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Abstract

Responses of tropical cyclones (TCs) to  CO2 doubling are explored using coupled global climate models (GCMs) with 
increasingly refined atmospheric/land horizontal grids (~ 200 km, ~ 50 km and ~ 25 km). The three models exhibit similar 
changes in background climate fields thought to regulate TC activity, such as relative sea surface temperature (SST), potential 
intensity, and wind shear. However, global TC frequency decreases substantially in the 50 km model, while the 25 km model 
shows no significant change. The ~ 25 km model also has a substantial and spatially-ubiquitous increase of Category 3–4–5 
hurricanes. Idealized perturbation experiments are performed to understand the TC response. Each model’s transient fully-
coupled 2 × CO2 TC activity response is largely recovered by “time-slice” experiments using time-invariant SST perturba-
tions added to each model’s own SST climatology. The TC response to SST forcing depends on each model’s background 
climatological SST biases: removing these biases leads to a global TC intensity increase in the ~ 50 km model, and a global 
TC frequency increase in the ~ 25 km model, in response to  CO2-induced warming patterns and  CO2 doubling. Isolated  CO2 
doubling leads to a significant TC frequency decrease, while isolated uniform SST warming leads to a significant global TC 
frequency increase; the ~ 25 km model has a greater tendency for frequency increase. Global TC frequency responds to both 
(1) changes in TC “seeds”, which increase due to warming (more so in the ~ 25 km model) and decrease due to higher  CO2 
concentrations, and (2) less efficient development of these“seeds” into TCs, largely due to the nonlinear relation between 
temperature and saturation specific humidity.
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1 Introduction

Understanding the response of the climate system to 
increasing greenhouse gases is a topic of substantial sci-
entific interest, reflecting in large part the societal concern 
for potential future climatic changes, but also the need to 
better understand the controls on past climates (e.g., Knut-
son et al. 2010; Walsh et al. 2016). Global climate models 
(GCMs) are one of the fundamental tools in developing 
this understanding. A common avenue in GCM devel-
opment and improvement is the enhancement of model 
resolution, to better represent finer-scale processes and 
phenomena (e.g., Masumoto et al. 2004; Roberts et al. 
2004; Yoshimura and Sugi 2005; Yoshimura et al. 2006; 
Zhao et al. 2009; Murakami and Sugi 2010; Murakami 
et al. 2010, 2011, 2015, 2016a; Chen and Lin 2011, 2013; 
Scoccimarro et al. 2011; Delworth et al. 2012; Kirtman 
et al. 2012; Bell et al. 2014; Vecchi et al. 2014; Roberts 
and et al. 2015; Harris et al. 2016; Haarsma et al. 2016; 
Yoshida et al. 2017). In this paper we explore a suite of 
idealized sensitivity studies to increasing atmospheric  CO2 
concentrations in GCMs spanning a range of horizontal 
atmospheric and land resolutions. This framework allows 
the evaluation of the sensitivity of global temperature, pre-
cipitation, and tropical cyclone (TC) activity to changes in 
atmospheric resolution.

The availability of high-resolution GCMs has enabled 
the explicit exploration of regional climatic sensitiv-
ity, the response of extreme events to climate forcings, 
and the assessment of the time-evolving probability of 
extreme events (e.g. Zhao et al. 2009; Walsh et al. 2015; 
Wehner et al. 2015; Delworth et al. 2015; Haarsma et al. 
2016; Jia et al. 2016, Murakami et al. 2017a, b, 2018; 
Van der Wiel et al. 2016a, 2017; van Oldenborgh et al. 
2017; Krishnamurthy et al. 2018; Patricola and Wehner 
2018; Zhang et al. 2018; Bhatia et al. 2019). Tropical 
cyclones (TCs) can have catastrophic impacts, particu-
larly due to their extremely strong winds and precipita-
tion (Pielke et al.2008; Hsiang 2010; Mendelsohn et al. 
2012; Villarini et al. 2014a). GCMs have advanced our 
understanding of spatial and temporal variability of TC 
genesis and landfall (Sugi and Yoshimura 2012; Zarzycki 
and Jablonowski 2014; Roberts et al. 2015; Camargo 2013; 
Camargo and Wing 2016; Murakami et al. 2017a, b, 2018; 
Baldwin et  al. 2019), the association between climate 
oscillations and TCs (Bell et al. 2014; Chand et al. 2016; 
Vecchi et al. 2014; Krishnamurthy et al. 2016; Murakami 
et al. 2016a, b; Zhang et al. 2016), the responses of TCs to 
anthropogenic forcing, and provided projections for pos-
sible changes in the future (Yoshimura and Sugi 2005; 
Yoshimura et al. 2006; Gualdi et al. 2008; Zhao et al. 
2009; Murakami and Sugi 2010; Held and Zhao 2011; 

Mendelsohn et al. 2012; Zhao and Held 2012; Knutson 
et al. 2013, 2015; Kim et al. 2014; Scoccimarro et al. 2014; 
Villarini et al. 2014b; Wehner et al. 2015; Yamada et al. 
2017; Yoshida et al. 2017; Bhatia et al. 2018). Previous 
studies have found improvements in the simulation of TCs 
(e.g., genesis, track density and intensity) with increasing 
spatial resolution (e.g., Chen and Lin 2011, 2013; Zhao 
et al. 2009; Mendelsohn et al. 2012; Kim et al. 2014; Vec-
chi et al. 2014; Zarzycki and Jablonowski 2014; Wehner 
et al. 2015; Murakami et al. 2015, 2016a, Zhang et al. 
2016, 2019; Liu et al. 2017, 2018a) and that large-scale 
biases in mean climate can impact the sensitivity of TCs 
to climate drivers (e.g., Vecchi et al. 2014; Krishnamurthy 
et al. 2016). In an effort to overcome the coarse resolution 
of most current climate models, statistical, dynamical and 
hybrid downscaling methods have been used to estimate 
the response of TCs to climate change and variability (e.g., 
Emanuel and Nolan 2004; Emanuel et al. 2008; Knutson 
et al. 2008; Bender et al. 2010; Vecchi et al. 2011, 2013; 
Emanuel 2013; Knutson et al. 2013; Villarini et al. 2012; 
Villarini and Vecchi 2012, 2013; Camargo and Wing 2016; 
Lee et al. 2018).

This study aims to assess the impacts of atmospheric 
resolution (in fully-coupled GCMs) on the response of 
regional and global TC activity to increased  CO2. With 
this goal in mind, we perform a suite of perturbation 
experiments using three models that share identical ocean 
and sea ice components, and land and atmosphere com-
ponents that differ only in their resolution. These models 
are derived from the National Oceanic and Atmospheric 
Administration’s Geophysical Fluid Dynamics Labora-
tory (NOAA/GFDL) Coupled Model version 2.1 (CM2.1, 
Delworth et al. 2006) and version 2.5 (CM2.5Delworth 
et al. 2012), and are the Low Ocean Atmosphere Resolu-
tion version of CM2.5 (LOAR; Van der Wiel et al. 2016a), 
the Forecast-oriented Low Ocean Resolution version of 
CM2.5 (FLOR; Vecchi et al. 2014) and the high atmos-
pheric resolution version of FLOR (HiFLOR; Murakami 
et  al. 2015), which have, respectively, ~ 2°, ~ 0.5° 
and ~ 0.25° atmospheric and land horizontal grid spacings. 
The changes in atmospheric resolution, land model and 
ocean parameterizations from CM2.1 to LOAR, to FLOR 
and then HiFLOR result in a general improvement to the 
simulation of large-scale near-surface climate and modes 
of variability (e.g., Vecchi et al. 2014; Delworth et al. 
2015; Jia et al. 2015; Yang et al. 2015; Murakami et al. 
2015; Baldwin and Vecchi 2016; Zhang et al. 2016; Van 
der Wiel et al. 2016a; Pascale et al. 2016, 2017; Muñoz 
et al. 2017; Kapnick 2018; Ng et al. 2018; Wittenberg 
et al. 2018; Ray et al. 2018), and general improvements 
in seasonal prediction skill (e.g., Vecchi et al. 2014; Jia 
et al. 2015; Murakami et al. 2015, 2016a; Zhang et al. 
2019), although for some quantities (e.g., snowpack in the 
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Western U.S.; Kapnick et al. 2018) the seasonal prediction 
skill does not improve (and can degrade in places) between 
FLOR and HiFLOR.

The two highest resolution models used in this study 
(FLOR and HiFLOR) explicitly simulate TC-like vortices 
naturally with many of the characteristics (such as geo-
graphic distribution, track, seasonal and interannual vari-
ability) resembling those observed in nature (e.g., Vecchi 
et al. 2014; Murakami et al. 2015, 2016a; Zhang et al. 2016; 
Liu et al. 2017, 2018a, b). HiFLOR can simulate TC cli-
matology and variability more faithfully than does FLOR 
(Murakami et al. 2015; Zhang et al. 2016; Liu et al. 2018b), 
and it exhibits improved seasonal prediction skill for TCs 
relative to FLOR (Murakami et  al. 2016a; Zhang et  al. 
2019). HiFLOR is able to provide a more faithful repre-
sentation of the TC intensity distribution than does FLOR, 
including the existence of “Major” (Saffir-Simpson Category 
3–5) tropical cyclones (Murakami et al. 2015, 2016a; Bhatia 
et al. 2018). Our study builds on previous high-resolution 
modeling experiments that explore the sensitivity of TCs 
to  CO2 increase and warming (e.g., Yoshimura and Sugi 
2005; Yoshimura et al. 2006; Gualdi et al. 2008; Murakami 
and Sugi 2010; Sugi and Yoshimura 2012; Held and Zhao 
2011; Zhao and Held 2012; Kim et al. 2014; Walsh et al. 
2015), and we focus on the impact of resolution changes 
in the atmosphere within a family of coupled GCMs that 
share the same ocean and sea ice, and whose atmospheric 
configurations differ only in their horizontal resolution. We 
also complement our coupled experiment with a suite of 
targeted experiments, to isolate the impact of climatological 
SST biases, interannual variability, patterns of SST change, 
uniform warming and isolated effect of  CO2 doubling on 
the TC response—and the difference in TC response across 
these two models.

Based on the published literature, we expected both TC-
permitting GCMs to show a decrease in global TC frequency 
in response to  CO2 induced warming, which has been 
seen across a broad range of high-resolution GCMs (e.g., 
Yoshimura and Sugi 2005; Yoshimura et al. 2006; Knutson 
et al. 2010; Held and Zhao 2011; Sugi and Yoshimura 2012; 
Walsh et al. 2015, Scoccimarro et al. 2011). However, as 
will be shown later in this paper, the response of global TC 
frequency to the climate response to increased  CO2 differs 
considerably between the two high-resolution coupled mod-
els, with FLOR showing a decrease that is typical of other 
published GCM results, but HiFLOR showing either no 
significant change or an increase in global TC frequency—
depending on the sea surface temperature (SST) climatology 
of the model.

In Sect. 2 we describe the models and experiments used 
in this study. In Sect. 3 we discuss the response of the mod-
els to the various perturbation experiments, beginning with 
the response of global mean temperature, then precipitation, 

and finally a discussion of the response of TCs. In Sect. 4 we 
present a summary and thoughts for further work.

2  Methods

2.1  Models

The principal tools in this study are a set of coupled 
ocean–atmosphere-land-sea ice GCMs developed at NOAA/
GFDL, which share a number of common elements but differ 
principally in the horizontal resolution of their atmospheric 
components. The three GCMs used here are: (1) LOAR (Van 
der Wiel et al. 2016a), (2) FLOR (Vecchi et al. 2014), and 
(3) HiFLOR (Murakami et al. 2015). These three models 
have identical ocean and sea ice components, all with 1° × 1° 
spatial resolution (telescoping to 1/3° meridional resolution 
equatorward of 15°) derived from the ocean component of 
GFDL-CM2.1 (Delworth et al. 2006; Gnanadesikan et al. 
2006), but with modified physical parameterizations and 
advection scheme as described in Vecchi et al. (2014). The 
three GCMs (LOAR, FLOR and HiFLOR) also have the 
same atmospheric and land models, including parameteriza-
tions, but are run at different spatial resolutions. All three 
models use version 3 of the GFDL land model (LM3; Milly 
et al. 2014), and the GFDL’s finite volume cubed-sphere 
atmospheric dynamical core (FV3, Chen and Lin 2013), with 
the same 32 vertical levels and atmospheric physical param-
eterizations as in CM2.5 (Delworth et al. 2012), but each is 
run at different atmospheric/land resolutions. The lowest res-
olution model is LOAR, with 48 cells per side on each cubed 
sphere face (so C48) and an approximate horizontal resolu-
tion of 200 km on the Equator, followed by FLOR with an 
approximately 50 km resolution (C180), and HiFLOR has the 
highest resolution of approximately 25 km resolution (C384), 
building on the model used in Chen and Lin (2011, 2013). 
The atmospheric dynamical timestep is adjusted to match 
each resolution, so it is halved between FLOR and HiFLOR 
and quintupled between FLOR and LOAR (the atmospheric 
physics timestep is also 50% longer in LOAR than FLOR, but 
is the same in FLOR and HiFLOR). For analysis, the atmos-
pheric and land model data are regridded conservatively from 
the cubed-sphere grids to latitude–longitude grids, with the 
LOAR data placed on a grid with 2.5° resolution in the zonal 
and 2° resolution in the meridional, the FLOR data on a grid 
with 0.625° resolution in the zonal and 0.5° resolution in the 
meridional, and HiFLOR data on a grid with 0.25° resolution 
in both the zonal and meridional.

2.2  Fully‑coupled experiments

To explore the response of the modeled climate system to 
increases in  CO2, with each coupled model (LOAR, FLOR 
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and HiFLOR, see Sect. 2.1 above) we performed a series 
of idealized fully-coupled model experiments. An experi-
ment labeled “1990-Control” serves as our reference and 
maintains natural and anthropogenic radiative forcing and 
land use/land cover for 300 years at their levels for the year 
1990, based on the Coupled Model Intercomparison Project 
Phase 5 (CMIP5, Taylor et al. 2012) historical forcing sce-
nario. The oceans in these experiments were initialized from 
observed present day climatology, and the model systems 
drifted from this initial state due both to the model’s inherent 
biases and the radiative imbalance induced by this late-20th 
century radiative forcing.

We generated perturbation experiments from each of the 
1990-Control runs, with  CO2 increasing from year 101 (i.e., 
100 years after initialization), and all other radiative forc-
ing and boundary conditions fixed at the control levels. The 
perturbation experiments involve an idealized increase of 
atmospheric  CO2 from 1990 control values, at a rate of 1% 
per year (compounded) until doubling (approximately after 
70 years, so to model year 170), at which point the atmos-
pheric  CO2 concentrations are held fixed at this doubled 
concentration for an additional ~ 130 years (to model year 
300). We label these experiments the “Transient 2 × CO2 
experiments.”

