On top of these descriptions a grouping of such actions can be formu-

lated with scripts. Scripts in TDL thus model long-term noninstantaneous

behavior of sets of objects. A special feature of TDL scripts is the integration

of a basic exception-handling mechanism that is employed for further struc-

turing a design document according to normal and exceptional behavior.

Scripts resemble transient composite objects in TROLL. TROLL lacks how-

ever an exception mechanism. Telos and TaxisDL are closely related to cover

the requirements acquisition and design phase of information systems in a

more or less uniform framework.

Object/Behavior Diagrams [Kappel and Schrefl 1990; 1991] use a

graphical notion based on an extended Entity-Relationship model for the

structural part and Petri nets for the behavioral part. A system specification

consists of a number of diagrams that cover different aspects of the system to

be described. Object Diagrams describe structural aspects of systems whereas

Life Cycle Diagrams define sequences of state transitions in terms of a Petri

net-based notation. Activity Specification Diagrams specify activities in terms

of their signature and by pre- and postconditions. Actiuity Realization Dia-

grams specify the implementation of abstract activities. Activity Invocation

Diagrams describe communications among objects in terms of message pass-

ing.

DisCo (distributed cooperation) [Kurki-Suonio et al. 1991] is a language

supporting the specification of distributed, reactive systems at a high level of

abstraction. In DisCo, actions are not local to objects but shared among

participating objects—thus, there are two fundamental concepts: objects and

actions. DisCo supports modularity and transformation of specifications. It is

based on an interleaving model. Compared to TROLL, DisCo does not support

the integration of local state and local state transitions.

9. CONCLUSIONS

In this article we have presented the language TROLL, a specification

language suited for the early stages of information systems design. A lan-

ACM Transactions on Information Systems, Vol. 14, No. 2, April 1996

TROLL . 207

guage used for this purpose should offer a large number of abstraction

concepts to enable convenient natural descriptions of UOD aspects. The

concept of object grew out of a number of approaches toward UOD modeling

like semantic data models, knowledge representation, process languages, and

object-oriented languages. Object-oriented conceptual modeling supports the

organization of a system description in terms of object descriptions that

integrate the static and dynamic aspects local to an entity.

TRO1.L is based on a number of formal sublanguages like temporal logic,

etc., which are the tools to specify properties and evolution of objects. The

basic building blocks of specifications are template specifications. Templates

art’ anonymous descriptions of instances of classes. A class is made up from

an identification mechanism and a template specification.

Aspects arc abstractions of an object that allow us to look at an object from

differ(~nt angles. The abstraction mechanisms provided by TROLL are spe-

cializatiorl and roles. Specialization describes objects belonging to subclasses

depending on observable properties (attributes) whereas roles describe ob-

jects helon~ring to subclasses depending on certain situations during an

objects life (occurrence of events).

In TROLL, objects that are composed from other objects are called compos-

ite objects. The composition of composite objects may be altered by special

events that are implicitly declared with a component specification. Life cycles

of’ component objects may be synchronized by synchronous interaction,

A system is regarded to be a collection of interacting objects. TROLL offers

language features to state relationships among separately defined objects.

Relationships are interactions or dependencies and are used to put local

speci[lcations in a global system context. Interfaces for object are introduced

to support cooperative design.

TROLL offers a large number of language features that are sometimes

redundant. We think however that during UOD modeling the designer/speci-

fier should not be forced to transform natural descriptions into a small

number ol” nonredundant language features but should be able to describe

objects in a natural way. To manage the complexity of specification doc-

uments we are currently developing an environment that will support a

graphical intt>rfacc for TROLL specifications based on OMT [Jungclaus et al.

1994: Wieringa 1993], syntax-directed editors for more detailed specifications,

and analysis and prototying tools. All tools are clustered around a repository

to store TROLL documents.

ACKNOWLEDGMENTS

Thanks to all members of the ISCORE project, especially to Amilcar Ser-

nadas (wbo is the project leader), Hans-Dieter Ehrich, Jose-Luiz Fiadeiro,

and Reel Wieringa. Thanks also to Alex Borgida and the other (anonymous)

refbrees who made helpful suggestions to improve the quality of the article

and to al] those who have commented on earlier versions of the TROLL

language.

