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Motor neuron physiology and development depend on a continuous and tightly regulated

trophic support from a variety of cellular sources. Trophic factors guide the generation

and positioning of motor neurons during every stage of the developmental process.

As well, they are involved in axon guidance and synapse formation. Even in the adult

spinal cord an uninterrupted trophic input is required to maintain neuronal functioning and

protection from noxious stimuli. Among the trophic factors that have been demonstrated

to participate in motor neuron physiology are vascular endothelial growth factor (VEGF),

glial-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and insulin-like

growth factor 1 (IGF-1). Upon binding to membrane receptors expressed in motor neurons

or neighboring glia, these trophic factors activate intracellular signaling pathways that

promote cell survival and have protective action on motor neurons, in both in vivo and

in vitro models of neuronal degeneration. For these reasons these factors have been

considered a promising therapeutic method for amyotrophic lateral sclerosis (ALS) and

other neurodegenerative diseases, although their efficacy in human clinical trials have not

yet shown the expected protection. In this minireview we summarize experimental data

on the role of these trophic factors in motor neuron function and survival, as well as their

mechanisms of action. We also briefly discuss the potential therapeutic use of the trophic

factors and why these therapies may have not been yet successful in the clinical use.

Keywords: amyotrophic lateral sclerosis, spinal cord neurodegeneration, motor neurons, neurotrophic factors,

VEGF

INTRODUCTION

Neuronal development and survival depend on a balanced and

tightly regulated support from trophic factors. Such factors are

capable of regulating several important physiological processes,

such as neuronal differentiation, maintenance of synapses, neu-

ronal survival through the inhibition of apoptosis, neurogenesis

and axonal outgrowth (Korsching, 1993; Boonman and Isacson,

1999; Hou et al., 2008). In addition, they provide an environ-

mental niche suitable for neuronal survival (Mudò et al., 2009).

Trophic support is essential for neurons in the spinal cord and

is conferred from many different cellular sources including astro-

cytes, microglia, neurons and endothelial cells (Ikeda et al., 2001;

Béchade et al., 2002; Dugas et al., 2008; Su et al., 2009; Hawryluk

et al., 2012). Therefore, trophic support is considered a promising

therapeutic strategy for neurodegenerative diseases (Kotzbauer

and Holtzman, 2006), and it plays an important role in cellu-

lar therapy aimed at the reinnervation of lost neuromuscular

synapses (Casella et al., 2010).

Amyotrophic lateral sclerosis (ALS) is caused by the selective

and progressive loss of spinal, bulbar and cortical motor neurons

that lead to irreversible paralysis, speech, swallowing and respira-

tory malfunctions and eventually death of the affected individuals

in a rapid disease course. ALS is mostly sporadic with 90% of the

cases occurring without a family history of the disease. However,

in the recent years it has become evident that many sporadic

cases carry alterations in proteins that have been found mutated

in familial cases that might, at least, increase the probability for

developing ALS (Deng et al., 2010). Many of these mutations

involve alterations in the TAR DNA-binding protein 43 (TDP43)

and Fused in sarcoma (FUS) genes that bind RNA molecules

(Gordon, 2013; Sreedharan and Brown, 2013), whereas most

familial cases with a dominant autosomal inheritance pattern are

caused by mutations in superoxide dismutase 1 (SOD1; Rosen

et al., 1993). Transgenic mice expressing a mutant form of the

human SOD1 are the most widely used model for in vivo studies

of ALS (Gurney et al., 1994). Trophic factors have been thought as

therapeutic targets for ALS, aiming at restoring lost neuromuscu-

lar synapses and rescuing motor neurons from toxicity.

There is a series of well characterized trophic factors for

the CNS, such as brain-derived neurotrophic factor (BDNF),

insulin-like growth factor 1 (IGF-1), ciliary neurotrophic fac-

tor (CNTF), glial-derived neurotrophic factor (GDNF), nerve

growth factor (NGF), growth hormone and vascular endothe-

lial growth factor (VEGF). Many of these have been tested for

neuroprotective potential in different experimental models of

ALS. In fact, viral vectors encoding growth factors are among

the most effective ways to delay the progression of degenera-

tive processes and prolong survival in ALS mice (Wang et al.,
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2002; Kaspar et al., 2003; Azzouz et al., 2004; Dodge et al.,

2008).