These experiments are described in Van der Wiel et al. 
(2016a), Pascale et al. (2017) and Murakami et al. (2017a, 
b). When exploring the impact of changing atmospheric  CO2 
concentrations in the fully coupled GCM, for each model 
we subtract the 1990-Control simulation results from those 
of the Transient 2 × CO2 experiment. We label this response 
to increasing  CO2 the “Transient 2 × CO2 response”, to dis-
tinguish it from a suite of experiments described below in 
which various aspects of the  CO2 forcing are isolated. For 
most analyses we explore differences between each pair of 
coupled simulation averaged over years 201–250 from ini-
tialization (so 31–80 years after  CO2 doubling).

2.3  Nudged‑SST experiments

The full coupled GCM response to increasing greenhouse 
gases arises due to a number of factors, including the impact 
of  CO2 on atmosphere and land without SST changes (here-
after the “isolated impact of  CO2”), the response of climate 
to overall ocean surface warming, and the response of cli-
mate to the spatial patterns of ocean surface warming. In 
addition, the Full GCM response occurs in a system with 
biases in SST and other variables, which may impact the 
character of the response. Finally, the Full GCM response 
potentially includes climate changes due to nonlinearity of 
the climate response to the superposition of climate vari-
ability and mean state change (e.g., a systematic shift in the 
symmetry of El Niño could lead to long-term changes in the 

climate system), we refer to this as the rectified impact of 
variability and mean warming.

To refine our understanding of the models’ responses to 
increasing greenhouse gases, idealized perturbation experi-
ments were performed in which the SST of the fully-coupled 
model is “nudged” to different climatological SST targets, 
and idealized perturbations are applied to the model’s  CO2 
concentration. Specifically, the SST tendency equation in the 
ocean is modified to be:

where �SST(x, y, t)∕�t is the time-tendency of SST that is 
applied at a particular location and time-step in the nudged-
SST experiment, χ(x,y,t) is the coupled model’s tendency 
term for SST based on the state of the model and its gov-
erning equations, � is the nudging timescale (5 days in 
this case), SSTT is the target SST that the model will be 
nudged towards (interpolated to the model time-step from a 
monthly-mean value), and SST is the sea surface tempera-
ture of the model. In the absence of model tendency, this 
formulation would act to bring the model’s SST towards the 
target with an e-folding time-scale of � . However, because 
of the model SST tendency term—which involves advection, 
mixing and heat-fluxes—the SST of the model can deviate 
from the target, even on multi-month timescales (though the 
deviations will be the largest on timescales shorter than � ). 
This technique is described in Vecchi et al. (2014) and Pas-
cale et al. (2017).

The goal of the nudged SST setup is to give control 
over the evolution of SST in the coupled model, while still 
allowing some level of high-frequency coupling between 
the ocean and the atmosphere. The high-frequency coupling 
between ocean and atmosphere is desired, in part, because 
there is evidence that ocean–atmosphere coupling may be 
important in the evolution of TC intensity (e.g., Lin et al. 
2003; Lloyd and Vecchi 2011; Vincent et al. 2014), repro-
ducing summer monsoon precipitation in the western Pacific 
(Wang et al. 2005), and the rainfall-SST relationship across 
the tropics (Wu et al. 2008; Kirtman and Vecchi 2011). 
Through these “nudged SST” experiments we are able to 
assess the extent to which the response of the fully-coupled 
models involves a rectified impact of changes in variability, 
depends on the underlying SST climatology, and/or is con-
nected to particular patterns in SST change. The experiments 
performed with each of the three models are listed in the first 
column of Table 1.

Two reference experiments were generated, nudging 
SST to different climatologies and holding radiative forc-
ing at 1990 levels. For the first one, the target is the SST 
climatology from the fully-coupled 1990 Control simula-
tion from each model, which we label “MoC”. The second 

(1)

�SST(x, y, t)∕�t = �(x, y, t) +
1

�

(

SSTT (x, y, t) − SST(x, y, t)
)
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nudged-SST reference experiment, which we label “ObC”, 
used as its target the observed monthly-mean climatology 
over 1986–2005 from HadISSTv1 (Rayner et al. 2003), lin-
early interpolated to the model time-step.

Perturbation experiments were generated relative to each 
reference experiment, in which the  CO2 levels are doubled, 
and the SSTs are nudged towards the sum of the reference 
climatology (either observed or coupled model generated) 
and the climatological SST response of each model (LOAR, 
FLOR or HiFLOR) to  CO2 doubling over years 201–250. 
Specifically, for each model, m, we compute the climatologi-
cal SST perturbation as:

where, at each (longitude, latitude) point (x,y), is the 
monthly-mean SST for each month t (January, Febru-
ary…) from the Transient 2 × CO2 experiment, and is the 
monthly-mean SST for each month t from the 1990-Control 
experiment of each model m. We label these perturbation 
experiments “ObC + full” and “MoC + full”, depending on 
whether we use the observed or model SST climatology as 
a background for the warming perturbation. In combina-
tion with ObC and MoC, these form two experiment pairs 
that allow us to understand the impact of each model’s SST 
biases on the climate response to  CO2. The response is com-
puted as the difference between the perturbed experiment 
(e.g., ObC + full) and the relevant reference experiment (e.g., 
ObC), and we label this response with the Greek letter ∆ 
(e.g., ∆ ObC + full = ObC + full − ObC).

The ∆MoC + full and ∆ObC + full responses arise from 
the same perturbation to SST and radiative forcing, thus dif-
ferences between these two responses will reveal the influ-
ence of each model’s background climatological biases on 
its multi-decadal response to  CO2 doubling. This impact 
will depend on the character of each model’s SST biases 

(2)
ŜSTm(x, y, t) = 1∕50

250
∑

year=201

[

SST trans−2xCO22

m
(x, y, t)

−SST1990−Control
m

(x, y, t)
]

(e.g., a model with minimal SST biases should have mini-
mal impact of the SST biases on the response). Meanwhile, 
comparing the Full GCM response to ∆MoC + full allows us 
to explore the impact of nudging relative to full coupling, 
which includes the impact of any non-linear superposition 
of intrinsically generated climate variability in the full GCM 
onto radiatively-forced climate changes.

We generated a series of even more idealized pertur-
bation experiments, starting from ObC of each model, in 
order to understand the impact of simplified perturbations 
in the fully coupled  CO2-induced response of each model. 
To explore the extent to which the modeled response to  CO2 
depends on the pattern of SST response versus an overall 
warming and  CO2 increase, we performed an idealized 
experiment that doubled the reference  CO2 and added a 
globally-uniform 2K warming to the SST-nudging target (we 
label this experiment ObC + 2K + 2 × CO2, and its response 
∆ObC + 2K + 2 × CO2). Although each coupled model has 
its own transient climate response, which is lower than 
2K, we use a uniform 2 K warming here to be consistent 
with previous idealized studies (e.g., Yoshimura and Sugi 
2005; Yoshimura et al. 2006; Held and Zhao 2011; Walsh 
et al. 2015). To explore the direct effects of warming, we 
generated an experiment in which we hold the  CO2 at the 
reference level of the 1990 Control, but add a uniform 2K 
warming to the SST-nudging target (we label this experi-
ment ObC + 2K, and its response ∆ObC + 2K). To isolate the 
direct and semi-direct impacts of  CO2 increase (i.e., those 
that do not arise from SST changes), for each model we gen-
erate a perturbation of the reference experiment by doubling 
 CO2, but holding the SST target fixed (we label this experi-
ment ObC +2× CO2, and its response ∆ObC +2× CO2). We 
based these idealized experiments on the ObC experiment 
rather than the MoC experiment for two main reasons: (1) 
we wanted to compare our results to the experiments per-
formed under the US-CLIVAR Working Group on Hurri-
canes and Climate (Walsh et al. 2015), which had control 
experiments using repeating observed SST climatology, and 
(2) we wanted to exclude as much as possible any impacts of 

Table 1  Nudged-SST 
experiments performed with 
the LOAR, FLOR and HiFLOR 
GCMs

See Sect.  2.3 for description of SST nudging process. Note: CMIP5 atmospheric  CO2 concentrations in 
1990 were 352.7 ppm; “2 × CO2” forcing is therefore double, or 705.4 ppm

Experiment name CO2 forcing SST nudging target

MoC 352.7 ppm 1990-control coupled model monthly climatology (years 201–250)

MoC + Full 705.4 ppm Transient 2 × CO2 coupled model climatology (years 201–250)

ObC 352.7 ppm HadISSTv1.1 monthly SST climatology (1986–2005)

ObC + Full 705.4 ppm HadISSTv1.1 monthly SST climatology (1986–2005) + transient 
2 × CO2 SST response climatology (years 201–250)

ObC + 2 K + 2 × CO2 705.4 ppm HadISSTv1.1 monthly SST climatology (1986–2005) + 2 K uniform

ObC + 2 K 352.7 ppm HadISSTv1.1 monthly SST climatology (1986–2005) + 2 K uniform

ObC + 2 × CO2 705.4 ppm HadISSTv1.1 monthly SST climatology (1986–2005)
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climatological SST differences among these three models, in 
order to focus on the effects of SST and  CO2 perturbations.

2.4  Tropical cyclone tracker

To track TCs in the two TC-permitting GCMs (FLOR and 
HiFLOR), we use the tracker developed  in Harris et al. 
(2016), with parameter settings as in Murakami et  al. 
(2016a). The algorithm identifies model TCs by tracking 
high cyclonic vorticity features, with a sea-level pressure 
minimum, localized warming in the mid troposphere (a 
“warm core”) and high near-surface winds. As such, the 
inputs to the tracker are instantaneous 6-hourly outputs of 
sea level pressure, mid-tropospheric temperature, 850-hPa 
vorticity, and 10-m zonal and meridional winds. The storm 
tracker is applied to the output of FLOR and HiFLOR after 
regridding to the relevant latitude–longitude grid from the 
original cubed-sphere grid. Because of their differing reso-
lutions, the parameter settings used here for the second step 
of the Harris et al. (2016) tracker are different in FLOR and 
HiFLOR: the minimum wind speed criterion for HiFLOR 
is higher than that for FLOR, at 17 m s−1 and 15.3 m s−1, 
respectively, and the minimum warm core temperature 
anomaly relative to the surrounding environment in HiFLOR 
is higher than that for FLOR, at 2K relative to 1K. The wind 
speed criterion in FLOR is chosen based on the suggestions 
of Walsh et al. (2007) of a threshold 10% below gale force 
(17 m s−1) for a 50 km resolution model. The warm core 
threshold values are selected to give similar (and compara-
ble to observations) global-mean frequency in the control 
experiments (see Murakami et al. 2015, 2016a).

2.5  Large‑scale factors affecting tropical cyclone 
activity

A number of factors in large-scale climate have been sug-
gested as drivers of changes in tropical cyclone activity, and 
some of those are used in Sects. 3.2.2 and 3.3.2 to under-
stand the TC changes in the experiments with FLOR and 
HiFLOR described in Sects. 2.2–2.3. Increases in vertical 
wind shear have been shown to limit TC activity, while 
increases in TC potential intensity, mid-tropospheric humid-
ity and lower tropospheric vorticity are associated with 
increases in TC activity (e.g., Emanuel and Nolan 2004; 
Tippett et al. 2011; Emanuel 2013). These individual fac-
tors have been combined in a variety of genesis indices, that 
aim to assess the potentially offsetting changes in individual 
drivers (e.g., Emanuel and Nolan 2004; Tang and Emanuel 
2012b; Tippett et al. 2011; Emanuel 2013; Tang and Cama-
rgo 2014). Indices based on these quantities have been used 
to explore the sensitivity of TCs to climate in GCMs (e.g., 
Camargo et al. 2007a, b; Vecchi and Soden 2007a, b; Cama-
rgo 2013; Baldwin et al. 2019), with mixed success.

In this study we explore the magnitude of the vector dif-
ference of wind velocity at 850 hPa and 200 hPa, computed 
from monthly-mean output, as our measure of wind shear; 
the differences in climate-scale changes in shear computed 
from monthly-mean winds and from daily-mean winds 
has been found to be modest (Vecchi and Soden 2007b); 
increased shear is associated with a more unfavorable envi-
ronment for TCs. We also look at Bister and Emanuel (1998) 
potential intensity, or PI, computed from monthly-mean 
model output using the fortran code made available by Prof. 
Kerry Emanuel (ftp://texme x.mit.edu/pub/emanu el/TCMAX 
/pcmin _2013.f). PI is the theoretical upper bound on tropical 
cyclone intensity, and increased PI reflects a more favorable 
environment for TC development. We also explore absolute 
vorticity computed from monthly-mean winds at 850 hPa; 
high vorticity reflects a more favorable environment for TC 
activity.

Mid-tropospheric drying is deleterious for TC genesis, 
and we explore three different metrics for humidity, each 
computed from monthly-mean model output. We explore 
relative humidity at 700 hPa. High values of RH indicate 
TC-favorable environment. It has been argued that measures 
of mid-tropospheric moisture that account for the moisture 
difference between the middle troposphere and the lower 
troposphere/planetary boundary layer, such as saturation 
deficit (Emanuel 2013) and entropy deficit (Tang and Ema-
nuel 2010, 2012a), are more relevant to understanding the 
sensitivity of TC activity changes to the environment than 
mid-tropospheric relative humidity. Increases in both mid-
tropospheric saturation deficit and entropy deficit are asso-
ciated with an environment less favorable for TC genesis. 
Therefore, we also explore saturation deficit and entropy 
deficit.

Emanuel (2013) suggests a non-dimensional genesis 

potential index (or GPI) that combines a number of TC-
relevant indices to connect them to changes to TC genesis. 
This GPI provides a way to merge the modeled changes 
in quantities to assess the expected overall change in TC 
activity, and is of potential utility given the spatially het-
erogeneous changes in TC-relevant parameters shown in 
Fig. 6, along with the tendency of the various parameters 
to change in ways with opposing expected influences 
on TC activity in different regions. Following Emanuel 
(2013) we compute the GPI index using monthly mean 
model output as:

where � is the 850 hPa absolute vorticity, �
saturation

 is the 
saturation deficit at 600 hPa, PI is the Bister and Emanuel 
(1998) potential intensity and ushear is the 850–200 hPa verti-
cal wind shear.