208 . Ralf Jungclaus et al.

REFERENCES

ARAPIs,C. 1991. Temporal specifications of object behavior. In Proceedings 3rd. Symposium

on Mathematical Fundamentals of Database and Knou,ledge Base Systems MFDBS-91, B.

Thalheim, J. Demetrovics, and H.-D. Gerhardt, Eds. Lecture Notes in Computer Science, vol.
495, Springer-Verlag, Berlin, 308-324.

ATKINSON,M., BANCILHON,F., DEWITT, D., DITTRICH,K. R., MAIER, D., ANDZDONIK,S. B. 1989.

The object-oriented database system manifesto. In Proceedings International Conference on

Deductiue and Object-Oriented Database Systems (Kyoto, Japan, Dec.), W. Kim, J.-M. Nicolas,

and S. Nishio, Eds. 40-57.

BEERI,C. 1990, A formal approach to object oriented databases, Data Know[. .Eng. 5, 4,

353-382.

BOOCH,G. 1990. Object-Oriented Design. Benjamin/Cummings, Menlo Park, Calif.

BORGIDA,A. 1985. Features of languages for the development of information systems at the

conceptual level. IEEE Softu, 2, 1, 63-73.

BORGIDA, A., MYLOPOULOS, J,, AND SCHMIDT, J. W. 1993. The TaxisDL software description
language. In Database Application Engineering with DAIDA, M, Jarke, Ed. Springer, Berlin,

65-84,

CODD,E. F. 1979. Extending the relational model to capture more meaning. ACM Trans.

Database Syst. 4, 4, 397-434.

COHEN,B,, HARWOOD,W, T., ANI)JArKSO~,M. 1, 1986. The Specification of Complex Systems.

Addison-Wesley, Reading, Mass.

CONSAD,S., GOGOLLA,M., ANDHKRzI~,R, 1992. TROLL light: A core language for specifying
objects. Informatik-Bericht 92-02, TU Braunschweig.

COSTA,J, F., S~RNADAS, A,, ANDS~RNADAS, C. 1989. OBL-89, User’s Manual. Version 2.3. Tech.
Rep., Instituto Superior T6cnico, Instituto de Engenharia de Sistemas e Computadores, Lisbon.

DATE,C. J. 1986. An Introduction to Database Systems. Addison-Wesley, Reading, Mass.

DUBOIS,E., DLIBOIS, P., ANDPFTIT, M. 1993. 0-O requirements analysis: An agent perspective.

In ECOOP’93—Object-Oriented Programming, O. Nierstrasz, Ed. Lecture Notes in Computer
Science, vol. 707. Spnnger-Verlag, Berlin, 458-481.

DUROIS,E,, D[TBOIS,P., AtWRWA[TT,A, 1992. Elaborating, structuring and expressing formal

requirements of composite systems. In Ad Lanced Information Systems Engineering CAISE’92,

P. Loucopoulos, Ed, Lecture Notes in Computer Science, vol. 593, Springer-Verlag, Berlin.

DUBOIS,E., HAGELSTIHN,J., AND RIF’AUT,A. 1991. A formal language for the requirements

engineering of computer systems, In From Natural Language Processing to Logic for Expert

Systems, A. Thayse, Ed. John Wiley & Sons, Chicester, U. K., 269-345.

EHRWH,H.-D., DRwiT~~, K,, iw) GOWWLA,M. 1988. Towards an algebraic semantics for

database specification, In Proceedings of the 2nd IFIP WG 2.6 Working Conference on Database

Semantics “Data and Knou,ledge” (DS-2), R. A. Meersmann and A. Sernadas, Eds, North-Hol-
land, Amsterdam, 119-135,

EHRICH, H.-D., GOGUEN,J. A., WD S~RANDAS,A. 1990. A categorical theory of objects as

observed processes. In Proceedings REX/FOOL Workshop, J. W. deBakker, W. P. deRoever,

and G. Rozenberg, Eds. Lecture Notes in Computer Science, vol. 489. Springer, Berlin,

203-228.