TROPHIC FACTORS DURING MOTOR NEURON DEVELOPMENT

Motor neuron development is differentially affected by specific

trophic factor shortage, and loss of particular trophic signaling

alters the development of different subpopulations of motor

neurons in heterogeneous ways. The absence of GDNF alters the

location of developing motor neurons that innervate the limbs

in the spinal cord (Haase et al., 2002; Kramer et al., 2006) and

selectively affects the innervation of intrafusal muscle spindles

(Gould et al., 2008). Interestingly, the overexpression of this

factor in muscle during development causes a hyperinnervation

of neuromuscular junctions (Nguyen et al., 1998). In contrast,

BDNF may not be as important for motor neurons, because

although the lack of this trophic factor severely affects the normal

development of sensory neurons, motor neurons are able to

develop without major alterations (Ernfors et al., 1994a; Jones

et al., 1994). Furthermore, distinct motor neuron subpopulations

show different sensitivities to the lack of neurotrophins. For

example, the absence of neurotrophin-3 produces a complete loss

of spinal motor neurons while facial motor neurons are spared

(Ernfors et al., 1994b; Gould et al., 2008), and the absence of

CNTF produces no alterations for motor neuron development

at the spinal or cranial levels (DeChiara et al., 1995), although

the loss of its receptor CNTFRα generates severe motor neuron

deficits and mice lacking this receptor die perinatally (DeChiara

et al., 1995). A possible alternate ligand for this receptor is

the dimer formed by cardiotrophin-like cytokine/cytokine-like

factor 1, whose deletions have been shown to cause a significant

reduction in the number of motor neurons (Forger et al., 2003).

The absence of other factors such as cardiotrophin-1 has also

been reported to produce a significant loss of motor neurons

(Oppenheim et al., 2001; Forger et al., 2003), and the loss of

IGF-1 causes significant reduction in the number of trigeminal

and facial motor neurons (Vicario-Abejón et al., 2004). Finally,

while the lack of VEGF is lethal, a deletion of the hypoxia

response element in the promoter region of the VEGF gene

causes a decrease in the expression of this factor that leads

to an adult-onset progressive loss of motor neurons in mice

(Oosthuyse et al., 2001). After this fortuitous discovery, it was

reported that certain VEGF haploytpes (-2578C/A, -1154G/A and

-634G/C) conferred an increased susceptibility to ALS in humans,

but later on in a meta-analysis conducted with more than 7000

subjects from at least eight different populations no association

between these haplotypes and ALS was found (Lambrechts et al.,

2009). Moreover, no mutations in the hypoxia response element

of the VEGF promoter (Gros-Louis et al., 2003), or in the

VEGF receptor 2 (Brockington et al., 2007) were found in ALS

patients.

Neurotrophic factors are not only important during devel-

opment, but they also regulate motor neuron maintenance and

survival even long after neurons have become fully differentiated.

As well, they might be able to trigger the activation of endogenous

regenerative processes. Aside from the synthesis of trophic factors

in the local spinal microenvironment, synaptic targets of motor

neurons also play important roles in the trophic feedback. As a

matter of fact, this is an essential event for the development of the

CNS during which originating neurons receive trophic input from

their target tissues that enables them to surpass an endogenous-

codified programmed cell death (Oppenheim, 1991). In the case

of motor neurons these effects are mostly mediated by skeletal

muscle-derived factors (Oppenheim et al., 1988; Grieshammer

et al., 1998; Kablar and Rudnicki, 1999).

TROPHIC FACTOR EFFECTS ON MOTOR NEURON SURVIVAL

Among all the trophic factors tested in experimental ALS models,

VEGF has been shown to be one of the most potent motor

neuron protectors. VEGF remarkably retards the progression of

the disease and the loss of motor neurons in familial (Azzouz et al.,

2004; Zheng et al., 2004; Storkebaum et al., 2005; Wang et al.,

2007), as well as in sporadic (Tovar-Y-Romo et al., 2007; Tovar-

Y-Romo and Tapia, 2010, 2012) experimental models of motor

neurodegeneration.