(3)
GPI = |�|3�−4∕3

saturation
max((PI − 35m∕s), 0)2

(
25m∕s + u

shear

)−4

ftp://texmex.mit.edu/pub/emanuel/TCMAX/pcmin_2013.f
ftp://texmex.mit.edu/pub/emanuel/TCMAX/pcmin_2013.f
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Tang and Emanuel (2012b) suggest an alternative non-
dimensional index, the ventilation index or � , which has 
both a theoretical and empirical connection to the probabil-
ity of TC genesis. Tang and Emanuel (2012b) show that the 
observed probability that an atmospheric wave will become 
a TC is strongly modulated by the ventilation index, with 
large values of the ventilation index leading to vanishingly 
small probability of genesis, and very small values of the 
ventilation index leading to extremely large (almost one) 
probabilities of genesis. Using monthly-mean model output 
we compute the ventilation index as:

where ushear is the 850–200 hPa vertical wind shear,�entropy is 
the entropy deficit computed as in Eqs. 2 and 3 in Tang and 
Emanuel (2012b), and PI is the Bister and Emanuel (1998) 
potential intensity. Large values of the ventilation index are 
associated with unfavorable conditions for TC genesis.

Held and Zhao (2011) suggested TC-genesis weighted 
changes in 500 hPa pressure velocity as a way to explain 
the response across a set of perturbation experiments of 
the GFDL HiRAM model; thus we also explore the frac-
tional changes in 500 hPa pressure velocity weighted by the 
monthly climatological genesis density of the corresponding 
control experiment.

Changes in synoptic-scale variability that precedes TC 
genesis has been suggested as another influence of climate 
on TC activity. The importance of pre-TC synoptic vari-
ability was suggested by Yoshimura and Sugi (2005) and 
Yoshimura et al. (2006) as a potential driver of the global 
TC frequency response to idealized global perturbations. 
Li et al. (2010) argued that the response of tropical Pacific 
cyclone location to projected 21st century warming reflected 
changes in synoptic scale disturbances in the central Pacific, 
arising due to changes in wind shear. In order to explore the 
hypothesis that pre-TC synoptic scale disturbances, which 
we shall refer to as “TC Seeds”, are a main driver of the TC 
response in these models, we examine the index developed 
in Li et al. (2010): the variance of 3–10 day bandpass filtered 
850 hPa vorticity computed for the Northern Hemisphere 
over the period July–October and for the Southern Hemi-
sphere over the period December–March across the 50 years 
of each model experiment. In order to mitigate the potential 
contamination of conclusions about the relationship between 
changes in synoptic-scale variance and TC frequency by the 
TCs themselves, the variance is computed after removing the 
vorticity within 500 km of each TC identified by the tracker 
and linearly interpolating in space to fill the missing values. 
We note that the qualitative nature of the results presented 
here is not impacted if we retain the TCs in computing this 
index.

(4)� =

ushear�entropy

PI

3  Results

3.1  Global‑mean climate response

We begin by exploring the response to  CO2 doubling of 
globally-averaged quantities in the three fully-coupled model 
experiment pairs (1990-Control and Transient 2 × CO2; 
Fig. 1). Consistent with expectations, in all three models 
increasing  CO2 causes the net top of atmosphere (TOA) 
radiative imbalance to increase (i.e., more radiation enters 
the earth system in the net). The imbalance increases stead-
ily as  CO2 rises and then decreases more gradually once 
 CO2 levels stabilize at 2 × CO2 (Fig. 1a). There is a tendency 
for the lowest (highest) resolution model to have a larger 
(smaller) decrease in net TOA radiative imbalance over the 
130 years after  CO2 doubling.

In response to the TOA imbalance, there is a warming of 
the global surface (Fig. 1a), tropical ocean surface (Fig. 1c) 
and full ocean (Fig. 1d) in all the models, which continues 
after the  CO2 levels are stabilized in year 171. The tropical 
ocean warming across the three models largely reflects the 
spread in global surface warming (Fig. 1b, c). The largest 
full-depth ocean warming is found in the highest resolution 
model, which also exhibits the smallest surface warming; 
meanwhile, the lowest resolution model exhibits the smallest 
full-ocean warming but the largest surface warming (Fig. 1b, 
d). The more rapid decrease in Net TOA radiation imbalance 
in the LOAR and FLOR models over the 130 years (relative 
to HiFLOR), at least partly, reflects their more rapid surface 
warming (e.g., Soden and Held 2006; Soden et al. 2008; 
Winton et al. 2010).

All three models show global-mean precipitation 
increases at a pace smaller (~ 1–2% K−1) than expected from 
Clausius-Clapeyron scaling or the actual increase in atmos-
pheric moisture in these models (~ 7.5% K−1), though the 
higher resolution models show a slightly faster precipitation 
increase than does the 2° LOAR model (Fig. 1e), even with 
less surface warming. This fractional response is similar 
to that of Coupled Model Intercomparison Project Phase 
3 (CMIP3, Meehl et al. 2007) and CMIP5 models (Taylor 
et al. 2012), which exhibit a precipitation increase smaller 
than the increase in atmospheric moisture. Global precipi-
tation is constrained by the response of atmospheric radia-
tive cooling in models (e.g., Held and Soden 2006; Vecchi 
and Soden 2007a) and precipitation increases smaller than 
atmospheric moisture suggest a reduction in the strength of 
atmospheric circulation (e.g., Held and Soden 2006). All 
three models show a reduction of global circulation (defined 
as the difference between the spatial average of upward and 
the spatial average of downward 500 hPa pressure velocities; 
Fig. 1f), and in the strength of the Pacific Walker circulation 
(see Sect. B.1), consistent with this expectation (Knutson 
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and Manabe 1995; Vecchi and Soden 2007a); the strength of 
the reduction of atmospheric circulation scales with global-
mean surface temperature change across these three models.

Estimating the transient climate response (TCR) as the 
global-mean surface temperature response averaged over 
years 161–180 (centered on the year of  CO2 doubling), we 
find a TCR of 1.78 K in LOAR, 1.63 K in FLOR and 1.53 K 
in HiFLOR; the differences in global-mean surface tempera-
ture response between HiFLOR and the two other models 
continue over the period following  CO2 stabilization: aver-
aged over years 201–250 the average surface warming of 
LOAR is 2.35 K, FLOR is 2.26 K and HiFLOR 1.85 K.

One possible interpretation of the TCR differences 
among the three models is that they have different atmos-
pheric climate feedback strengths. This is a reasonable 
hypothesis, as one may speculate that the different resolu-
tions in the atmosphere may lead to distinct cloud, water 
vapor and lapse-rate responses in each model, and thus 

feedbacks. To evaluate this hypothesis, we computed the 
strength of the transient radiative feedback terms for each 
model using the radiative kernels of Soden et al. (2008) 
(Fig. 2a), and find that: (1) the three models have simi-
lar net radiative feedback magnitudes, and (2) the small 
spread in net feedback strength does not align with the 
spread in TCR, as the medium resolution (and TCR) model 
(FLOR) shows the largest net radiative feedback strength. 
The three models show systematic differences in temper-
ature and water vapor feedbacks which are strongest in 
LOAR due to its highest global mean surface temperature 
in the control run. However, the differences in tempera-
ture and water vapor feedbacks largely offset each other 
through the maintenance of near-constant relative humid-
ity (Soden and Held 2006), resulting in similar net radia-
tive feedbacks. That is, the spread in TCR in these mod-
els cannot be explained through differences in feedback 

Fig. 1  Transient 2 × CO2 
response from the fully-coupled 
models of (a) top of atmosphere 
(TOA) net radiation, (b) global-
mean surface temperature, (c) 
tropical (30°S–30°N) sea sur-
face temperature, (d) full ocean 
temperature, (e) precipitation 
(as a percent of Control experi-
ment values), and (f) atmos-
pheric circulation at 500 hPa (as 
a percent of Control experiment 
values). Atmospheric  CO2 con-
centrations begin increasing by 
1% per year in the perturbation 
experiment starting in model 
year 101, and are held fixed 
after doubling (time indicated 
by thin vertical line in each 
panel). Response is computed as 
the difference between the Tran-
sient 2 × CO2 and the 1990-Con-
trol experiments of each GCM. 
Averages are low-pass filtered 
using a 17-year cosine weighted 
filter. The 500 hPa atmospheric 
circulation is calculated as the 
spatial average of downward 
(positive) minus upward (nega-
tive) 500 hPa pressure veloci-
ties. Blue lines show the values 
for LOAR, red lines for FLOR 
and black lines for HiFLOR

LOAR FLOR HiFLOR
Global mean response to CO2 

increase in fully coupled models
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strength, i.e., equilibrium climate sensitivity, and must 
represent differences in oceanic heat uptake.

To further illustrate this point, we show the scat-
terplot of global mean surface temperature changes 
and TOA radiation during the stabilized  CO2 period 
(Fig. 2b). The similarity in transient radiative feedbacks 
is reflected in the similarity in the ocean heat uptake 
efficacy, which is shown as the ratio of the  CO2 radia-
tive forcing (estimated as 3.5 W/m2) to the y-intercept 
of the solid lines in Fig.  2b (Winton et  al. 2014; He 
et al. 2016). The efficacy is a measure of the transient 
radiative feedback associated with ocean heat uptake; a 
large efficacy corresponds to a small net transient radia-
tive feedback and acts to slow down surface warming 
(Winton et al. 2010). The medium resolution (and TCR) 
model (FLOR) shows the lowest ocean heat uptake effi-
cacy, which is consistent with its largest net transient 
radiative feedback. Therefore, we conclude that: (1) for 
this model family, the strength of the individual and net 
feedbacks are likely controlled by the physical param-
eterizations that are common to the three models, and 
(2) the spread in TCR in these models is not due to dif-
ferences in radiative feedback strength.

We suggest that the spread in TCR is best understood 
in terms of differences in heat uptake efficiency in these 
three models, as has been in other recent studies (Raper 
et al. 2002; Kuhlbrodt and Gregory 2012; Winton et al. 
2014; He et al. 2016). Supporting this hypothesis is the 
inverse relation between the full-ocean depth temperature 
response and the surface temperature response: the model 
that takes up the most (least) heat in the ocean warms 
the least (most) at the surface (Fig. 1b, c). The ocean 
heat uptake efficiency for the  CO2 stabilizing period is 
shown as the slope of the dashed lines in Fig. 2b, which 
connects point (0, 0) with the points of average surface 
temperature change and average TOA radiation change 
(Winton et al. 2014; He et al. 2016). The differences 
in ocean heat uptake efficiency are substantial among 
the three models, and agree with the differences in their 
TCR: the largest TCR model (LOAR) shows the low-
est ocean heat uptake efficiency. The role of ocean heat 
uptake in explaining the difference in these three models 
is peculiar, since the three models have exactly the same 
ocean and sea ice components; their fundamental dif-
ference is their atmospheric and land resolution. Most 
of the heat uptake by these models, and the difference 
in heat uptake across the models, is equatorward of 40° 
and above 1500 m depth, although they also show some 
differences in deep ocean heat uptake in the Southern 
Ocean. The mechanisms of the difference in heat uptake 
between the models are complex, and are to be explored 
in future work.

3.2  Large‑scale tropical responses

3.2.1  Patterns of tropical SST and rainfall change

We next explore the response of aspects of the large-scale 
climate state in the tropics that have been linked to TC activ-
ity changes. These are quantities, such as precipitation, verti-
cal wind shear, and TC potential intensity, that are directly 
simulated by GCMs or can be readily computed from GCM 
output, including GCMs at resolutions too low to accurately 
simulate TC climatology. These large-scale responses will 
help set the stage for the directly-modeled TC responses 
discussed in Sect. C.

Changes in patterns of tropical SST have been shown 
to be a useful proxy for changes in large-scale quantities 
more directly connected to TCs (e.g., Sugi et  al. 2002; 
Vecchi and Soden 2007b, c; Xie et al. 2010), for regional 
TC activity changes (e.g., Sugi et al. 2002; Knutson et al. 
2008; Vecchi et al. 2008; Zhao et al. 2009, 2010; Villarini 
et al. 2010, 2012; Murakami and Sugi 2010; Murakami and 
Wang 2010; Murakami et al. 2011, 2018; Zhao and Held 
2012; Lin et al. 2015), and for tropical rainfall and atmos-
pheric stability (e.g., Xie et al. 2010; Johnson and Xie 2010; 
Huang et al. 2013; Chadwick et al. 2014; Lin et al. 2015; 
Flannaghan et al. 2014). In response to transient 2 × CO2 
increase, all three GCMs produce similar patterns of “rela-
tive SST,” defined as the difference between SST at a loca-
tion and tropical-average (30°S–30°N) SST (Fig. 3a–c), and 
these patterns resemble those of other GCMs (e.g., Vecchi 
and Soden 2007b; Xie et al. 2010). The GCMs indicate an 
enhancement of warming in the equatorial tropics (similar to 
other GCMs; e.g., Liu et al. 2005), particularly in the eastern 
equatorial Pacific and in the northwestern Indian Ocean, as 
well as less warming than the tropical average across much 
of the subtropics, particularly in the Southern Hemisphere 
(Figs. 3a–c). The equatorial Pacific warming is the largest 
in the east Pacific, giving a rough “El Niño-like” structure. 
In the Northern tropical Atlantic, the two high-resolution 
models do not show the swath of relative cooling extend-
ing from northwest Africa to the Caribbean that is seen in 
LOAR (Fig. 3a) and many CMIP-class models (e.g., Vecchi 
and Soden 2007b, c; Xie et al. 2010).

Studies have suggested that changes in tropical precipi-
tation, and in particular the location of the Inter-Tropical 
Convergence Zone (ITCZ), could drive changes in TC activ-
ity (e.g., Merlis et al. 2013, 2016; Ballinger et al. 2015). 
In response to transient 2 × CO2 increase, the three GCMs 
all show increases in precipitation near the Equator (with 
particularly large increases in the Pacific), decreases in 
precipitation in the subtropics, and increases in the extra-
tropics (Fig. 3d–f). These results are consistent with those 
of other GCMs (e.g., Held and Soden 2006; Vecchi and 
Soden 2007a; Xie et al. 2010; IPCC 2007; Stocker 2014). 
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Tropical rainfall changes in these models exhibit substantial 
similarity to relative-SST changes with regions that warm 
more (less) than the tropical mean tending to have increases 
(decreases) in rainfall, as has been seen in other models and 
one would expect from SST-driven changes in atmospheric 
stability (e.g., Xie et al. 2010).