EHIUCH,H.-D. .ANOSMU+InAS,A. 1991. Fundamental object concepts and constructions. In

Information Systems-Correctness and Reusability, G, Saake and A. Sernadas, Eds. TU

Braunschweig, Informatik Bericht 91-03, 1-24.

EHRIC, H. AND MAHR, B. 1985. Fundamentals of Algebraic Specification I: Equations and

Initial Semantics, Springer-Verlag, Berlin.

EMIIRSON, E. A. 1990. Temporal and modal logic. In Formal Models and Semantics, J. van
Leeuwen, Ed. Elsevier Science Publishers B.V., Amsterdam, 995-1072,

EM;m.s, G., GO~OLLA,M., HOHEX+TMN, U., HULSMANN,K., LiiHR-RWHTHR,P., SAAKLG,, AND

EHRH7H,H.-D.. 1992. Conceptual modelling of database applications using an extended ER

model. Data Knou,l. Eng. 9, 2, 157-204.

ACM Transactions on Information Systems, Vol. 14, No. 2. April 1996.

TROLL . 209

ESDI. 1993. tlBLOG (’ASE Vl,()--The User ‘,s Guide. ESDI Espirito Santo Data Informatica,

S. A Lisbon

FFI:XW’I{A, R. ,\N!>Wl~RIX(;,A, R, 1993. LCM 3.0: A Language for describing conceptual models

Syntax definition. Report ir-344, Faculteit der Wiskunde en lnformatica, Vrije Universiteit,

Amsterdam

FIAT)EIR(,, J ,jsl) SM{NAi),\s. A. 1990, Logics af modal terms for system specification. -J. Logic

[’anlpllt. 1, 2, 187227,

(;I)(xH. I,A. M., ~ONRAl), S,. ,Asn HESU](;, R. 1993. Sketching concepts and computational model

of TROLL Irght. In Proceedings of the 3rd International Conference on Design and lmplemen-

~a(i~mof S,vmbo[ic Computation Systems (D[SC’O’93), A. Miola, Ed. Lecture Notes in Computer

Science. vol. 722. Springer, Berlin. 17-32.

(; RtiF:x.sII,Ax,S., B{HK;IIJA,A. T,, ANI) Mw.olxl~mos, J. 1986. A requirements modelling language

and)Is Iob,ic In 0// K///M ,/edge Base Ma nagem en/ S.vsterns, .M. 1,. Brodie and ,J, .M-ylopaulos,

Eds. Springer-Verlag, Berlin, 471-502.

H.\ar\l,\xx, T. ,\N[) SA,\~K, G. 1993. Abstract specification of object interaction. Informatik-

%r]cht 93-08, Techniscbc Universitat Braunschweig,

HAI{T.v..\xx, T.. J[TX(X’LA(S, R., A~I) SAAm:, G. 1992, Aggregation in a behavior oriented object

model. 1n Pr(xzwtiing.< ~~f the European Conference on Object -Orien ted Programming

(K(‘(M)P’92), (). L. Madsen, Ed. [,ecture Notes in Computer Science. vol. 615. Springer. Berlin,

57 77.

H(),\R~, (’. A, R 1985 (’on~munirating Sequential Processes. Prentice-Hall, Englewood Cliffs,

N.cJ

H(ii.[., R. AN1)Kix(; , R. 1987, Semantic database modeling: Survey, applications, and research

issues A(’M (’f]mput, Sur[. 19.3, 201-260.

,JI’s(x I,AIs, R. 1993, Modeling of Dynamic Object Systems A Logm-Ba,sed Approach. Ad-

vanced Studies in (’omputer Science. Vieweg Verlag, Braunschwei g,/ Wiesbaden.

,J(TX(Xi,A~”S,R.. HARI’M.ANX,T.. AN!) SAAKIt,C.. 1993. Relationships between dynamic objects. In

fn~i)rntoti(m ,tfodellln~ and Kn<Nclecige Ba,ses IV: Concepts, .klethod.< and Systems, H. Kangas-
salo. H, ,Jaakkola, K. Hori, and T. Kitahashi, Eds. 10S Press, Amsterdam, 425 438.