Activation of VEGF receptor 2 triggers the phosphorylation of

intracellular pathways driven by phosphatidyl-inositol-3-kinase

(PI3-K), phospholipase C-γ, and mitogen-activated protein

kinase (MEK) that promote the inhibition of pro-apoptotic fac-

tors like Bad (Yu et al., 2005) and caspases 9 (Cardone et al.,

1998) and 3 (Góra-Kupilas and Joško, 2005; Kilic et al., 2006).

The activation of these intracellular signaling pathways has been

extensively studied in the CNS (Zachary, 2005). VEGF-dependent

activation of PI3-K/Akt is sufficient to prevent motor neuronal

death in familial models of ALS in vitro (Li et al., 2003; Koh et al.,

2005; Tolosa et al., 2008) and in experimental in vitro models of

excitotoxic neuronal death (Matsuzaki et al., 2001). Furthermore,

the activation of PI3-K/Akt is required for motor neuron sur-

vival and axonal regeneration after spinal cord injury (Namikawa

et al., 2000). We have demonstrated that the signaling mediated

by PI3-K is critically involved in the protective effect of VEGF

against AMPA-induced excitotoxic spinal neurodegeneration in

vivo (Tovar-Y-Romo and Tapia, 2010).

VEGF also mediates neuroprotection through the inhibition of

stress activated protein kinases like p38 mitogen-activated protein

kinase. Increased levels of phosphorylated p38 have been found

in motor neurons and glia in the familial mouse model of ALS

(Tortarolo et al., 2003; Holasek et al., 2005; Veglianese et al.,

2006; Dewil et al., 2007), even at the pre-symptomatic stage

(Tortarolo et al., 2003), and p38 is also an important factor in a

cell death pathway specific for motor neurons (Raoul et al., 2006).

Interestingly, the inhibition of p38 prevents motor neuron death

in an in vitro familial model of ALS (Dewil et al., 2007), and we

and others have proven that VEGF can suppress p38 activation in

both familial (Tolosa et al., 2009) and excitotoxic (Tovar-Y-Romo

and Tapia, 2010) models of spinal cord neurodegeneration.

An increased expression of the VEGF-inducing factor Hypoxia

induced factor 1 (HIF-1α) in the spinal cord may occur due to

relative hypoxic conditions that exist in the spinal microenvi-

ronment, although motor neurons seem to be unable to fully

respond to increased downstream effectors such as VEGF (Sato

et al., 2012). One possible explanation for this and for the decrease

of VEGF levels found in human patients (Devos et al., 2004)

might be that inducing factors such as HIF-1α are prevented from

translocating to the nucleus even though their concentrations are

Frontiers in Cellular Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 61 | 2

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Tovar-y-Romo et al. Trophic factors in ALS

increased in the cytoplasm (Nagara et al., 2013). This failure to

mount the complete response of VEGF synthesis during hypoxia

is not cell type specific and it has been demonstrated to occur in

monocytes from ALS patients (Moreau et al., 2011).

In contrast to the good protection potential of VEGF, other

factors like BDNF failed to protect in different experimental

paradigms. BDNF is synthesized by activated microglia in the first

stages of the disease when the glial response mainly exerts anti-

inflammatory and protective effects, but its production is lost

when microglia turns toxic at later stages (Liao et al., 2012). In

addition, BDNF does not protect motor neurons from excitotoxi-

city in experimental models in vitro (Fryer et al., 2000) and in vivo

(Tovar-Y-Romo and Tapia, 2012). This could be possibly due to

the sequestration of the ligand by a truncated isoform of the high

affinity receptor that is known to be expressed in motor neurons,

because removing this truncated receptor significantly delays the

disease onset in the mouse familial model (Yanpallewar et al.,

2012). In spite of this, BDNF may be a risk factor for neurons

by increasing their sensitivity to excitotoxicity (Fryer et al., 2000),

or through the activation of NADPH oxidase (Kim et al., 2002),

an enzyme involved in motor neuron pathology by damaging

the survival pathways activated by trophic factors (Wu et al.,

2006). Other growth factors have also been shown to be beneficial

although to a lesser extent.

