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Abstract:  Tropical South America is one of the three main centers of 

the global, zonal overturning circulation of the equatorial atmosphere 

(generally termed the “Walker” circulation1). Although this area plays 

a key role in global climate cycles, little is known about South Ameri-

can climate history. Here we describe sediment cores and down-hole 

logging results of deep drilling in the Salar de Uyuni, on the Bolivian 

Altiplano, located in the tropical Andes. We demonstrate that during 

the past 50,000 years the Altiplano underwent important changes in 

effective moisture at both orbital (20,000-year) and millennial times-

cales. Long-duration wet periods, such as the Last Glacial Maximum—

marked in the drill core by continuous deposition of lacustrine sedi-

ments—appear to have occurred in phase with summer insolation 

maxima produced by the Earth’s precessional cycle. Short-duration, 

millennial events correlate well with North Atlantic cold events, includ-

ing Heinrich events 1 and 2, as well as the Younger Dryas episode. At 

both millennial and orbital timescales, cold sea surface temperatures 

in the high-latitude North Atlantic were coeval with wet conditions in 

tropical South America, suggesting a common forcing.

The Salar de Uyuni (Figure 1), located on the Bolivian Alti-
plano at an elevation of 3,653 m above sea level, is the world’s 
largest salt flat. The salar was formerly occupied by a series 
of large lakes.2 The youngest was a shallow palaeolake, “Coi-
pasa,” radiocarbon-dated3 between 11,500 and 13,400 calen-
dar years before present (cal. yr bp). The youngest deep pal-
aeolake, “Tauca,” was previously dated using carbonate fossils 
from outcropping sediments and carbonate bioherms (reefs) 
that mark past highstands. Published radiocarbon dates3, 4 
indicate that palaeolake Tauca existed from about 13,000 to 
18,000 cal. yr bp (we judge the published U–Th dates of the 
same deposits to be less reliable than the published radiocar-
bon dates because of large corrections necessitated by the high 
values of excess thorium in the samples). Palaeolake Tauca at-
tained a maximum depth of 140 m (ref. 5). The existence of an 
older deep palaeolake, “Minchin,” was postulated on the basis 
of two published radiocarbon dates (about 30,000 and 32,000 
cal. yr bp; ref. 2) of shells from outcropping sediments. The ev-
idence for the existence of these, and even older, palaeolakes 
on the Altiplano has been well summarized.6

In the summer of 1999 we drilled and continuously cored 
the Salar de Uyuni to a depth of 220.6 m below the surface. 
The drill hole was located in the central portion of the salar 
(20° 14.97’ S, 67° 30.03’ W). The cased hole was subsequently 
logged at 10-cm intervals, using a tool (manufactured by 
Delta Epsilon, Inc.) that measures natural γ-rays, to a depth of 
188.7 m subsurface. Here we present and discuss the stratig-
raphy and logging results of the radiocarbon-dated portion of 
the core, the upper 35 m.

The most important result of our study is the identification 
and dating (Table 1) of wet and dry events on the Altiplano 
(Figure 2a) for the past 50,000 cal. yr. The wet events are sig-
nalled in the drill core by the muds containing abundant dia-
toms that indicate deposition in perennial lakes varying from 
shallow to deep and low to high salinity. The dry events are 
marked by salt deposits that consist mainly of halite (NaCl) 
and gypsum (CaSO4). Salt textures indicate deposition in a va-
riety of palaeoenvironments, ranging from perennial hyper-
saline lakes to annually desiccated saline pans similar to the 
modern Salar de Uyuni. Because the lacustrine muds have 
much higher values of natural γ-radiation than do the salt de-
posits, the continuous downhole record of natural γ-radiation 
(Figure 2a) is a sensitive measure of changing effective mois-
ture through time.

The shallowest peak of γ-radiation, indicating the former 
existence of a lake, is between 6.3 and 7.0 m subsurface. In-
complete recovery of sediment precluded direct dating of this
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Figure 1. Map showing the location of the Altiplano and the Salar de Uyuni. 