,JIN(XI.AIIS.R.i HARTMAW,T,, SAAKF:,G., ANII SRRNADAS, C, 1991, Introduction ta TROLL–A

language for object-oriented specification of information systems. In Infrwrnatton Systems

(‘orrectn{ss and liewabil~t,v, G Saake and A. Sernadas, Eds. TU Braunschweig, Informatik

Bericht 91-03, 97 128,

,J(IS(XI.AIS, R., SAAW, (;., H, WTMAXN.T., Asn SE RNAOAS,C. 1991. Object-oriented specification
of information systems: The TROLL language. Informatik-Bericht 91-04, TU Braunschweig

,JITs{x’LA~’s, R., W] WS{;A, R., HAn’rw., P,, SAAKE, G., ANI) HAHTMAXX, T. 1994. Combining

TROI.L with the object modeling technique, In Inna[,ationen bel Rechen —and KomnIuniko -

~i[)rt.~.s.v.<tt,l?l(,n. Springer, Berlin.

KAI’I+x.. G. ANII SCf{I<t:F[., .~, 1990. Using an object-oriented diagram technique for the design

of]nformation systems, 1n Qvnam w Modelling of Informotzon Systems { Proceedl ngs of the

Ir)ternational Workrng (’[~nfirence), H. G, Sol and K. M, van Hee, Eds. North-Holland, Amster-

dam, 121 164.

KAl]wl., G. ANI) .%HRKFI., M. 1991. Object/behavior diagrams. In Proceedings of the fnterna -

t~f]nal Conference or) Data Engineering. IEEE Computer Society Press, Los Alarnitos, Calif.,

530 539.

KEN, W’ 1978. DrIto and Rea/ity. Nnrtb-Holland, Amsterdam.

KLIRKI-SIONI(I, R,, Sys-rA.K., ANI) VAIN, J. 1991. Real-time specification and modeling with

y~int actions. In Prmeedings of the 6th International Work,shop on .%ftuwre SpecI/icatmn and

DesLgn, ACM Press, New York.

LFX’ESQIX. H. 1986, Knowledge representation and reasoning. Ann. ReL, Comput. Sc[, J.

255 287.

LiPEtK. U. W. 1990. Transformation of dynamic integrity constraints into transaction specifi-

cation Thwjr-. Comput. SCI. 76, 115-142.

ACM Transactions on Information Systems, Vol 14, Na 2, April 1996

210 . Ralf Jungclaus et al

MANNA,Z. .mwPNU~LI,A. 1992. The Temporal Logic of Reactive and Concurrent Systems. Vol.
1, Specification. Springer-Verlag, New York.

MILNER,R. 1980. A Calculus of Communicating Systems. Spnnger-Verlag, Berlin.

MILN~R,R. 1990. Operational and algebraic semantics of concurrent processes. In Formal

Models and Semantics, J. van Leeuwen, Ed. Elsevier Science Publishers B.V., Amsterdam,
1201-1242.

M~l.<JIx)LI1.tls,J., BKRNsT~I~,P. A., .ANDWON~,H. K.T, 1980. Alanguage facility for designing
interactive database-intensive applications. ACM Trans. Database Syst. 5, 2, 185–207.

MYLCWOULOS,J,, BoRc]uA, A., JAIiK~,M., AN~KCWRARAKIS,M. 1993. Representing knowledge

about information systems in Telos. In Database Application Engineering with DAIDA, M.
Jarke, Ed. Springer, Berlin, 31-64.

PIXRHAM, J. AND MARYANSKI,F. 1988. Semantic data models. ACM Comput. Suru. 20 3,

153-189.

PIiRNICX,B. 1990. Objects with Roles. In Proceedings of the ACM/I.EEE International Confer-

enceon Office Information Systems, SIGOISBU1l. 11, 2-3,205-215.

PNum, A. 1986. Application of temporal logic to the specification and verification of reactive

systems: A survey of current trends. In Current Trends in Concurrency. J. de Bakker, W. de

Roever, and G. Rozenberg, Eds. Lecture Notes in Computer Science, vol. 224. Springer-Verlag,

Berlin.

P~um.1, A. 1977. The temporal logic of programs. [n Proceedings of the 18th IEEE Symposium

on the Foundations of Computer Science, IEEE, New York, 46-57.

