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ABSTRACT

Recent studies indicate that the cross-polarization synthetic aperture radar (SAR) images have the ability

of retrieving high wind speed on ocean surface without wind direction input. This study presents a new approach

for tropical cyclone (TC) wind speed retrieval utilizing thermal-noise-removed Sentinel-1 dual-polarization

(VV1VH)Extra-Wide Swath (EW)Mode products. Based on 20 images of 9 TCs observed in the 2016 and 2018

and SAR-collocated European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation re-

analysis (ERA5) data and the National Oceanic andAtmospheric Administration (NOAA)Hurricane Research

Division’s (HRD) Real-time Hurricane Wind Analysis System (H*Wind) data, a subswath-based geophysical

model function (GMF) Sentinel-1 EWModeWind Speed Retrieval Model after Noise Removal (S1EW.NR) is

developed and validated statistically. TC wind speed is retrieved by using the proposed GMF and the C-band

model 5.N (CMOD5.N). The results show that the wind speeds retrieved by the S1EW.NR model are in good

agreement with wind references up to 31m s21. The correlation coefficient, bias, and standard deviation between

the retrieval results and reference wind speeds are 0.74, 20.11, and 3.54m s21, respectively. Comparison of the

wind speeds retrieved from both channels suggests that the cross-polarized signal is more suitable for high–wind

speed retrieval, indicating the promising capability of cross-polarization SAR for TC monitoring.

1. Introduction

Ocean surface wind speeds under tropical cyclone

(TC) conditions are relevant to several climate vari-

ables, such as moisture, heat, and momentum fluxes

between the ocean and atmosphere. A TC over ocean is

always accompanied by severe wind, high sea state, and

heavy cloud coverage, which increase the difficulty of

wind speed monitoring. Since 1978, synthetic aperture

radar (SAR) images with advantages of high spatial

resolution, large spatial coverage, and the capability of

sensing through clouds at day and night have become

available for studying, forecasting, and monitoring TCs

(Li 2015; Yu et al. 2017). With development of SAR

technology, the TC wind speed retrieval by C-band

SAR is widely studied from copolarization signals to

cross-polarization (CP) signals (Zhang and Perrie 2014;

Hwang 2016; Shao et al. 2017).

Generally, TC sea surface wind speed can be retrieved

either from normalized radar cross section (NRCS)

directly (Zhang and Perrie 2014; Zhang et al. 2017) or

from the SAR-derived wave information indirectly

(Hwang 2016; Shao et al. 2017). For TC conditions, due

to the saturation of the drag coefficient, aerodynamic

roughness, and sea surface roughness (Donelan et al.

2004; Bye and Jenkins 2006; Fujimura et al. 2019), the

copolarization NRCS starts to saturate and decreases

as wind speed increases beyond marginal hurricane

strength (Hwang et al. 2010; Hwang and Fois 2015).

This leads to ambiguous wind speed retrievals (Shen

et al. 2009, 2016). Although the wind speed ambiguity

can be removed (Shen et al. 2009), the current geophysical

model functions (GMF) for copolarization SAR images

are not sufficiently accurate in hurricane-force winds and

can be applied only for retrieving wind speeds less than

25m s21 (Horstmann et al. 2005; Zhang et al. 2014;

Mouche et al. 2017). In addition, the copolarization
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signal is dependent onwind direction, which is generally a

priori input for wind speed retrieval, affecting the re-

trieval accuracy (Hersbach et al. 2007; Hersbach 2010).

Recent research on CP SAR images has shown that

the CP NRCS is barely dependent upon wind direction

and radar incident angle (Zhang et al. 2014, 2017; Gao

et al. 2019). In addition, due to the ability of tracing wave

breaking at moderate to high wind conditions, the CP

signal remains sensitive to sea surface wind speed with

high signal-to-noise ratio under TC conditions (Hwang

and Fois 2015; Hwang et al. 2015). This overcomes

the retrieval limitations of copolarization SAR images.

Recently, several CP GMFs with respect to TC wind

speed retrieval have been developed statistically for

RadarSat-2 (Hwang et al. 2010; Zhang and Perrie 2012;

Van Zadelhoff et al. 2013, 2014; Zhang et al. 2014;

Horstmann et al. 2015; Zhang et al. 2017), Sentinel-1

(Mouche et al. 2017; Gao et al. 2019), and Gaofen-3

(Shao et al. 2018). The wind speeds retrieved from

CP SAR images have significantly better performance

than copolarization at wind speeds above 20m s21

(Horstmann et al. 2013; Mouche et al. 2017).