During wet phases, Lake Titicaca overflows, and drains via the Rio Desa-

guadero into Lago Poopó. In extremely wet periods, Lago Poopó can dis-

charge into Salar de Coipasa and Salar de Uyuni. Star—location of the drill 

core; filled square—location of Volcan Sajama.
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interval, the probable equivalent of palaeolake “Coipasa.” Our 
(extrapolated) age for this palaeolake is about 12,500 cal. yr bp, 
contemporaneous with the Younger Dryas cold event of 
high northern latitudes.7 A γ-radiation minimum between 
7.0 and 8.0 m records a dry period with salt deposition from 
about 12,500 to 14,900 cal. yr bp, contemporaneous with the 
Bølling–Allerød interstadial. Lacustrine muds were recov-
ered between 8.0 and 14.0 m subsurface. We attribute these 
sediments to palaeolake Tauca, but our dates for this period 
extend to much older intervals than those previously pub-
lished, ranging from 14,900 to 26,100 cal. yr bp. The two γ-ra-
diation maxima within this interval, dated at 14,900–16,600 
and 24,300–26,100 cal. yr bp, coincide respectively with Hein-
rich events 1 and 2a.7 Underlying the Tauca sediments, be-
tween 14.0 and 20.4 m subsurface are two minor lacustrine 
muds marked by smaller γ-radiation maxima, dated at 28,200–
30,800 and 31,800–33,400 cal. yr bp, that coincide with two sea 
surface temperature (SST) maxima observed in the subtropical 
North Atlantic.7 These muds are interbedded with halite that 
formed during dry periods. The second youngest major lacus-
trine interval extends from 20.4 m to 33.3 m subsurface. A sam-
ple from near the top of this interval yielded a reliable age of 
about 42,000 cal. yr bp, yielding an interpolated age for the top 
of the interval of 38,100 cal. yr bp. Deeper samples were be-
yond the range of radiocarbon dating. We attribute this inter-
val to palaeolake Minchin; thus, palaeolake Minchin is much 
older than previously believed. Underlying the Minchin bed is 
a 7-m-thick salt bed that is, in turn, underlain by a third major, 
as yet undated, lacustrine interval.

A recent global climate modelling experiment,8 utilizing 
new sea surface palaeotemperature estimates,9 yielded a mean 
annual temperature lowering of 5 °C relative to modern for 
the Last Glacial Maximum (LGM) in this part of the tropical 
Andes. Studies of the depression of snowline elevation have 
concluded variously that the mean annual temperature change 
for the LGM in this part of the Andes ranged anywhere from 
2–3 °C (refs 10, 11) to 5–9 °C (ref. 12). Model calculations of the 
amount of precipitation needed to maintain large palaeolakes 
on the Altiplano against desiccation by evaporation13 necessi-
tate about 30% higher-than-modern precipitation, even with 
temperatures 5 °C lower than modern. We conclude that the 
lacustrine episodes observed in our drill core were not pro-
duced solely by lower temperatures; their formation also re-
quired significantly higher amounts of precipitation on the Al-
tiplano than today.

The austral summer is the season of maximum precipita-
tion in the southern tropics of South America (including the 
Altiplano)—on the Altiplano an average of 75% of the to-
tal annual precipitation falls in the months of December–
March. During the austral summer, atmospheric water va-
por, ultimately derived from the tropical Atlantic Ocean, is 
advected across the Amazon basin to the centre of deep con-
vection developed in the Gran Chaco region to the east of the 
Altiplano. This climatological system has been referred to as 
the South American summer monsoon (SASM).14 We pro-
pose that in the past the first-order control on the variability 
of precipitation on the Altiplano was variability of the SASM 
produced by changes in summertime insolation. Indeed, the 
main wet and dry phases on the Altiplano occurred, respec-
tively, in phase with summertime (January) insolation max-
ima and minima (Figure 2a), calculated for 15° S latitude from 
Earth’s known orbital variations.15 For example, the intervals 
14,900–26,100 cal. yr bp (including the LGM) and 38,100 to 

~50,000 cal. yr bp were periods 

Figure 2. Logging data from the Salar de Uyuni compared to other re-

constructed palaeoclimatic time series. The figure compares natural γ-ra-

diation in the salar drill hole, our proxy for effective moisture, with calcu-

lated summer insolation, reconstructed records of sea surface temperature 

(SST) gradients in the equatorial Atlantic sector, and the record of stable 

oxygen isotopes in the Sajama ice cap. (a) Natural γ-radiation (black line 
and dots) versus calendar age determined by radiocarbon measurement 