R~IsI~, W. 1985. Petri Nets. Springer-Verlag, Berlin.

RUMEIAUGH,J., BtAHA,M., PR~M~RMNI,W., EDDY,F., mw LORENSISN,W. 1991. Object-Oriented

Modeling and Design. Prentice-Hall, Englewood Cliffs, N.J.

SmW, G, 1991. Descriptive specification of database object behavior, Data Knowl. Eng. 6, 1,
47-74.

Smm, G. 1993. Objektorientierte Spezifikation von Informationssystemen, Teubner, Stutt-

gart/ Leipzig.

SAAKK,G. ANDJUNGCLAUS,R. 1992a. Specification of database applications in the TROLL-lan-

guage. In Proceedings of the International Workshop Specification of Database Systems, D.
Harper and M. Norrie, Eds. Springer, London, 228-245.

.%&.4KR,G. AND JUMXMUS, R, 1992b. Views and formal implementation in a three-level

schema architecture for dynamic objects. In Adcanced Database Systems: Proceedings of the

10th British National Conference on Databases (BNCOD 10), P. M. D. Gray and R. J. Lucas,
Eds. Lecture Notes in Computer Science, vol. 618, Springer, Berlin, 78-95.

SAAKIL G. ANDLDWCK,U. W. 1989. Using finite-linear temporal logic for specifying database

dynamics, In Proceedings of the CSL ’88 2nd Workshop Computer Science Logic, E. Borger, H.
Kleine Biining, and M. M. Richter, Eds. Springer, Berlin, 288-300.

S~M, G., JUNGCLAUS, R., AND EHRICH, H.-D. 1992. Object-oriented specification and stepwise

refinement. In Proceedings of the Open Distributed Processing, J. de Meer, V. Heymer, and R.
Roth, Eds. (HVP Transactions C: Commun. Syst. l), North-Holland, Amsterdam, 99-121.

S~RNADAS, A. 1980. Temporal aspects of logical procedure definition. lnf. Syst. 5, 167-187.

EWRNADAS, A., SKRNADM, C., AND EHRICH, H.-D. 1987. Object-oriented specification of data-

bases: An algebraic approach, In Proceedings of the 13th International Conference on Very

Large Databases VLDB’87, P, M. Stoecker and W. Kent, Eds. VLDB Endowment Press,

Saratoga, Calif,, 107-116.

THMNXNJLIDiS,C., WANGLER,B., BUW;NKO,J. A., &vDLOUCOPWLOS,P. 1990. A conceptual

model for temporal database applications. SYSLAB Rep. 71, SYSLAB, Stockholm Univ.,

Stockholm.

VANGRI~THLIYSE~,J, J, 1982. Concepts and terminology for the conceptual schema and the
information base, Rep. N695, ISO/TC97/SC5.

WI~RINGA,R. J. 1990, Algebraic foundations for dynamic conceptual models. Ph.D. thesis,
Vrije Universiteit, Amsterdam.

ACM Transactions on Information Systems, Vol. 14, No. 2, April 1996

TROLL . 211

WIEI{]W:A, R. J, 1991. A conceptual model specification language (CMSL Version 2). Tech. Rep.

[R-248, Vrije Universiteit, Amsterdam.

WII!RI!W:A,R. AXll [IK ,JOM;E, W. 1991. The identification of objects and roles—Object identi-

fiers r{,isited. Tech. Rep, lR-267, Vnje Universiteit, Amsterdam.

W’IENIS{A. R.. ,J(’~{JrI.ALs, R., HARTEL, P., HARTMANX, T,, AND SAAK~, G. 1993.

OMTROLL -- Object modeling in TROLL. In Proceedings of the international Workshop on

Infi)rmfltlf)n .S.wfem,$t’orrertness and Reusubil@ IS-CORE ‘.%?, U. W. Lipeck and G.

Koscht)rreck, Eds. 267 283.

W-IN(;, !J. .M. 1990. A specifier’s introduction to formal methods. IEEE Comput, 2.?, 9 (Sept.)

8 24.

Received May 1992; revised August 1993; accepted September 1994

A(’A1 Tr:InsadIims on [nfixmatmn Sy...tt,ms, V(,I 14. XII 2. April 1996