All three models show an eastward shift of the near-equa-
torial Southern Hemisphere Pacific rainfall, resembling an 
equatorward shift of the South Pacific Convergence Zone 
(e.g., Cai et al. 2012; Van der Wiel et al. 2016b). Similar to 
other GCMs, in response to transient  CO2 increases, these 
models exhibit an eastward shift of equatorial Pacific rain-
fall (e.g., Knutson and Manabe 1995; Vecchi and Soden 
2007a) and a westward shift of Indian Ocean rainfall (e.g., 
Vecchi and Soden 2007a, Zheng et al. 2010). A substantial 
difference exists in the response of the Pacific ITCZ across 

this model family. In the lowest resolution model (LOAR), 
the near-equatorial precipitation increase is the largest in 
the Southern Hemisphere. In FLOR, there is a more sym-
metric near-equatorial Pacific precipitation increase, with 
the precipitation increases in both hemispheres being of 
similar magnitudes. Meanwhile, HiFLOR shows a north-
ern enhancement of the near-equatorial Pacific precipitation 
increase.

Even though their El Niño SST anomaly structures 
in the Pacific are substantially similar (and similar to 
observations), these three models have different El Niño 
precipitation responses in their control climates (Fig. 4). 
During El Niño, LOAR shows an enhancement of pre-
cipitation in the Southern Hemisphere tropical Pacific, 
while FLOR shows a more meridionally symmetric pre-
cipitation response, and HiFLOR shows a northward shift 

Fig. 3  Response of annual tropical “relative sea surface temperature” 
(left panels) and tropical rainfall (right panels) to transient 2 × CO2 
increase in the coupled models. Changes are scaled by the corre-
sponding global-mean surface temperature response of each model. 
Upper panels (a and d) show the response of LOAR, middle pan-
els (b and e) show the response of FLOR, and lower panels (c and 
f) show the response of HiFLOR. Relative SST is defined as SST at 
a point minus the 30°S–30°N average. Contours in panels d–f show 

the climatological rainfall from the control experiment of each model. 
Response averages (shading) are computed over model years 201–
250, comparing the Transient 2 × CO2 increase to the 1990-Control 
experiment. For the left panels, units are kelvin local relative temper-
ature change per kelvin global mean surface temperature change; for 
the right panels units are mm/day per kelvin global surface tempera-
ture change
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of the Pacific ITCZ (Fig. 4). HiFLOR shows improve-
ment in a number of atmospheric aspects in the tropical 
Pacific relative to FLOR and LOAR, including a reduced 
climatological “double ITCZ” bias, and reduced meridi-
onal SST gradient bias, in the near-equatorial southeast 
Pacific in present-day simulations (Wittenberg et al. 2018); 
the “double ITCZ” tendency in GCMs has a substantial 
contribution from the atmospheric components of those 
models (e.g., Zhang and Wang 2006; Li and Xie 2012; 
Adam et al. 2016; Xiang et al. 2017). However, we can-
not say that HiFLOR outperforms FLOR in modeling the 
regression of precipitation onto NIÑO3 shown in Fig. 4, 
as they have the same spatial correlation to the observed 
values over the tropical Pacific (0.92) and indistinguish-
able spatial root-mean square errors (0.378 mm day−1 in 
HiFLOR and 0.375 mm day−1 in FLOR), although both 
high resolution models show improvements over LOAR 
(r = 0.84, rmse = 0.523  mm  day−1). These GCMs all 
show an enhanced warming along the equatorial Pacific 
in response to transient  CO2 doubling, particularly in the 
eastern equatorial Pacific (Fig. 3), which is vaguely remi-
niscent of El Niño. There are also similarities between 
the Pacific El Niño precipitation signature (Fig. 4) and 
the Transient 2 × CO2 precipitation response (Fig. 3) in 
each of these models. Therefore, the distinct El Niño sig-
nature of these coupled GCMs provides a potential source 

of the difference in the Pacific ITCZ response to transient 
2 × CO2 across the models.

The overall weakening of tropical circulation (Fig. 1f) and 
changes in tropical precipitation (Fig. 3d–f) are reflected in 
the regional structure of changes in 500 hPa pressure veloc-
ity to transient  CO2 increase (Fig. 5). In the tropical Pacific, 
a weakening of the zonal overturning circulation (the Walker 
Circulation) is manifest as anomalous ascent over the eastern 
and central equatorial Pacific, and anomalous descent over 
the Maritime Continent; the regions of the strongest anom-
alous ascent (descent) also correspond to regions of rela-
tive SST and precipitation increase (decrease; Fig. 3). The 
changes in mid-tropospheric pressure velocity are generally 
similar across the three models, with notable exception in 
the near-equatorial Pacific changes that reflect the precipita-
tion changes in each model—with a Southern Hemisphere 
enhanced anomalous ascent/rainfall increase in LOAR and 
a Northern Hemisphere enhanced anomalous ascent/rain-
fall increase in HiFLOR. The structure of mid-tropospheric 
pressure velocity changes in the TC seasons in each hemi-
sphere (Fig. 5d–f) is very similar to that in the annual mean 
(Fig. 5a–c) for each model, but with the magnitude of the 
near-equatorial Pacific changes being larger in the warm sea-
son than the annual mean. Changes in TC-season 500 hPa 
pressure velocity have been suggested as an indicator of TC 
activity changes (e.g., Held and Zhao 2011), with anomalous 
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Fig. 4  Regression of SST (top panels) and precipitation (bottom 
panels) monthly-mean anomalies onto the monthly-mean NIÑO3 
SST anomaly index. Leftmost panels show the observed regres-
sions from (a) NOAA-OISSTv2 (1982–2016; Reynolds et  al. 2002) 
and (e) GPCP-v2.3 (1982–2016; Adler et  al. 2018). Regressions 
are computed from years 1-101 of the 1990-Control integrations of 

each model for (b) and (f) LOAR, (c) and (g) FLOR, and (d) and (h) 
HiFLOR. NIÑO3 SST is computed as an area average of SST over 
(150°W–90°W, 5°S–5°N; dashed gray box shown). Units are kelvin 
local SST per kelvin NIÑO3 SST in the upper panels, and mm day−1 
local precipitation per kelvin NIÑO3 SST in the lower panels
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ascent (descent) related to enhanced (reduced) TC activ-
ity. The 500 hPa pressure velocity changes in these models 
suggest increases in TC activity in the northwestern Indian 
Ocean and the tropical North Atlantic, and reductions in 
TC activity in the Northwest Pacific. Overall, the 500 hPa 
changes in each hemisphere’s TC season show large areas 
of both anomalous ascent and descent, suggesting spatially 
heterogeneous TC activity changes.

3.2.2  TC genesis parameters

We now turn to the model response in quantities that are 
more directly connected to TC activity (see Sect. 2.5). Fig-
ure 6 shows the response of four such quantities to transient 
 CO2 increase in the three models. The models show modest 
amplitude (Fig. 6j, k, l) and very similar (Fig. 7g, h) patterns 
of 850 hPa vorticity change. 

Overall, the changes in wind shear are very similar 
across the three models (Fig. 6a–c), with small differences 
between the shear response in the two high-resolution mod-
els (Fig. 7b). There are decreases in near-equatorial Pacific 
wind shear reflecting the reduction of zonal overturning, and 
substantial increases in wind shear in the Southern Hemi-
sphere subtropics—particularly in the southeastern equato-
rial Pacific and South Atlantic, two regions without much 
TC activity. There are tendencies for shear increase across 
the tropical North Atlantic and decreases across the northern 
tropical Pacific, similar to the response seen in other coupled 
models (e.g., Vecchi and Soden 2007a; Camargo 2013). In 
isolation these shear changes would act to make the tropical 
North Atlantic less conducive to TC activity, while making 
the tropical Pacific more conducive. However, the models 
also exhibit substantial changes in the other TC-relevant 
parameters.

1597543210-1-2-3-4-5-7-9-15
Upward

Change in 500 hPa Pressure Velocity Scaled by Global-mean Warming
(hPa·day-1·K-1)

Downward

(a) LOAR annual-mean w500 change

(b) FLOR annual-mean w500 change

(c) HiFLOR annual-mean w500 change

(d) LOAR local summer-fall w500 change

(e) FLOR local summer-fall w500 change

(f) HiFLOR local summer-fall w500 change

Fig. 5  Response of mid-tropospheric pressure velocity in the atmos-
phere to transient 2 × CO2 increase in the coupled models, scaled in 
each panel by the corresponding global-mean surface temperature 
response of each model, for: (a, d) LOAR, (b, e) FLOR, and (c, f) 
HiFLOR. Response averages (shading) are computed over model 

years 201–250, comparing the Transient 2 × CO2 increase to the 
1990-Control experiment. a, b, c Annual mean response, (d, e, f) 
local summer-fall response. Units are hPa/day per kelvin global mean 
surface temperature change
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The models tend to show increases in Bister and Emanuel 
(1998)’s TC potential intensity (PI) across many regions 
of substantial TC activity (Fig. 6d–f). The PI changes in 
the three models exhibit substantial spatial structure, with 
regions of increase and decrease, though the region of great-
est decrease is in the Southeast Pacific, where there is lim-
ited TC activity. The patterns of PI response to transient 
 CO2 increase in these three models are similar to the mod-
eled response in relative SST, with areas of relative warming 
(cooling) tending to show increases (decreases) in PI; this 
tendency is also seen in other models (Vecchi and Soden 
2007b; Xie et al. 2010), although these models tend to show 
PI increase in regions of weak relative SST change. Consist-
ent with the differences in relative warming of the Atlantic, 
both FLOR and HiFLOR show a greater tendency for PI 
increases in the tropical North Atlantic than does LOAR. 
HiFLOR tends to show more of a tendency for PI increase 

in many TC regions than does FLOR (Fig. 7d), which in 
isolation would indicate a tropics-wide more TC-favorable 
environment in HiFLOR than in FLOR.

Although the overall structure of mid-tropospheric rel-
ative humidity change in the three models exhibits some 
similarity, with a larger moistening in regions of strong 
anomalous ascent such as the equatorial Pacific and North-
western Indian Ocean (Fig. 6g–i), yet the response of mid-
tropospheric relative humidity is of different sign between 
HiFLOR and LOAR across most of the subtropics, in con-
trast to the other variables (Fig. 7e, f). The lowest resolution 
model shows much more of a tendency for mid-tropospheric 
moistening, while the highest resolution model shows more 
of a tendency for mid-tropospheric drying, with FLOR 
lying in the middle. In isolation, the reduced moistening in 
the mid-troposphere in HiFLOR would suggest a less TC-
favorable environment, across the tropics, than in FLOR 

Transient 2xCO
2
 Response Per Degree Global Warming

543210-1-2-3-4-5

LOAR (~200km Model)
(a) Wind Shear Response (m·s-1·K-1)

(d) Potential Intensity Response (m·s-1·K-1)

(g) 600hPa Relative Humidity Response (%·K-1)

(j) 850hPa Relative Vorticity Response (10-6 s-1·K-1)

(e) Potential Intensity Response (m·s-1·K-1)

(h) 600hPa Relative Humidity Response (%·K-1)

(k) 850hPa Relative Vorticity Response (10-6 s-1·K-1)

(b) Wind Shear Response (m·s-1·K-1)

(f) Potential Intensity Response (m·s-1·K-1)

(i) 600hPa Relative Humidity Response (%·K-1)

(l) 850hPa Relative Vorticity Response (10-6 s-1·K-1)

(c) Wind Shear Response (m·s-1·K-1)
FLOR(~50km Model) HiFLOR(~25km Model)

Fig. 6  Fully-coupled annual-mean transient 2 × CO2 response of TC-
relevant large-scale parameters (per kelvin global mean surface tem-
perature response of each model); LOAR is shown in the leftmost 
panels, FLOR in the center panels and HiFLOR in the rightmost pan-
els. Anomalies in the Northern Hemisphere are computed over June 
through November, while anomalies in the Southern Hemisphere 
are computed over December through May. Panels (a–c) show the 
response of the magnitude of the monthly-mean 850  hPa–200  hPa 

vector wind shear [m s−1 K−1]. Panels (d–f) show the response of the 
Bister and Emanuel (1998) TC potential intensity [m s−1 K−1]. Pan-
els (g–i) show the response of the 600-hPa relative humidity [% K−1]. 
Panels (j–l) show the response of the magnitude of the 850 hPa abso-
lute vorticity  [10−6  s−1  K−1]. These parameters are computed as in 
Vecchi and Soden (2007b, c), with data regridded onto a 2° × 2° grid 
conservatively before computing monthly values. Average responses 
are computed over the years 201–250 of the model simulations
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and LOAR; although the changes in PI point in the opposite 
direction (Fig. 7c, d).

Because of the nonlinear sensitivity of saturation vapor 
pressure to temperature (the Clausius-Clapeyron relation-
ship) and because the free troposphere is colder than the 
surface, both saturation deficit and entropy deficit will tend 
to increase from warming absent substantial increases in 
mid-tropospheric relative humidity. Figure 8a–f show the 

response of saturation deficit and entropy deficit to transient 
 CO2 increase, shown as the log of the ratio of the means of 
the inverse of saturation deficit and the inverse of entropy 
deficit across the three GCMs. In spite of the differences 
in mid-tropospheric relative humidity response across the 
three models, away from the equator the models all exhibit 
increases in both saturation deficit and entropy deficit (cool 
colors), suggesting an environment that—from this effect 

Difference in Transient 2xCO
2
 Response Per Degree Global Warming

543210-1-2-3-4-5

FLOR minus LOAR

(c) Potential Intensity Response Difference (m·s-1·K-1)

(e) 600hPa Relative Humidity Response Difference (%·K-1)

(g) 850hPa Relative Vorticity Response Difference (10-6 s-1·K-1)

(d) Potential Intensity Response Difference (m·s-1·K-1)

(f) 600hPa Relative Humidity Response Difference (%·K-1)

(h) 850hPa Relative Vorticity Response Difference (10-6 s-1·K-1)

(a) Wind Shear Response Difference (m·s-1·K-1) (b) Wind Shear Response Difference (m·s-1·K-1)
HiFLOR minus FLOR

Fig. 7  Inter-model differences of the fully-coupled annual-mean tran-
sient 2 × CO2 response of TC-relevant large-scale parameters (per 
kelvin global mean surface temperature response of each model). 
The difference between FLOR and LOAR is shown in the left pan-
els, and the difference between HiFLOR and FLOR in the right pan-
els. Anomalies in the Northern Hemisphere are computed over June 
through November, while anomalies in the Southern Hemisphere 
are computed over December through May. Panels (a) and (b) show 
the inter-model difference in the response of the magnitude of the 
monthly-mean 850 hPa–200 hPa vector wind shear [m s−1 K−1]. Pan-

els (c) and (d) show the inter-model difference in the response of the 
Bister and Emanuel (1998)’s TC potential intensity [m s−1 K−1]. Pan-
els (e) and (f) show the inter-model difference in the response of the 
600-hPa relative humidity [% K−1]. Panels (g) and (h) show the inter-
model difference in the response of the magnitude of the 850  hPa 
absolute vorticity  [10−6 s−1 K−1]. These parameters are computed as 
in Vecchi and Soden (2007b, c), with data regridded onto a 2° × 2° 
grid conservatively before computing monthly values. Average 
responses are computed over the years 201–250 of the model simula-
tions
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alone—should become less favorable to TC genesis across 
the tropics. The combined effect of warming and mid-trop-
ospheric drying lead to larger saturation deficit and entropy 
deficit increases in HiFLOR than in FLOR.