In 2019, according to 19 TC Sentinel-1A (S-1A) Extra-

Wide Swath (EW) Mode VH-polarized (VH) images

observed in 2016 and their collocated Soil Moisture

Active Passive (SMAP) radiometer wind observations,

Gao et al. analyzed the relationships between VH

NRCS, sea surface wind speed, wind direction, and ra-

dar incident angle (Gao et al. 2019). The results show

that the VH NRCS is mainly dependent on wind speed,

barely dependent on incident angle, and independent of

wind direction. In their paper, a basic GMFmodel and a

corrected GMFmodel were proposed for each subswath

and can be used to retrieve wind speeds up to 35m s21

for subswaths 1 to 4 and 25ms21 for subswath 5.

In this study, 20 Sentinel-1 (S-1A and S-1B) TC SAR

images with TC eyes are studied for wind speed re-

trieval. The SAR-collocated wind speed data are col-

lected from the European Centre for Medium-Range

Weather Forecasts (ECMWF) fifth-generation reanalysis

(ERA5) dataset, the National Oceanic and Atmospheric

Administration (NOAA) Hurricane Research Division’s

(HRD) Real-time Hurricane Wind Analysis System

(H*Wind), and SMAP observations. The research sam-

ples cover low-to-severe wind regimes (2–31m s21).

In the data preprocessing step, the thermal noise of

SAR images is removed to correct the NRCS value, es-

pecially for subswaths 2 to 5. Based on the samples in

training dataset and curve fitting, a new GMF Sentinel-1

EW Mode Wind Speed Retrieval Model after Noise

Removal (S1EW.NR) is developed to provide an empirical

relation between VH NRCS and wind speed. In addition,

a new incident-angle-based correction methodology is

utilized to eliminate the effect of incident angle on wind

speed retrieval for subswath 1. Compared with the

Sentinel-1 EW Mode Wind Speed Retrieval Model

(S1EW) (Gao et al. 2019), the proposed GMF without

wind direction parameter has much simpler form by

summing subswaths 2 and 3 together and summing sub-

swaths 4 and 5 together. For comparison between dif-

ferent channels, wind speeds are also retrieved from

Sentinel-1 copolarization images, according to the well-

validated GMF C-band model 5.N (CMOD5.N). Finally,

the CP and copolarization retrieval results are validated

with wind speeds from H*Wind, ERA5, and SMAP ob-

servations at different spatial resolutions.

This paper is organized as follows. Section 2 describes

the Sentinel-1 imagery and reference wind data. In

section 3, the relationships between VH NRCS, wind

speed, and radar incident angle are analyzed. A new

GMF is then proposed. In section 4, the proposed GMF

is validated and compared with CMOD5.N and S1EW.

Conclusions are summarized in section 5.

2. Dataset

In this study, 20 Sentinel-1 TC SAR images and their

collocated wind references are divided into two datasets.

Dataset 1 is a training dataset utilized for analyzing the

relationships between VH NRCS, wind speed, and in-

cident angle and proposing GMF. Dataset 2 is a testing

dataset utilized for validation and comparison. Data

information is shown in Table 1.

a. Sentinel-1 data

The SAR data studied in this paper are the Sentinel-1

EWMode dual-polarization (VV1VH)GroundRange

Detected (GRD) Medium-Resolution (MR) products,

which are openly available from the European Space

Agency (ESA). The Sentinel-1 is a C-band SARmission

designed by the ESA for ocean, land, and emergency

services. It provides continuous all-weather, day-and-

night imagery following a predefined mission planning.

The Sentinel-1 has a constellation of two satellites:

the Sentinel-1A launched in 2014 and the Sentinel-1B

launched in 2016. In this study, seven TCs’ SAR images

are gathered by the Satellite Hurricane Observation

Campaign (SHOC) during the 2016 hurricane season

(Mouche et al. 2017).

The C-band SAR on board the Sentinel-1 satellites

can be operated in four exclusive sensor modes with

different resolution and coverage: the Stripmap Mode

(SM), the Interferometric Wide Swath Mode (IW), the

EWMode, and theWaveMode (WV) (Minchella 2016).