(Table 1). Natural γ-radiation is mostly produced by the decay of radioac-

tive K, U, and Th, elements that are more concentrated in the lacustrine 

muds than in the salt deposits. The high values of natural γ-radiation cen-

tred at 45,000 cal. yr bp are due to volcanic ash. Blue line, palaeoinsola-

tion at 15° S latitude calculated for the month of January.15 (b) Natural γ-
radiation (black line) versus calendar age. Blue line, ΔSST, the difference 
in reconstructed SST between the western tropical North Atlantic18 and the 

eastern subtropical North Atlantic.7 Values of reconstructed SST (using the 

calibration of Muller et al.23) and age were interpolated from both studies, 

then differenced. (c) Natural γ-radiation (black line) versus calendar age. 
Blue line, the smoothed record (3-point moving average of the 100-year av-

erage record; L. Thompson, personal communication) of δ18O of ice in the 

Sajama ice cap.22
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of maximum wetness and maximum insolation on the Alti-
plano. An apparent exception to this hypothesized control is 
the lack of a modern lake in the Salar de Uyuni in the present 
time of high summer insolation. However, the late Holocene 
is a relatively wet period on the Altiplano—Lake Titicaca has 
been at or near its overflow level since about 3,500 cal. yr bp 
(ref. 16), and small lakes (such as modern Lago Poopó) have 
existed on the central Altiplano during much of this period.17 
Also, the late Holocene is warmer than the LGM, contributing 
to a higher rate of evaporation. It is clear that the SASM did 
not decrease in intensity during the LGM, despite colder trop-
ical SST. Instead, increased land–sea temperature gradients 
and increased interhemispheric meridional SST gradients,9 
combined with peak wet-season insolation, resulted in an en-
hanced SASM and enhanced precipitation in much of tropical 
South America.

Superimposed upon the first-order orbital control of mois-
ture, we observed many high-amplitude, but shorter (mil-
lennial) duration peaks of γ-radiation indicative of the for-
mer presence of lakes on the Altiplano, even during time 
periods calculated to have relatively low summertime insola-
tion. Allowing for reasonable dating errors, each peak corre-
sponds with an SST minimum reconstructed for the subtrop-
ical eastern North Atlantic (38° N, 10° W) SST.7 When eastern 
North Atlantic SST is subtracted from western North Atlantic 
(12° N, 61° W) SST,18 the resulting ΔSST (Figure 2b) is a useful 

measure of palaeoatmospheric dynamics (we note that there 
are also very similar, but not as well dated, SST reconstruc-
tions19 in the eastern tropical Atlantic at 21° N, 19° W and 
19° N, 20° W) . In the modern ocean, high values of this index 
would be expected to correlate with enhanced northeast trade 
winds20 and, as observed, increased advection of moisture to 
the Amazon and the Altiplano.21 The Salar de Uyuni record 
provides the best demonstration to date that millennial-scale 
Heinrich events occurred in southern tropical South America, 
where they are manifested as wet, not cold, periods.

The oxygen isotope record of the nearby (Figure 1) ice cap 
of Volcan Sajama22 has a similar structure to the Salar γ-radia-
tion record (Figure 2c), bolstering the argument that δ18Oice is 
inversely correlated with precipitation amount (or runoff frac-
tion).10 The base of the ice core coincides in age with the basal 
sediments of palaeolake Tauca (26,100 cal. yr bp), suggesting 
that the preceding dry phase had resulted in the complete loss 
of ice on Sajama (and perhaps elsewhere in the western An-
dean Cordillera).

We have reconstructed the timing and direction of large 
changes of precipitation on the Altiplano over the past 
50,000 yr. The general agreement between the timing of the 
longest wet phases and periods of above-average summer in-
solation supports a first-order orbital control of the intensity of 
the SASM. Furthermore, all wet phases at both orbital and mil-
lennial scale coincide with anomalously large zonal SST gradi-
ents (warm west and cold east) across the equatorial Atlantic 
Ocean, the ultimate moisture source for the Altiplano.
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