The response of the Emanuel (2013) Genesis Potential 
Index (or GPI) to transient  CO2 increase shows substantial 
spatial heterogeneity in all three models (Fig. 8j–l), with 
broad areas of both increase and decrease. The overall pat-
terns show some similarity across the three models, with 
a tendency for increase in parts of the Northwest Pacific, 
off of the Northeast United States and the eastern tropical 
North Atlantic, and a tendency for reductions in the South-
west Pacific, Gulf of Mexico and off of the Southeast United 
States. Meanwhile there are also regions with little inter-
model agreement, such as the Central North Pacific, and the 
South Indian Ocean. The changes in GPI are complex, and 
driven by the partially-offsetting influence of various factors 
so that at the regional scale few generalities can be drawn 
about the dominant factor across various locations.

Changes in the Tang and Emanuel (2012b) ventilation 
index are also spatially heterogeneous (Fig. 8g–i), though 

outside the equatorial Pacific they tend to be dominated by 
the increase in entropy deficit (arising in all models from 
the overall warming, and reinforced in HiFLOR by mid-
tropospheric relative humidity changes). The structure of 
these ventilation index changes is similar to that seen in 
other coupled models (e.g., Tang and Camargo 2014). In 
response to transient  CO2 doubling, these models show an 
overall tendency to increase the ventilation index, suggest-
ing a tropics-wide more unfavorable environment for TC 
genesis.

3.3  Tropical cyclone response

We now turn to the response of TC activity explicitly 
simulated by the two higher resolution models, FLOR and 
HiFLOR. We begin by exploring the simulation and fully-
coupled transient 2 × CO2 response of TC genesis den-
sity for FLOR and HiFLOR (Fig. 9). The control models 
recover many aspects of real-world TC genesis (Fig. 9a), 
though as noted in Vecchi et al. (2014) and Murakami et al. 
(2015, 2016) they also exhibit a number of climatological 
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Fig. 8  Fully-coupled annual-mean transient 2 × CO2 response of 
genesis index parameters (per kelvin global mean surface tempera-
ture response of each model); LOAR is shown in the leftmost pan-
els, FLOR in the center panels and HiFLOR in the rightmost panels. 
Panels (a–c) show the response of 600-hPa saturation deficit, pan-
els (d–f) row shows the response of 600 hPa entropy deficit, panels 
(g–i) shows the response of Tang and Emanuel (2012b) ventilation 
index, and panels (j–l) shows the response of Emanuel (2013) gen-
esis potential index (GPI). Values are displayed so that warm (cool) 
colors indicate changes in response to  CO2 doubling that make the 
environment more (less) favorable to TC activity. For saturation defi-

cit, entropy deficit and the ventilation index, changes are displayed as 
the base-10 logarithm of the ratio between the control and transient 
2 × CO2 experiment, with averages computed over June-November for 
the Northern Hemisphere and December-May for the Southern Hemi-
sphere; for GPI the difference between the transient 2 × CO2 experi-
ment and the control is shown and the climatological annual sum is 
computed. In the lower panels the annual summed control experiment 
GPI is shown in contours for reference, with a contour interval of 0.1 
non-dimensional units. Values are computed over years 201–250 of 
each experiment
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TC biases, many tied to the coupled models’ climatological 
SST biases. HiFLOR shows substantially more TC genesis 
in the northwest Pacific than FLOR and observations, but a 
reduced (and more realistic) tendency for TC genesis in the 
central north Pacific. These differences in Pacific genesis 
cannot be understood in terms of the model-simulated GPI 
(contours in Fig. 8k, l), and the region of high simulated 
GPI off the east coast of the United States is not reflected 
in enhanced genesis of model-simulated TCs in that region. 
Murakami et al. (2015, 2016) and Zhang et al. (2016) offer 
deeper discussions into the differences in climatological TC 

simulation by these two models. The response of TC genesis 
to transient  CO2-induced climate change (Fig. 9d, e) differs 
considerably between the two models: the response of FLOR 
is dominated by regions of genesis decrease, while HiFLOR 
shows a relatively comparable area with increase and with 
decrease. Focusing regionally, there are some regions where 
the sign of the response is similar in the two models (such as 
the Arabian Sea, far East Pacific and parts of the Southern 
Indian Ocean), but many in which they are opposite. Overall, 
the spatial correlation of TC genesis density change in these 
two models is negligible. In spite of having very similar 
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Fig. 9  a Observed 1981–2015 mean, (b, c) 1990 Control and (d, e) 
response to transient 2 × CO2 of the 10° × 10° TC genesis density. 
Observations are from the IBTrACS database (Knapp et  al. 2010). 
Model explicitly simulated TCs are from (b, d) FLOR and (c, e) 
HiFLOR. Genesis location in the models is defined as the location 

that a TC identified Harris et  al. (2016) reaches the threshold wind 
intensity and has a mid-tropospheric warm core anomaly above the 
threshold for each model, while genesis location in observations is 
defined as the location that a TC in IBTrACS first reaches 17 ms−1
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changes in large-scale TC-relevant conditions (Figs. 6, 7, 8, 
9), these two models have extremely different changes in TC 
genesis in response to transient  CO2 forcing.

In the following subsections we further explore the 
responses, and inter-model differences in responses, of TC 
activity in FLOR and HiFLOR. We begin by exploring the 
global-mean change in TC frequency, then focus on TC 
intensity changes and finally explore changes in regional 
TC activity.

3.3.1  Global mean tropical cyclone frequency

As one would expect from the maps of TC genesis change, 
the response of global-mean TC frequency in the fully-
coupled Transient 2 × CO2 experiments differs markedly 
between FLOR and HiFLOR (left bars Fig. 10): FLOR 
shows a substantial and statistically significant decrease, and 
while there is a slight decrease in HiFLOR it is not statisti-
cally significant. The global-mean frequency response of 
the fully-coupled Transient 2 × CO2 experiment is largely 
recovered by ∆MoC + full (middle bars in Fig. 10), with both 

experiments showing a significant decrease in global fre-
quency in FLOR, and a non-significant decrease in HiFLOR; 
thus, in these models the global-mean frequency response 
does not fundamentally arise from a rectification of interan-
nual variability. However, the coupled model SST bias can 
impact the response of global-mean TC frequency to  CO2 
increase: for ∆ObC + full in HiFLOR, there is a statistically 
significant global TC frequency increase (~ 6%, rightmost 
red bar in Fig. 10). Global TC frequency is relatively less 
impacted by the SST biases in FLOR (comparing the middle 
and rightmost blue bars in Fig. 10).

We can use the idealized forcing experiments in which 
 CO2 is increased, SST is warmed uniformly, and both  CO2 
and SST are increased, to interpret the differing responses 
of FLOR and HiFLOR global TC frequency (Fig. 11). For 
FLOR the ∆ObC +2K +2× CO2 shows a decrease in global 
TC frequency, arising from a strong TC frequency decrease 
in ∆ObC +2× CO2, that is offset by a smaller increase 
∆ObC + 2K—the effect of the combined forcing appears 
to be quite linear. Meanwhile, HiFLOR shows an increase 
in global TC frequency in ∆ObC +2K +2× CO2, arising 
from a strong tendency to increase frequency in ∆ObC +2K 
and a smaller decrease in ∆ObC +2× CO2. The global TC 
frequency difference in ∆ObC +2K +2× CO2 of HiFLOR 
relative to FLOR arises from both a smaller decrease in 
∆ObC +2× CO2 and a larger increase in ∆ObC +2K (right-
most bars in Fig. 11).
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Fig. 11  Response of global-mean TC frequency in the idealized 
forcing experiments; leftmost bars are for the FLOR model, the 
second set of bars for the HiFLOR model, and rightmost bars show 
the difference between the response of HiFLOR and FLOR. In each 
group, the blue bar/symbols show the response to a combined uni-
form 2K warming and a  CO2 doubling (∆ObC +2K +2× CO2), the 
gray bar/symbols show the response to  CO2 doubling with fixed SST 
(∆ObC +2× CO2), and the red bar/symbols show the response to uni-
form 2K warming (∆ObC + 2K). Bars show the percent change in TC 
frequency averaged over 50 years (relative to the ObC control). Black 
lines show the 95% confidence interval on the change (computed as 
in Fig. 10)
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Recently, a multi-model comparison was performed to 
assess the response to  CO2 increase and a uniform SST 
warming of TCs across a range of GCMs with resolutions 
between ~ 50 and ~ 100 km (Walsh et al. 2015), which found 
that these GCMs consistently predicted a decrease in global 
TC frequency in response to  CO2 and warming, though the 
partitioning between  CO2-induced and warming-induced 
decrease differed across the models. Meanwhile, a statisti-
cal–dynamical downscaling scheme (Emanuel et al. 2008, 
2013) was applied to the output from the same models, and 
predicted an increase in global frequency in response to uni-
form warming and  CO2 increases (Walsh et al. 2015), driven 
by the SST warming and slightly offset by the effects of 
 CO2. The response of FLOR, both to the combined forcing 
and to the individual forcing of SST warming and  CO2, is 
generally within the spread of the GCMs used in the US-
CLIVAR multi-model intercomparison (Walsh et al. 2016). 
Meanwhile, the response of HiFLOR is outside the range 
of the GCMs in Walsh et al. (2015) and FLOR. An increase 
in global frequency of TCs in response to warming is also 
seen in HiFLOR experiments forced with the multi-model 
mean projected SST anomalies from the CMIP5 ensemble 
(Bhatia et al. 2018) and in the Emanuel (2013) downscal-
ing of CMIP5 experiments; meanwhile Zhao et al. (2009)’s 
50-km model shows a decrease in global-mean frequency in 
response to ensemble-mean CMIP5 projected 21st century 
SSTs (Knutson et al. 2015). In summary, the global-mean 
TC frequency response in FLOR is consistent with the range 
of GCM results published to date (e.g., Held and Zhao 2011; 
Gualdi et al. 2008; Wehner et al. 2015; Yoshimura and Sugi 
2005; Yoshimura et al. 2006; Knutson et al. 2013; Sugi and 
Yoshimura 2012; Walsh et al. 2015), but the global TC fre-
quency sensitivity of the ~ 25 km resolution HiFLOR GCM 
appears inconsistent with that of those GCMs.

3.3.2  Large‑scale environment and TC frequency

Do the dramatic differences in TC response between FLOR 
and HiFLOR reflect differences in projection of TC genesis 
probability due to differences in the response of large-scale 
conditions? Or do they reflect differences in the response 
of TC genesis probability to similar projected large-scale 
changes in each model? Or do they reflect some other 
factor(s)? In order to explore these questions, we have com-
pared the tropical-mean response of the TC-relevant factors, 
such as saturation deficit, PI, ventilation index, GPI, to the 
response of global TC frequency across the twelve perturba-
tion experiments (six for each model; Fig. 12).

To explore the hypothesis that large-scale changes in 
shear, potential intensity, humidity and vorticity act to 
modify the probability of TC genesis in a way to explain the 
response of global TC frequency across these experiments, 
we first look at Emanuel (2013) GPI (Fig. 12a). For each 

model the fractional change of tropical-mean GPI shows a 
very strong relationship to the fractional response of global 
TC frequency across the six perturbation experiments (gray 
and orange lines), suggesting that tropical-mean changes in 
the probability of TC genesis encapsulated in GPI could help 
explain the response of global TC frequency. However, GPI 
is not able to explain the inter-model difference in response 
of global TC frequency, with the relationship for FLOR 
exhibiting a systematic shift relative to that for HiFLOR—a 
mean difference between the two fits of almost 11%, which 
represents a considerable fraction of the typical TC response 
(ranging between ± 15%). Correspondingly, in the fit across 
all twelve data points (blue line) the variance explained is 
substantially less than that for each model. So GPI changes 
could help explain why, for example, the response to uniform 
warming of global frequency in each model differs from that 
to isolated  CO2 doubling, but it cannot explain why HiFLOR 
has a tendency for global increase relative to the response 
of FLOR for the same perturbations. Therefore, we look 
beyond GPI to help understand the inter-model spread in 
global genesis.

The Tang and Emanuel (2012a, b) ventilation index ( � ) 
has substantial theoretical (e.g., Tang and Emanuel 2010, 
2012a, b) and empirical (Tang and Emanuel 2012b) support 
as a useful index for the probability of TC genesis. However, 
and to our surprise, we find that tropical mean changes in the 
inverse of the ventilation index alone are not a useful factor 
to explain the global TC genesis response either within or 
across each model (Fig. 12b). We explored other formu-
lations and averaging regions and seasons (including the 
time-median of the ventilation index, the ventilation index 
itself, among many others) and none showed a significant 
relationship to global TC frequency across these model 
experiments when used as a sole covariate. Therefore, the 
Tang and Emanuel ventilation index does not explain the 
difference in global TC response across these two models. 
However, we will return to the ventilation index below, and 
demonstrate that it serves as a useful covariate for global 
TC frequency change in these models once one accounts 
for another factor impacting TC genesis (the frequency of 
pre-TC synoptic disturbances).