The expression of GDNF by astrocytes is up-regulated after

spinal cord ischemia and this might be a mechanism of protection

for motor neurons against excitotoxic death (Tokumine et al.,

2003). GDNF exerts its neuroprotective effects preferentially on

neuronal somas rather than on nerve endings at the neuro-

muscular synapse when it is administered directly in the spinal

cord (Suzuki et al., 2007). Conversely, when it is administered

directly in the muscle, GDNF preserves the muscle-nerve synapse

and promotes motor neuron function and survival in a familial

model of ALS (Suzuki et al., 2008), implying that the protective

effects exerted by GDNF are rather limited by the proximity

to the trophic source. Nonetheless, GDNF can be retrogradely

transported along motor neuronal axons (Leitner et al., 1999),

which allows the opportunity to explore a delivery route that will

impact both somas and nerve endings. Interestingly, human ALS

patients show an up-regulation of GDNF in muscle (Grundström

et al., 1999), and the overexpression of GDNF in muscle but

not in astrocytes extends lifespan in ALS mice (Mohajeri et al.,

1999). Combined growth factor therapy might be an alternative

that is worth exploring, as suggested by a recent report in the rat

transgenic ALS model showing that VEGF and GDNF adminis-

tered through an implant of human mesenchymal stem cells exert

a synergistic protection in preserving nerve muscular synapses

(Krakora et al., 2013).

In the case of CNTF, although the blockade of its expression

has been reported to result in the loss of motor neurons and the

development of motor symptoms (Masu et al., 1993), these effects

are relatively mild when compared to those induced by the loss of

other factors like VEGF. Interestingly, ALS patients have a selective

decrease of CNTF expression in the CNS regions affected by the

disease (Anand et al., 1995). Conversely, serum levels of CNTF are

generally elevated in ALS patients, especially among those with

the lumbar-onset form of the disease (Laaksovirta et al., 2008).

TROPHIC FACTORS AS THERAPY FOR AMYOTROPHIC LATERAL

SCLEROSIS (ALS)

Clinical trials administering trophic factors to ALS patients have

not been successful yet. Subcutaneous injections of CNTF, which

was effective in the mutant mice models of motor neuron disease

pmn/pmn (Sendtner et al., 1992) and wobbler (Mitsumoto et al.,

1994), did not affect the progression of disease in humans, but

caused minor adverse side effects (ALS CNTF Treatment Study

Group, 1996). Similarly, disease progression was not modified

in ALS patients treated with subcutaneous administration of

BDNF (The BDNF Study Group, 1999). Two randomized double-

blind placebo-controlled clinical trials administering recombi-

nant human IGF showed little (Lai et al., 1997) or no effect

(Borasio et al., 1998) on disease progression, even when IGF-1

was found to be protective in the transgenic rodent model of

ALS (Kaspar et al., 2003; Dodge et al., 2008). A combined meta-

analysis of both trials showed slight retardation in the disease

progression in the group treated with IGF-1, although the results

are not conclusive (Beauverd et al., 2012). Interestingly, it has

been recently reported that skeletal muscle fiber production of

IGF-1 is impaired in ALS patients (Lunetta et al., 2012), so that

the modest effects found in some of the patients enrolled in the

clinical trials might have been due to a compensation of impaired

IGF-1 production by the exogenous administration of the fac-

tor. Finally, even when according to one report (Morselli et al.,

2006) the majority of ALS patients showed deficiencies in growth

hormone secretion, in a recent clinical trial the administration

of this hormone to ALS patients did not produce any benefit as

compared to patients that received placebo (Saccà et al., 2012).