For EWMode images, the polarization scheme is single-

polarization (HHorVV) or dual-polarization (VV1VH
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or HH1 HV). The Sentinel-1 level 1 products have two

types: Single Look Complex (SLC) and Ground Range

Detected. For GRD products, the focused SAR data

have been detected, multilooked, and projected to

ground range. The Level 1 GRD products are available in

one of three spatial resolutions: full resolution (FR), high

resolution (HR), and medium resolution. Each Sentinel-1

EW Mode GRD MR image has five subswaths (EW1,

EW2, EW3, EW4, and EW5) covering incident angles

from about 18.98 to 47.08 and is up to 410km wide with a

resolution of 93 3 87m2 (range by azimuth) and a pixel

spacing of 40 3 40m2. The incident angles are about

19.758–27.558, 27.558–32.558, 32.558–37.958, 37.958–42.858,

and 42.858–46.958 for EW1 to EW5, respectively.

The operational observation mode of Sentinel-1

SAR is Terrain Observation with Progressive Scans

SAR (TOPSAR). For CP channels of TOPSAR, the

additive thermal noise power is further shaped by

the application of postprocessing gains. The thermal

noise is evident in CP images due to their lower

NRCS. The thermal noise is hardly noticeable in

copolarization channels, as the signal power is high

enough to overwhelm the thermal noise (Gebert et al.

2010; Park et al. 2018). In this study, the Sentinel

Application Platform 4.0 (SNAP 4.0) is applied for

GRD border noise removal, thermal noise removal,

and calibration. Figure 1 shows an example of an S-1A

VH SAR image of Tropical Storm Karl between 2222

TABLE 1. Data information.

Tropical cyclone name Year Instrument No. of SAR images Wind reference Dataset

Gaston 2016 S-1A 6 ERA5 1 SMAP 1 1 2

Hermine 2016 S-1A 2 ERA5 1 SMAP 1 1 2

Lester 2016 S-1A 3 ERA5 1 SMAP 1 1 2

Lionrock 2016 S-1A 2 ERA5 1 SMAP 1 1 2

Megi 2016 S-1A 1 ERA5 1 SMAP 1 1 2

Namtheun 2016 S-1A 1 ERA5 1

Karl 2016 S-1A 2 ERA5 1 SMAP 1 H*Wind 2

Florence 2018 S-1A 2 ERA5 2

Helene 2018 S-1B 1 ERA5 2

FIG. 1. Sentinel-1 VHNRCSmaps of Tropical StormKarl between 2222 and 2224 UTC 23 Sep 2016 (a) before and

(b) after thermal noise removal.
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and 2224 UTC 23 September 2016. After thermal

noise removal (Fig. 1b), the high value of NRCS near

interswath boundaries has been corrected. However,

there are still some periodic streaks in range direc-

tion caused by scalloping burstwise variation (Park

et al. 2018).

With respect to the SAR-collocated ERA5 wind

speeds, Fig. 2 shows the distributions of VH NRCS in

dataset 1 before thermal noise removal (Fig. 2a) and

after thermal noise removal (Fig. 2b). The black curve

stands for the noise equivalent sigma zero (NESZ)

value, which is the smallest radar cross section that can

be measured. After thermal noise removal, the mini-

mum value of VH NRCS is lower than the NESZ. The

maximum value of VH NRCS still remains high signal-

to-noise ratio.

Due to the different spatial resolution between

Sentinel-1 data and wind references, NRCS is averaged

within each comparison cell for data matching. In this

paper, a calculation resolution of 625 3 625 pixels is

utilized for averaging, which is comparable to the spatial

resolution of ERA5 data. The decrease in resolution (up

to 25km) does not dramatically change the homogeneity

of NRCS and the sensitivity difference between VV and

VH channels (Huang et al. 2017; Mouche et al. 2017;

Gao et al. 2019).

b. Wind references

ERA5 is the fifth-generation ECMWF atmospheric

reanalysis of the global climate, covering the period

from 1950 to the present. Based on data assimilation,

ERA5 combines model data with observations from

across the world into a global dataset with an hourly

temporal resolution and a horizontal resolution of 0.258 3

0.258 (Hennermann and Berrisford 2017). ERA5 per-

forms better than National Aeronautics and Space

Administration (NASA) MERRA-2 in all analyzed

aspects: correlations are higher, errors are in average

around 20% lower, and distributions of both hourly

data and changes in hourly data are more similar to

those for measurements (Olauson 2018).

H*Wind is an integrated TC observing system pro-

viding the view of the extent and strength of hurricane

wind field and used operationally to improve the dam-

age assessment of hurricane intensity (Powell et al.