Motivated by Held and Zhao (2011) we compare TC-
density weighed changed in 500 hPa pressure velocity with 
fractional changes in global TC frequency (Fig. 12c). Over-
all, the relationship between spatially aggregated genesis-
weighted 500 hPa pressure velocity and global TC genesis 
within each model is comparable to or better than that for 
GPI (Fig. 12a). Furthermore, there is a tendency for the rela-
tionship to distinguish between the more positive response 
of HiFLOR and the more negative one of FLOR, such that 
the relationship across all twelve experiments is substan-
tial (blue line, Fig. 12b). However, there is still a 7.5% 
gap in the fit of the HiFLOR response to that in FLOR to 
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genesis-weighted 500 hPa pressure velocity, which is a con-
siderable fraction of the typical response of each experiment. 
Further, because we did not save high-frequency 500 hPa 

pressure velocity data from these simulations, we are not 
able to remove potential contamination of the TCs them-
selves onto the 500 hPa pressure velocity signal and we 
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Fig. 12  Fractional response in global frequency of explicitly simu-
lated TCs vs. fractional response in spatially-aggregated TC genesis 
indices. Orange symbols show the response of HiFLOR, gray sym-
bols that in FLOR. The linear least-squares regression fit is indicated 
by the straight lines, with the fit equation and variance explained  (R2) 
indicated, orange lines show regression for HiFLOR points, gray 
for FLOR points, and blue for all data combined. Each symbol is 
the response of one perturbation experiment relative to the relevant 
control experiment, for each model the six responses shown are: 

fully coupled transient  CO2 increase, ΔMoC + Full, ΔObC + Full, 
ΔObC + 2K + 2 × CO2, ΔObC + 2K and ΔObC + 2 × CO2. Frac-
tional response of simulated global TC frequency is compared to: 
(a) tropical-mean Emanuel (2013) GPI response, (b) ± 10–30° aver-
aged inverse Tang and Emanuel (2012b) ventilation index, (c) control 
simulation TC-genesis-weighted 500 hPa pressure velocity, and (d) Li 
et  al. (2010) TC “seed” index after removing model simulated TCs 
(see Sect. 3.3.1)
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therefore view these strong relationships with some level 
of caution, as TCs can contaminate the signal of large-scale 
factors used to understand them (e.g., Swanson 2008). It is 
worth noting that the genesis-weighted 500 hPa pressure 
velocity changes across these perturbation experiments 
does not show a simple relationship to the response of 
tropics-wide overturning, indicating that genesis weighted 
500 h Pa pressure velocity changes should not be interpreted 
as a simple consequence of the response of overall tropical 
circulation.

The TC genesis parameters explored through Fig. 12a–c 
do not explain the difference in global TC frequency 
response between FLOR and HiFLOR. One possible inter-
pretation is that the inter-model difference in global TC 
frequency response arises due to fundamentally different 
TC genesis sensitivity to the same large-scale environ-
mental changes between the two models. In fact, this was a 
hypothesis for differences in the interannual simulation and 
prediction of TC frequency across these two models (e.g., 
Murakami et al. 2015, 2016a; Zhang et al. 2016). However, 
we here explore an alternative hypothesis: that the response 
of global TC frequency in these models reflects differential 
changes in the rate of pre-TC synoptic-scale disturbances, 
and not only the  changes in the probability of genesis 
of pre-TC synoptic-scale disturbances. This hypothesis is 
explored using the index of Li et al. (2010; see Sect. 2.5).

The response of the vorticity variance-based TC Seed 
index averaged between 30°S and 30°N (over both land 
an ocean) explains a large fraction of the variance of the 
response of global TC frequency across both the various 
perturbation experiments for each model, and between the 
two models (Fig. 12d). The linear fits for each model (orange 
and gray lines) are very similar to the linear fit across both 
models (blue line). The relationship supports the hypothesis 
that changing non-TC synoptic-scale variability is a signifi-
cant factor in the response of TC frequency, by changing 
the frequency of vortices that can then develop into TCs. 
However, although the relationship between the TC Seed 
index and global TC frequency is encouraging, the relation-
ships show a non-zero intercept: there is a tendency for TC 
frequency decrease even when the change in the TC Seed 
Index is zero.

It appears changes in TC Seed activity, and not just 
changes in the probability of TC genesis modulated by 
large-scale changes in climate (i.e., genesis probability 
indices), are an important driver of TC frequency changes 
in these models. However, the models show clear changes 
in large-scale climate conditions that would affect the prob-
ability of TC genesis given a seed. In particular, Tang and 
Emanuel (2012b) in their Figs. 4 and 5 show clear empiri-
cal evidence for a dependence on the ventilation index ( � ) 
of the probability that a tropical disturbance will undergo 
cyclogenesis. This suggests that a more appropriate model 

to explain changes in TC frequency would be a Binomial 
one, in which the expected value of TC frequency (the “suc-
cesses”) depends on the product of the number of TC seeds 
(the “trials”) and the probability of success of each trial. In 
such a model, the fractional change in the expected value of 
TC frequency (n) will be given by

where N is the expected value of frequency of TC seeds (the 
“trials”) and p is the expected value of the probability of 
genesis of each seed.

In order to build the most accurate model, one should 
likely account for the spatio-temporal variance and covari-
ance of the means and changes in trials and probabilities. 
However, as an initial simple estimate, which could and 
should be refined in future work, we explore the extent to 
which changes in tropical-mean TC Seed activity and prob-
ability, inferred from global changes in the vorticity vari-
ance TC Seed index of Li et al. (2010) and the ventilation 
index of Tang and Emanuel (2012b), can be used to explain 
the inter-experiment and inter-model spread in global TC 
frequency response in FLOR and HiFLOR. First, we posit 
that the linear relationship between the TC seed index and 
global TC frequency in Fig. 12d is a useful estimate of the 
fractional change in TC seeds. That is, we posit that:

where Seed is the 30°S–30°N (land and ocean) average of 
the vorticity variance-based TC Seed Index.

Then, based on Fig. 4 of Tang and Emanuel (2012b), 
we hypothesize that the probability of genesis given a seed 
should vary roughly with the inverse of the ventilation index. 
Figure 13a shows that the fractional change of the ± 10–30° 
averaged inverse of the ventilation index is a useful covariate 
to explain the residual of the fractional response of global 
TC frequency to the linear fit of global TC frequency to 
the vorticity variance-based TC Seed index (without the 
intercept of 5.80 included). Although the ± 10–30° aver-
age of the inverse of the ventilation index showed no useful 
relationship to fractional changes in global TC frequency in 
these experiments (Fig. 12b), once the linear relationship of 
global TC frequency changes to the tropical TC Seed index 
is removed, there is a strong relationship to the fractional 
changes in the spatial mean of the inverse of the ventila-
tion index (Fig. 13a). Accordingly, thinking of a Binomial 
process (Eqs. 5, 6), we compare the fractional change in 
global TC frequency to a two-covariate model for global 
frequency (β) using the fractional change in spatially aver-
aged vorticity variance-based TC Seed index and ± 10–30° 
spatially-averaged inverse ventilation index (Λ−1):

(5)
Δn

n
=

ΔN

N
+

Δp

p

(6)
ΔN

N
≈ 3.19 ∗

ΔSeed

Seed
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as shown in Fig. 13b, one recovers practically all (variance 
explained 0.89) of the inter-experiment and inter-model vari-
ance of the fractional change in global TC frequency, and the 
fit to all of the experiments has an intercept closer to zero 
than the seed only fit (Fig. 12d).

Based on these analyses we suggest the following inter-
pretation of the global TC frequency response in these 
experiments. The fractional change in global TC frequency 
arises due to the combined impacts of changes in the fre-
quency of pre-TC synoptic disturbances (“seeds”) and the 
probability that these disturbances will undergo cyclogene-
sis. Figure 14 decomposes the contribution to the two-pre-
dictor (“seed” change and inverse ventilation index-based 
probability) model for global TC frequency across all the 
experiments for FLOR and HiFLOR. Across all experi-
ments, the global probability of cyclogenesis decreases, 
with the decreases in genesis probability being smallest 

(7)
ΔN

N
≈ 3.19 ∗

ΔSeed

Seed
+ 1 ∗

Δ�−1

�−1
= �,

in the isolated 2 × CO2 and isolated uniform warming. In 
the experiments with surface warming, for both models 
the synoptic variability increases, although the increase in 
synoptic variability is substantially larger in HiFLOR than 
in FLOR. In the isolated 2 × CO2 experiments the synop-
tic variability decreases for both models. For most FLOR 
experiments the change in genesis probability estimated 
from the inverse of the ventilation index is larger than the 
fractional change in “seeds”, correspondingly FLOR has 
a greater tendency for global TC decrease (or a reduced 
tendency for global TC frequency increase). Across these 
experiments there is an often partially-compensating 
impact of changes in pre-TC synoptic disturbances and 
the changes in probability of genesis (which is negative 
in all experiments). If this interpretation is correct, then 
efforts to understand the controls on non-TC synoptic vari-
ability in the tropics should be of paramount importance 
in improving our understanding and ability to predict the 
climate response of global TC frequency.
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Fig. 13  Scatter across various perturbation experiments with FLOR 
and HiFLOR of (a) fractional changed in ± 10–30° latitude inverse 
Tang and Emanuel (2012a) ventilation index versus the residual of 
the fit of model-simulated fractional TC response to vorticity vari-
ance “seed” index; (b) two predictor fit (using vorticity “seed” index 
and fractional change in ± 10–30° latitude inverse Tang and Emanuel 
(2012b) ventilation index) versus fractional change in global TC 
activity. Orange symbols show the response of HiFLOR, gray sym-
bols that in FLOR. The linear least-squares regression fit is indicated 

by the straight lines, with the fit equation and variance explained 
 (R2) indicated, orange lines show regression for HiFLOR points, 
gray for FLOR points, and blue for all data combined. Each symbol 
is the response of one perturbation experiment relative the relevant 
control experiment, for each model the six responses shown are: 
fully coupled transient  CO2 increase, ΔMoC + Full, ΔObC + Full, 
ΔObC + 2K + 2 × xCO2, ΔObC + 2K and ΔObC + 2 × xCO2. See 
Sect. 3.3.1
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3.3.3  Global intensity

As has been shown in Murakami et al. (2015, 2016), the cli-
matological intensity distribution of FLOR and HiFLOR are 
markedly different (Fig. 15). FLOR has a compressed range 
to its intensity distribution, with storms being more simi-
lar to each other and weaker than observed storms. Mean-
while, HiFLOR has a broader intensity range in its TCs, and 
recovers the observed range more realistically including the 
existence of “Major” (Saffir-Simpson Category 3–4–5) TCs 
(Murakami et al. 2015, 2016a; Bhatia et al. 2018, 2019).

In these experiments, HiFLOR and FLOR also differ in 
the response of the intensity distribution of TCs to fully 
coupled transient  CO2-induced climate changes (Fig. 15a, 
b). In the fully-coupled experiments, FLOR shows very lit-
tle change to its intensity distribution (Fig. 15a), though a 
slight increase in intensity. Meanwhile, in addition to its 
mild increase in global-mean frequency, HiFLOR shows a 
shift towards more intense TCs in its fully coupled tran-
sient 2 × CO2 experiment (Fig. 15b). As a result, the global 
number of “Major” TCs (with maximum winds in excess 
of 50 m/s) increases by 38% in the fully-coupled HiFLOR 
in response to  CO2 doubling (Table 2), while in neither the 

control nor the warmed climate are there any Major TCs in 
FLOR.

The idealized nudged SST forcing experiments help shed 
some light on the causes of the differing response of global 
TC intensity in FLOR and HiFLOR (Fig. 15c–f). For both 
FLOR and HiFLOR the MoC and MoC + full experiments 
largely recover the intensity distributions in the respective 
fully-coupled experiment; there is negligible change in the 
FLOR intensity distribution between MoC and MoC + full, 
while there is a clear shift towards increased intensity from 
 CO2 forcing in the HiFLOR experiments; the global inten-
sity response to  CO2 doubling in the fully coupled experi-
ments arises largely from the response to the climatological 
changes in SST and the  CO2 increase. We remind the reader 
that high-frequency coupling between ocean and atmosphere 
is still present in the nudged-SST experiments.

However, the SST biases in each model affect the mean 
intensity distribution in both the control and 2 × CO2 exper-
iments, as well as the sensitivity to  CO2-driven climate 
changes (comparing the black and red lines in Fig. 15c, e 
with the black and red lines in Fig. 15e, f, respectively). 
FLOR shows a tendency toward even weaker storms when 
its SSTs are nudged toward observed climatology, while 
HiFLOR shows stronger storms when its SSTs are nudged 
toward observed climatology. More to the point, relative 
to the intensity distribution from ObC in each model, the 
ObC + full experiment shows a clear intensification of TCs 
both in FLOR and HiFLOR. The SST bias in HiFLOR 
changes the control and perturbation intensity distribution, 
but not the global sensitivity of intensity to warming. The 
sensitivity of TC activity to  CO2 increase from the ObC 
and ObC + full couplet in HiFLOR represents an alternative 
estimate to that from the fully coupled experiments, and the 
global and regional sensitivities in these experiments are 
summarized in Table 3.

Tables 2 and 3 show the changes in basinwide frequency 
of all TCs can be positive or negative depending on basin 
and experiment. However, the ubiquitous intensification 
of TCs overwhelms the few decreases in TC frequency so 
that for TCs with Saffir-Simpson intensity greater than two 
(maximum winds > 42 m/s), the basinwide changes are posi-
tive for all basins and experiments.

Does the response of TCs to  CO2-induced climate 
changes relative to ObC represent a more faithful estimate 
of the sensitivity of TCs, since the reference SST is closer 
to that observed? Realistic background SSTs are a neces-
sary, but not sufficient, condition for recovering the sensitiv-
ity of TCs to climate drivers. The TC sensitivity to climate 
depends on recovering both the large-scale climate drivers 
that influence TCs, as well as the sensitivity of TCs to those 
drivers. Artificially correcting the mean SST does not nec-
essarily make the underlying sensitivity of each TC to cli-
mate more realistic, nor does it ensure that the large-scale 
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pared to the decomposition of the two-predictor model for fraction 
global TC frequency change (β in Eq. 7) into the contribution from 
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interpreted as a fractional change in probability of TC genesis, and 
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ΔSeed/Seed), interpreted as a fractional change in the frequency of 
TC precursors. Panel (a) shows the results for the FLOR experiments 
and panel (b) shows the results for the HiFLOR experiments
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climatic changes are more correctly represented. However, 
correcting SST biases in these models leads to improved 
representation of the TC tracks and spatial distribution rela-
tive to the experiments with biased SSTs (e.g., Vecchi et al. 
2014; Krishnamurthy et al. 2016; Murakami et al. 2015). 
Thus, to the extent that the models can correctly capture the 
large-scale climate drivers of TC activity, and to the extent 
that the model TCs correctly respond to large-scale climate 
changes, having more realistic TC tracks should lead to an 
improved assessment of the sensitivity of TCs to climate, 
as the model TCs will encounter more relevant large-scale 
climate changes.