The time of administration after symptom onset in a trophic

factor-based therapy is critical. Trophic factors have a short time

frame for protection of motor neurons once the noxious process

is triggered and this is probably due to the rate at which motor

neurons die during the time course of the disease. Histological

studies of human spinal cord showed a large variability between

the degree of motor neuron loss and muscle weakness (Stephens

et al., 2006), and transgenic familial amyotrophic lateral sclerosis

(FALS) mice bearing human (Dal Canto and Gurney, 1995; Bruijn

et al., 1997) or murine (Morrison et al., 1998) mutant SOD1 do

not present a significant loss of motor neurons prior to the onset

of symptoms, and the neuronal loss occurs at a very fast rate over

a period of 10 days. In our model of chronic spinal cord excito-

toxicity we found that the onset of motor deficits, characterized by

limping of the rear limbs, occurs before the loss of motor neurons,

suggesting that the time at which the cellular death process starts

but prior to clear neuronal degeneration constitutes a therapeutic

frame within which growth factor administration could result

effective (Tovar-Y-Romo et al., 2007; Tovar-Y-Romo and Tapia,

2012). In fact, in the FALS murine models the administration of

VEGF (Azzouz et al., 2004; Storkebaum et al., 2005) or IGF-1

(Kaspar et al., 2003; Dodge et al., 2008) well before the beginning

of symptoms confers a significantly better protection, observed by

a delay in the progression of symptoms and increased lifespan, as

compared to that produced when administered at the symptoms

onset. A similar result was obtained in rats subjected to spinal

AMPA-induced excitotoxicity, in which a delayed administration

of VEGF clearly protected but only when administered before
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the beginning of motor deficit symptoms (Tovar-Y-Romo and

Tapia, 2012). This difference possibly means that growth factors

are helpful at preventing the accumulating toxicity that arises

from neurodegenerative processes that begin before motor neu-

ron death or symptoms onset (Dal Canto and Gurney, 1995;

Bendotti et al., 2001). Unfortunately, obtaining a correct diagnosis

of ALS is a complicated and slow process due to the many

parameters needed to meet diagnosis criteria (Shook and Pioro,

2009; Bedlack, 2010), so that the earliest intervention with trophic

factors once a patient is diagnosed may be already too late.

Administration routes for trophic factor therapy are also

important. This is of special interest when considering that in

the actual human disease cellular alterations take place along the

entire spinal cord, which might be a target particularly difficult

to reach. Therefore, assessing different ways to deliver trophic

factors is worth trying. Intracerebroventricular (ICV) adminis-

tration of VEGF has been proven efficient in the rat transgenic

model of FALS (Storkebaum et al., 2005) and in our acute model

of spinal cord excitotoxicity (Tovar-Y-Romo and Tapia, 2012).

ICV administration has the capability to cover the entire spinal

cord although it most probably creates a concentration gradient

(Storkebaum et al., 2005). The continuous perfusion of trophic

factors in the spinal cord by intrathecal infusions or into the

brain by ICV injections overcome the blockade that the blood

brain barrier represents for the delivery of these molecules. In

fact, intrathecal injections have been tried in ALS patients for

the delivery of IGF-1, with modest results (Nagano et al., 2005).

Clinical trials for VEGF are now underway to assess the safety and

tolerability of VEGF (Siciliano et al., 2010).

Other important aspects to consider in growth factor therapies

are the stability of the molecule, the half-life of the proteins, the

need for sustained delivery and exposure, the dose, their ability

to cross the blood brain barrier, and the unwanted side effects on

non-targeted cells (Suzuki and Svendsen, 2008). Nonetheless, the

neuroprotective potential that growth factor represent overweighs

the obstacles that need to be overcome in order to achieve a

successful therapy.

CONCLUSIONS

Because trophic support is an essential component for neuronal

maintenance and survival, supplying motor neurons subjected

to stressful or noxious stimuli with molecular factors that help

them counteract cellular death processes, growth factors represent

a therapeutic tool that is undoubtedly worth exploring for ALS.

However, we still need to understand a great deal of the molecular

pathways that cause growth factor shortage during the course

of disease and the cellular and molecular mechanisms that limit

the responses elicited by these factors when they are supplied

exogenously. As well, we still need to identify proper therapeutic

regimens and treatment approaches to be able to translate the

findings we have made in experimental models into useful ther-

apeutic procedures.
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