The increase of TC intensity in both FLOR and 
HiFLOR can be traced to the impact of overall warming 

of the tropics (Fig. 15e, f, gray and cyan lines), since the 
direct impact of increased  CO2 on the atmosphere leads to 
mild decreases in TC intensity in both models (Fig. 15e, 
f, blue lines). All HiFLOR warming experiments show an 
increase in the global frequency of intense storms, irre-
spective of background climatology (observed or simu-
lated), and for both uniform and structured SST warming. 
For FLOR, the model SST biases impact the response of 
global TC intensity more than does the spatial structure of 
SST change from the fully coupled model.
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Fig. 15  Lifetime maximum intensity exceedance probabilities for 
global TCs in FLOR (left column) and HiFLOR (right column). Left 
vertical axis labels show the base-10 logarithm of the probability that 
the lifetime intensity of a TC will exceed a particular wind speed for 
each experiment; the right vertical axis labels show the return inter-
val in number of TCs (inverse of the probability). Panels (a) and (b) 
compare the fully-coupled control and transient 2 × CO2 experiments 

(computed over years 201–250), panels (c) and (d) compare the two 
nudged-SST experiments referenced to each model’s SST climatol-
ogy, and panels (e) and (f) compare the five nudged-SST experiments 
referenced to observed SST climatology (see Sects. 2.2 and 2.3 for a 
description of the experiments). Nudged run probabilities computed 
over 50 years of simulation
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3.3.4  Spatial TC distribution

Global TC frequency and intensity represent a compact 
measure of TC activity, but the controls on and the impacts 

of TCs are local. To further probe the sensitivity of TCs to 
 CO2 forcing, we examine the modeled response of regional 
TC activity to 2 × CO2. We show the change in overall 
TC activity (Figs. 16 and 17) as well as the change in the 

Table 2  Response of TC frequency of different intensities (as labeled in Row 1) for the Transient 2 × CO2 response of HiFLOR

Each Row shows the values for TCs with genesis in each basin. The boundary between the South Indian Ocean and Southern West Pacific is 
135°E. In each cell the percentage indicates the change in TC frequency as a fraction of the control value, the value in parentheses indicates the 
average frequency in the Transient 2 × CO2 experiment. Values computed over model years 201–250

Region Tropical 
cyclones

Cat. 1 + TCs 
 (wmax ≥ 33 m s−1)

Cat. 2 + TCs 
 (wmax ≥ 42 m s−1)

Cat. 3 + TCs 
 (wmax ≥ 50 m s−1)

Cat. 4 + TCs 
 (wmax ≥ 58 m s−1)

Cat. 5 + TCs 
 (wmax ≥ 70 m s−1)

wmax ≥ 80 m s−1

Global % 
change

− 2% 
(90 yr−1)

+ 4.9% (81 yr−1) + 23% (57 yr−1) + 38% (37 yr−1) + 70% (21 yr−1) + 145% (5.1 yr−1) + 442% 
(0.66 yr−1)

North Atlantic 
% change

+ 7.4% 
(6.1 yr−1)

+ 29% (5.2 yr−1) + 62% (3.2 yr−1) + 63% (1.8 yr−1) + 152% (0.60 yr−1) —
(0.02 yr−1)

—
(0 yr−1)

East Pacific  % 
change

0% (12 yr−1) + 8.8% (9.9 yr−1) + 26% (6.0 yr−1) + 69% (3.3 yr−1) + 264% (0.93 yr−1) 0% (0.02 yr−1) —
(0 yr−1)

Western North 
Pacific % 
change

− 2.4% 
(35 yr−1)

+ 1.2% (33 yr−1) + 11% (27 yr−1) + 21% (21 yr−1) + 49% (14 yr−1) + 130% (4.4 yr−1) + 392% 
(0.60 yr−1)

North Indian % 
change

− 5.4% 
(4.1 yr−1)

+ 4.5% (3.3 yr−1) + 25% (1.6 yr−1) + 162% (0.78 yr−1) + 600% (0.29 yr−1) —
(0 yr−1)

—
(0 yr−1)

South Indian % 
change

− 11% 
(20 yr−1)

− 5% (18 yr−1) + 30% (12 yr−1) + 66% (7.6 yr−1) + 112% (3.7 yr−1) + 325% (0.52 yr−1) —
(0.06 yr−1)

South West 
Pacific % 
change

+ 13% 
(13 yr−1)

+ 22% (12 yr−1) + 58% (6.2 yr−1) + 67% (2.9 yr−1) + 153% (1.2 yr−1) + 900% (0.10 yr−1) —
(0 yr−1)

Table 3  Response of TC frequency of different intensities (as labeled in Row 1) for the ∆ObC + full response of HiFLOR (see Sect.  2.3 for 
description of experiments)

Each Row shows the values for TCs that with genesis in each basin. The boundary between the South Indian Ocean and Southern West Pacific is 
135°E. In each cell the percentage indicates the change in TC frequency as a fraction of the control value, the value in parentheses indicates the 
average frequency in the ObC + Full experiment. Values computed over 50 model years

Region Tropical 
cyclones

Cat. 1 + TCs 
 (wmax ≥ 33 m s−1)

Cat. 2 + TCs 
 (wmax ≥ 42 m s−1)

Cat. 3 + TCs 
 (wmax ≥ 50 m s−1)

Cat. 4 + TCs 
 (wmax ≥ 58 m s−1)

Cat. 5 + TCs 
 (wmax ≥ 70 m s−1)

wmax ≥ 80 m s−1

Global  % 
change

+ 6% 
(110 yr−1)

+ 13% (102 yr−1) + 24% (77 yr−1) + 27% (54 yr−1) + 40% (34 yr−1) + 94% (14 yr−1) + 190% 
(2.7 yr−1)

North 
Atlantic % 
ange

+ 18% 
(12 yr−1)

+ 30% (11 yr−1) + 43% (7.4 yr−1) + 58% (5.3 yr−1) + 82% (2.8 yr−1) + 733% 
(0.51 yr−1)

—
(0.02 yr−1)

East Pacific 
% change

+ 8% 
(8.2 yr−1)

+ 37% (6.8 yr−1) + 119% (4.2 yr−1) + 218% (1.9 yr−1) + 367% 
(0.57 yr−1)

—
(0.1 yr−1)

—
(0 yr−1)

Western 
North 
Pacific % 
change

+ 4.4% 
(50 yr−1)

+ 8.1% (48 yr−1) + 12% (41 yr−1) + 9.6% (32 yr−1) + 24% (24 yr−1) + 78% (12 yr−1) + 180% 
(2.5 yr−1)

North 
Indian % 
change

+ 5%  
(3.7  yr−1)

+ 5.3% (2.8 yr−1) + 43% (1.3 yr−1) + 84% (0.71 yr−1) + 69% (0.22 yr−1) 0%
(0.04 yr−1)

—
(0 yr−1)

South 
Indian % 
change

− 13% 
(20 yr−1)

− 5% (18 yr−1) + 11% (13 yr−1) + 29% (8.5 yr−1) + 60% (4.1 yr−1) + 208% 
(0.76 yr−1)

—
(0.06 yr−1)

South West 
Pacific % 
change

+ 35% 
(17 yr−1)

42% (16 yr−1) + 85% (10 yr−1) + 135% (5.7 yr−1) + 295% (2.6 yr−1) + 317% 
(0.51 yr−1)

+ 500% 
(0.12 yr−1)
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Change in Tropical Cyclone Density (Days per (10°x10°) per Season)
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activity of Major TCs (Saffir-Simpson categories 3, 4 and 
5; i.e., storms with lifetime maximum intensity exceeding 
50 ms−1) from HiFLOR (Fig. 18).

For both FLOR and HiFLOR, the global TC frequency 
changes (Sect. 3.3.1) emerge from the partially offsetting 

influences of regional increases and decreases in TC activ-
ity (Figs. 15, 16): the sensitivity of global TC frequency is 
not necessarily the principal driver of regional TC activity 
changes. The response of TC density in the two models 
differs, and is influenced both by the climatological biases 
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Response of Tropical Cyclone Density in HiFLOR (0.25°Model)

Fig. 17  As in Fig. 16, but for HiFLOR. TC days are defined for HiFLOR as times when the maximum zonal wind speed of the TC exceeds 
17 m/s, and a warm core is identified by the Harris et al. (2016) TC tracker
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Response of Cat. 3-4-5 Cyclone Density in HiFLOR (0.25°Model)

Fig. 18  Response of Major TC density in HiFLOR. Shading indicates 
the change between the perturbation and reference climate experi-
ments for TC density [number of Major TC days per season in a 
box  10° latitude by 10° longitude box centered at each 1° interval, 
as in Vecchi et al. (2014)]. Major TC days are defined as times when 
the maximum zonal wind speed of the TC exceeds 50 m/s—or Saffir-

Simpson Scale 3, 4 and 5, and a warm core is identified by the Harris 
et al. (2016) TC tracker. Blue and green shading indicates decreases 
in TC density, red/yellow/orange shading indicates increases in TC 
density. Differences are averaged over years 201–250 for the transient 
2 × CO2 response (Panel a), and over 50 years of model simulation for 
the various nudged SST experiments (Panels b–f)
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in each model (comparing panels.b with.c from Figs. 16, 
17, 18), and the patterns of SST change in each model 
(comparing panels.c with.d from Figs. 16, 17, 18). The 
response of TC activity over the North Atlantic, Central 
Pacific and South Pacific exhibits a strong dependence on 
climatological SST, with the climatological SST biases in 
each model leading to a damped response in TC activity 
relative to ∆ObC + full. In addition, the increase in TC 
frequency in the Atlantic in both models is tied to the 
pattern of SST response. We note that outside the North 
Atlantic, the patterns of SST change does not appear to 
have a first order impact on the response, with the response 
in Figs. 16c and 17c outside the North Atlantic largely 
recovered in Figs. 16d and 17d, respectively. We suggest 
that the relatively minor influence of SST change patterns 
outside the North Atlantic in these experiments may not 
be a general feature of all SST pattern perturbations, but 
may reflect the fact that the relative-SST anomalies in the 
North Atlantic in response to transient 2 × CO2 in these 
models are substantially larger than in all other TC basins 
(Fig. 3b, c). However, even in this pair of models that 
differ only in the resolution of the atmospheric and land 
components, a substantial source of uncertainty in the pat-
tern of TC response arises due to atmospheric model dif-
ferences: there are substantial differences in the response 
of the spatial structure of TC activity to identical, and 
uniform, SST warming (comparing Fig. 16d with Fig. 17d, 
and Fig. 16e with Fig. 17e).

HiFLOR shows a ubiquitous increase in the density of 
Major TCs in response to  CO2 doubling (Fig. 18): the global 
increase in TC intensity of HiFLOR discussed in Sect. 3.3.2 
above represents a truly global response in this model. Inter-
estingly, there is an increase in the number of Major TCs 
even in regions where the potential intensity in the model 
decreases in response to 2 × CO2 (Fig. 11). The tendency for 
an increase in Major TCs in HiFLOR is largely driven by 
the overall warming (Fig. 18e), with the spatial pattern of 
SST change (Fig. 18c) and the model’s bias (Fig. 18b) acting 
to modify the spatial structure of the change. The isolated 
impact of  CO2 (Fig. 18f) results in a complex pattern of 
Major TC activity change, which tends to partially offset 
the warming-induced increase in most places (e.g., western 
North Pacific), though can amplify it in others (e.g., South 
China Sea, Southwest Pacific).

4  Summary and discussion

We explore the response to  CO2 doubling in three global 
coupled GCMs (LOAR, FLOR, and HiFLOR) with identi-
cal oceans and sea ice components, and atmospheric and 
land components that differ only in their resolution. The 
atmospheric/land resolutions explored ranges from the 

CMIP3/CMIP5 class 2° resolution, to the TC-permitting 
resolutions of ~ 0.5° and ~ 0.25°, which are more typical of 
the upcoming CMIP6 HiResMIP protocol (Haarsma et al. 
2016).

We find that these models exhibit differing  rates of 
global-mean surface warming and full-ocean heat uptake, 
with the lowest-resolution model showing the most surface 
warming and least ocean heat uptake, and the highest-
resolution model showing the least surface warming and 
most ocean heat uptake. The differences in TCR across the 
models are not due to differences in atmospheric radiative 
feedbacks, but to differences in ocean heat uptake. These 
results echo recent work highlighting the key role of heat 
uptake (Raper et al. 2002; Kuhlbrodt and Gregory 2012; 
Winton et al. 2010, 2014; He et al. 2016) in influencing 
the TCR.

The models exhibit very similar spatial structure of 
their tropical ocean surface warming (after scaling for 
the differences in global mean warming); the patterns 
of warming seen in the models are also evident in the 
majority of CMIP models (e.g., Liu et al. 2005; Vecchi 
and Soden 2007a, b, c, Xie et al. 2010; Stocker 2014). 
The large-scale structure of the low-latitude precipitation 
response to warming in the models is also similar across 
the models, showing wetting of the tropics and drying in 
the subtropics. This broad structure is common in GCMs, 
and reflects both the tendency of the precipitation response 
to mirror the mean structure of precipitation (“wet-get-
wetter”; Held and Soden 2006), the poleward shifts of 
large-scale atmospheric circulation features in the sub-
tropics (Lu et al. 2008), and shifts of tropical circulation 
(Knutson and Manabe 1995; Vecchi and Soden 2007a; Xie 
et al. 2010). The response of the tropical ITCZ to transient 
 CO2 doubling differs across these models (Fig. 3), and 
bears strong similarity to the response of Pacific rainfall 
to ENSO in these models (Fig. 4).

The two TC-permitting models (FLOR and HiFLOR) 
show different Transient 2 × CO2 responses in global TC 
frequency, with FLOR showing a substantial and signifi-
cant reduction, but HiFLOR showing no significant change 
(Fig. 10). The difference between the global TC frequency 
response of FLOR and HiFLOR is further enhanced when 
the SST biases of each model are removed from the con-
trol and perturbation (i.e., ∆ObC + full). FLOR shows a 
significant TC frequency decrease, but HiFLOR shows a 
significant global TC frequency increase (Fig. 10). The 
response of global TC frequency in FLOR to  CO2-induced 
warming, uniform warming and isolated  CO2 increases 
without warming is consistent with that of other GCMs 
of similar resolution (e.g., Yoshimura and Sugi 2005; 
Yoshimura et al. 2006; Held and Zhao 2011; Wehner et al. 
2015; Walsh et al. 2015). Although HiFLOR also shows 
a global TC frequency increase in response to uniform 
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warming, and a decrease in response to  CO2 increase with-
out warming, the combined impact of these perturbations 
in HiFLOR differs from that of published GCMs by lead-
ing to a global TC frequency increase. Furthermore, the 
response of global frequency in HiFLOR is outside the 
range of the GCMs reported in Walsh et al. (2015). A 
fundamental difference between FLOR and HiFLOR is 
the presence in HiFLOR of Category 3–5 TCs (Murakami 
et al. 2015, 2016b) and TC rapid intensification (Bhatia 
et al. 2018).

Examination of changes in large-scale parameters that 
have been connected to changes in the probability of TC 
genesis (Figs. 6, 8, 12a–c) in isolation did not suggest any 
clear reason as to why HiFLOR did not show a decrease 
in global TC frequency, while FLOR did. However, the 
response of pre-TC synoptic disturbances to climate per-
turbations are a principal driver of the distinct global TC 
frequency response in FLOR and HiFLOR (Fig. 12d). After 
the relationship between changes in TC seeds and global TC 
frequency is accounted for, the ventilation index of Tang and 
Emanuel (2012a, b), which is theoretically and empirically 
connected with the probability of cyclogenesis of TC seeds 
(Tang and Emanuel 2012a, b), shows strong agreement with 
the inter-experiment and inter-model spread of global-mean 
frequency. This suggests that TC frequency changes should 
be interpreted through the lens of a Binomial process, in 
which the total number of TCs is controlled both by the 
frequency of TC seeds and the probability that each TC seed 
will become a cyclone.

In the experiments presented here, both the change in TC 
seeds and the change in probability that a seed will become 
a cyclone contribute to changes in global TC frequency 
(Figs. 12d, 13). TC seed activity in both FLOR and HiFLOR 
decreases from isolated  CO2 increase, but increases in all 
experiments with surface warming (Fig. 12d). Meanwhile, 
changes in TC genesis probability, as captured by the Tang 
and Emanuel (2012b) ventilation index, act to decrease TC 
genesis in all the experiments (Fig. 13a). For the isolated 
 CO2 increase experiments, the TC seed frequency and gen-
esis probability changes act constructively, and lead to a 
consistent decrease in global TC frequency. Meanwhile, 
for the experiments with warming, there is compensation 
between the TC seed frequency and genesis probability 
changes, which in some cases leads to net increases and oth-
ers net decreases in global TC frequency (Fig. 13b). In this 
framework, the reduction of seed activity from isolated  CO2 
increase largely offsets the increase in seed activity from 
uniform warming in FLOR (Fig. 14a), so that the response of 
global TC frequency to warming and  CO2 increase in FLOR 
is dominated by the impact of reduced genesis probability 
from increasing ventilation index. Meanwhile, in HiFLOR, 
the increase in seed activity from warming is substantially 
larger than the decrease in seed activity from isolated  CO2 

increase (Fig. 14b), and the net increase in seeds either 
outweighs or cancels the impact of reduced genesis prob-
ability from increasing ventilation index. The tropics-wide 
increase in ventilation index is largely driven by increases 
in entropy deficit (Fig. 11) tied to warming and the non-
linear relationship between saturation specific humidity and 
temperature (the Classius-Clapeyron relation), so that the 
mid-troposphere moistens at a reduced rate relative to the 
surface (e.g., Emanuel 2013). The isolated impact of  CO2 
increase also contributes to an increase in entropy deficit and 
a corresponding increase in ventilation index, resulting in 
decrease in the probability of TC genesis. The tendency for 
HiFLOR to show a greater increase in global TC frequency 
than FLOR arises from HiFLOR’s larger increase (smaller 
decrease) in TC seed activity in response to warming (iso-
lated  CO2 increase) than FLOR.

The global response power dissipation index (PDI, an 
index that combines the impact of TC frequency and inten-
sity) of HiFLOR to transient  CO2 doubling shows the same 
sign, but a much larger magnitude, than the response of the 
Emanuel (2013) downscaling methodology applied to the 
large-scale environmental changes of HiFLOR to transient 
 CO2 doubling and to changes in solar forcing (Irvine et al. 
2019). The framework we suggest here, in which changes 
to TC seeds are the main driver of global TC frequency, 
presents a plausible explanation for these differences. Both 
HiFLOR and the Emanuel (2013) methodology show an 
increase in TC intensity to warming. However, the present 
implementation of the Emanuel (2013) methodology uses 
a spatially and temporally uniform “TC seeding” frame-
work, so it cannot include the impact of increasing TC 
seed frequency in response to warming that both FLOR 
and HiFLOR (to a larger degree) exhibit. Although both 
HiFLOR and the Emanuel (2013) methodology recover an 
increase in TC intensity in response to warming, a key ele-
ment of PDI change, we suggest that the muted response of 
the Emanuel (2013) methodology applied to output from 
HiFLOR seen in Irvine et al. (2019) reflects, at least in part, 
the fundamentally different responses in global TC seed 
frequency in the two methods, and its impact on global TC 
frequency, another element of PDI change in response to 
warming (e.g., Villarini and Vecchi 2013).

We wish to emphasize that the detailed interpretation 
we present, of considering both TC seed frequency and TC 
genesis probability, was developed post hoc, as an effort 
to reconcile what at the time were surprising and mysteri-
ous results: that HiFLOR and FLOR showed very differ-
ent global TC frequency responses (Figs. 10, 11), but very 
similar changes in large-scale factors connected to TC gen-
esis probability (Figs. 6, 7, 8). Therefore, in spite of the 
nominally strong statistical relationship between the TC seed 
index and global TC frequency across these experiments 
(variance explained > 0.7; Fig. 12d), and the even stronger 
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relationship of the TC seed plus genesis probability model 
(variance explained > 0.85; Fig. 14b), this hypothesized 
framework must still be explored with independent models 
and experiments, in order to further evaluate it and poten-
tially falsify it. Analyses are underway to evaluate the valid-
ity of this framework across a larger range of models and 
experiments.

Additionally, the TC seed index used here, which is 
based on the variance of 3–10 day filtered lower tropo-
spheric vorticity after removing the direct effect of TCs 
(Li et al. 2010), is not optimally applicable to a Binomial 
framework—which requires a “count based” estimate of TC 
seeds (as the expected value of “successes” from a Binomial 
process is the product of the probability of success and the 
number of trials—and variance measures convolve ampli-
tude, frequency and duration of the pre-TC synoptic distur-
bances). Therefore, efforts should include development of 
count-based estimates of pre-TC synoptic variability, which 
would lend itself more cleanly to a Binomial model of global 
and regional TC frequency. We hypothesize that the “seed” 
and probability framework explored here to understand the 
global TC frequency response to global-scale forcing may 
also be applicable at more regional scales, and in order to 
understand the response to climate variability and more 
regionalized forcing. Finally, although we suggest that 
the global response of TC seeds to climate changes is an 
important factor for global TC frequency, we do not offer an 
explanation for the modeled changes in TC seeds and leave 
it for future work to understand the mechanisms controlling 
global TC seed activity. We do note that the weakening of 
tropical circulation from warming and  CO2 increases does 
not present an explanation for the TC seed response for these 
models across these experiments. The crucial importance of 
the climatic response of pre-TC synoptic variability on the 
response of global TC activity to climatic changes requires 
an expanded exploration of pre-TC synoptic variability and 
its response to climate variability and change.

In targeted idealized experiments (e.g., Merlis et al. 2013, 
2016; Ballinger et al. 2015) and observations (e.g., Zhang 
and Delworth 2006) there is a tendency for TC activity to 
follow the ITCZ. Given that HiFLOR (FLOR) showed a 
northward (southward) shift of the ITCZ, we expected the 
TC activity in HiFLOR to also show a larger Northern Hem-
isphere increase than FLOR (and perhaps a Southern Hemi-
sphere decrease). However, in response to  CO2 doubling, 
HiFLOR shows a larger increase in Southern Hemisphere 
TC activity than does FLOR, particularly over the Southwest 
Pacific and Australia, with more muted differences in the 
Northern Hemisphere (compare upper panels of Figs. 15 and 
16). In the comprehensive GCM experiments explored here, 
the meridional structure of TC activity changes and ITCZ 
changes can differ, and need not follow the sensitivity seen 
in idealized modeling configurations.

HiFLOR shows a substantial increase in global TC inten-
sity in all experiments with warming, with the global num-
ber of “Major TCs” increasing by 38% (Sect. 3.3.3; Fig. 14), 
and the global number of TCs with maximum lifetime wind 
speed exceeding 80 m/s (or 10 m/s above the cutoff for 
“Category 5” storms in the Saffir-Simpson scale) more than 
doubles (Tables 2, 3). Although these intensity increases 
are most pronounced in the West Pacific, the increase in 
major TC activity in HiFLOR is seen throughout the tropics 
(Fig. 17). The Bister and Emanuel (1998) potential intensity 
in both FLOR and HiFLOR shows increases in response 
to  CO2 doubling across the TC main development regions, 
providing a potential explanation for the modeled increases 
in TC intensity (Fig. 6). These results echo those of Bhatia 
et al. (2018), looking at the response to multi-CMIP5 model 
projected 21st century warming with HiFLOR, which also 
display an increase in global TC frequency, intensity, and 
the rate of TC rapid intensification.

HiFLOR shows an increase in global TC frequency, while 
FLOR shows a decrease. The response of FLOR is consist-
ent with most published studies with GCMs (e.g., Yoshimura 
and Sugi 2005; Yoshimura et al. 2006; Gualdi et al. 2008; 
Knutson et al. 2010; Knutson et al. 2013; Camargo 2013; 
Stocker 2014; Walsh et al. 2015, 2016; Zhao et al. 2009; 
Sugi and Yoshimura 2012; Wehner et al. 2015), while that 
of HiFLOR stands in contrast to those studies. The transi-
tion in resolution from FLOR (0.5°) to HiFLOR (0.25°) led 
to this change in sensitivity in this model family; however, 
in another model family going from ~ 0.5° to ~ 0.25° did not 
lead to an increase in global TC frequency under warm-
ing conditions (Wehner et al. 2015). It will be interesting to 
explore the impact of resolution changes on the sensitivity 
of global TC frequency in the larger model ensemble from 
the CMIP6 HiRESMIP experiment (Haarsma et al. 2016).

The response to  CO2 doubling and warming of TC activ-
ity in both FLOR and HiFLOR depends substantially on the 
SST climatology, with Atlantic TC activity showing a much 
more dramatic increase in both models when the control 
SST climatology is corrected toward observations. Seasonal 
prediction experiments and assessments of the sensitivity 
of TCs to interannual modes of SST variability show that 
on interannual timescales, TC variations are substantially 
affected by climatological SST errors, with reduced errors 
leading to more faithful simulations and predictions of TC 
variability (e.g., Vecchi et al. 2014; Zhou and Xie 2015; 
Krishnamurthy et al. 2016; Liu et al. 2017). A potential 
consequence of this is that artificially correcting SST errors 
may lead to improved projections of regional and global TC 
activity in response to radiative forcing. However, even with 
the same SST climatology (and the same SST forcing), there 
is still substantial discrepancy between FLOR and HiFLOR 
in global and regional TC activity. Artificially correcting 
errors in climatological and projected SST is not sufficient to 
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eliminate uncertainty in projections of TC activity. However, 
the impact of SST biases on TC sensitivity suggests that the 
fidelity of sensitivity estimates of TCs to climatic changes 
may be reduced within GCMs with SST biases.

Understanding the impact of model resolution on the 
response of a GCM family to  CO2 is complex. This analysis 
attempted to create a “clean” set of model experiments in 
which the impact of atmospheric resolution on the response 
of the GCMs to  CO2 doubling could be isolated from other 
factors. However, in changing resolution without adjust-
ing model parameterizations, the three models developed 
different large-scale biases (e.g., LOAR was warmer at the 
surface than FLOR, which was warmer than HiFLOR), 
and by affecting the large-scale ocean circulation and the 
mean rainfall/TC activity, these biases appear to have influ-
enced some of the simulated global and regional responses 
to  CO2. An alternative approach would have been to adjust 
the parameterizations of each model, to bring the biases of 
the models into closer alignment. However, it is likely that 
adjusting model parameterizations would have also impacted 
the response to  CO2 of the models in ways not directly con-
nected to resolution. Experiments with a prescribed SST cli-
matology and idealized perturbations (e.g., uniform warm-
ing,  CO2 increase in isolation) provide an additional lens 
through which to explore the impact of resolution. However, 
although the idealized experiments were able to identify 
sensitivity of the solutions to different large-scale drivers 
and differences between models, and to allow comparison 
of the sensitivity of these models to others in the published 
literature (e.g., Walsh et al. 2015), their idealized nature did 
not provide a clear path to evaluating which model solution 
was most plausible, as there is no observed counterpart to 
such studies.

Which model sensitivity is most plausible? In assessing 
seasonal prediction skill, because we have observations of 
numerous events, we find that HiFLOR’s response to inter-
annual SST variations outperforms that of FLOR (e.g., 
Murakami et al. 2015, 2016a; Zhang et al. 2016; Liu et al. 
2018b). Although we can be confident that TCs in FLOR 
and HiFLOR have different responses to  CO2 doubling, it is 
not yet clear whether the response of TCs to  CO2 in HiFLOR 
is any more or less faithful than that of FLOR. Perhaps the 
improved representation of TCs in HiFLOR relative to 
FLOR, including their relationship to large-scale modes of 
climate variability and seasonal prediction skill (Murakami 
et al. 2015, 2016a; Zhang et al. 2016; Liu et al. 2018a), sug-
gest that HiFLOR may produce a more faithful representa-
tion of the sensitivity of TCs to climate drivers. On the other 
hand, the mechanisms involved in the response to  CO2 can 
differ in character from those involved in interannual vari-
ability (e.g., Lu et al. 2008), suggesting that simulation and 
prediction of seasonal TC anomalies may be an insufficient 
measure of fidelity in capturing the sensitivity of TCs to 

multi-decadal climate drivers. Furthermore, increased reso-
lution need not always lead to improved predictive capability 
(e.g., Kapnick et al. 2018).

A broad range of assessments, connected to observable 
quantities, is needed to evaluate the plausibility of different 
model estimates of TC and rainfall sensitivity to radiative 
forcing. These should include evaluations of process-scale 
measures of TC simulation by the GCMs (e.g., Kim et al. 
2018; Wing et al. 2019), assessment of the hour-to-multi-
day prediction and simulation of TCs in models (e.g., Xiang 
et al. 2015), and evaluation of the ability to recover past 
seasonal, decadal, multi-decadal and centennial TC fluctua-
tions. Similar evaluations are needed for regional rainfall, 
and other regional climatic impacts. We suggest that tightly 
coupling day-to-day weather, seasonal-to-decadal weather 
and climate change research, including basic theory, obser-
vational analyses and model-based studies. Further, because 
of the importance of synoptic variability in the response of 
TCs to climate drivers, directly applying models used to 
assess climate change to weather and seasonal prediction 
will likely accelerate progress in reducing uncertainty in 
regional climate change.
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