1998). An H*Wind analysis requires the input of all

available surface weather observations with respect to

the storm. In general, the total uncertainty of the

H*Wind products in hurricanes is approximately 6%

near the storm center, increasing to nearly 13% near

the tropical storm force wind radius (DiNapoli et al.

2012). In this paper, the H*Wind data of Tropical

StormKarl are provided by RiskManagement Solutions.

The spatial resolution of theH*Wind product used in this

paper is 0.018 3 0.018. The time step of the H*Wind

product is 3h.

The NASA SMAP level 2 wind speed is retrieved

from brightness temperature measured by L-band pas-

sive radiometer. It has a spatial resolution of 0.258 3

0.258 and a swath width of 1000km. The revisit time

of SMAP is 8 days. The root-mean-square difference

(RMSD) with WindSat or Special Sensor Microwave

Imager/Sounder is 1.7m s21 for wind speeds lower than

20m s21 (Yueh et al. 2016). The SMAP measurements

also have a good agreement with the airborne Stepped

Frequency Microwave Radiometer (SFMR) wind speeds

with an RMSD of 4.6ms21 for wind speeds between

20 and 40ms21 (Yueh et al. 2016).

As is shown in Table 1, the SAR-collocated wind

vectors at 10m are collected from ERA5 dataset,

H*Wind system, and SMAP observations. The time

difference between SAR images and ERA5 data is con-

trolled within half an hour. The time differences between

SAR images of Tropical Storm Karl and H*Wind data

are within 2h. The sensing time difference between

SAR images and SMAP data is within 1 h. Since there

are few matching samples from the SFMR observations,

experiments are only based on ERA5, H*Wind, and

SMAP wind data.

FIG. 2. The distributions between VH NRCS and incident angle

under different wind speeds (a) before and (b) after thermal noise

removal. The black curve is the NESZ value.
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3. Methodology

Tomatch up with the ERA5 data, the VHNRCS after

thermal noise removal is averaged with a calculation

resolution of 625 3 16 625 pixels. For dataset 1, the

latitude and longitude differences between SAR cells

and ERA5 cells are controlled within 0.018 to establish

the sample set. Then the VHNRCS, incident angle, and

ERA5 wind vector of each sample are recorded and

analyzed. Figure 3 shows the relationships between VH

NRCS and wind speed in different subswaths. Due to

the similar distributions of VH NCRS in EW2 and EW3

and in EW4 and EW5, the samples in two subswaths

are gathered together for function fitting. The sample

numbers are 1131, 1516, and 1205 for EW1, for EW2 and

EW3, and for EW4 and EW5, respectively. The corre-

lation coefficients r between VH NRCS and wind speed

are 0.89, 0.90, and 0.89, indicating that appropriate fit-

ting functions are able to simulate these distributions.

In this study, the fitting functions are a linear function

for EW1 and power-law functions for EW2andEW3 and

for EW4and EW5. The fitting results are shown in Fig. 3

(red curves) and proposed as follows:

sW
0 5

8

>

<

>

:

0:52U
10
2 32:34, 19:758# u, 27:558

292:78U20:45
10 , 27:558# u, 37:958

280:97U20:39
10 , 37:958# u, 46:958

, (1)

where sW
0 stands for the VH NRCS (dB) after thermal

noise removal, andU10 stands for the ocean surface wind

speed (m s21) at 10-m height. The discontinuities of the

proposed GMF can cause discontinuities in the wind

speed probability density functions (PDF). This will be

discussed in section 4. Figure 3 shows a comparison

of the proposed GMF S1EW.NR before incident

angle correction with another two GMFs developed for

Sentinel-1 EW Mode VH images, referred to as S1EW

(blue curves) (Gao et al. 2019) andMS1A (green curves)

(Mouche et al. 2017). Due to the different wind refer-

ence and preprocessing method of SAR data, three

GMFs have large differences from each other, especially

under low or high wind speeds.

After deriving these fitting functions, the simulated

VH NRCS are calculated by the wind speeds of the

training samples and then compared with the observed

VH NRCS. The results are shown in Fig. 4. The

FIG. 3. Distributions of VH NRCS and wind speeds for (a) EW1, (b) EW2 and EW3, and (c) EW4 and EW5. The red, blue, and green

curves represent the proposed S1EW.NR model, the S1EW model, and the MS1A model, respectively.

FIG. 4. The difference between simulated and observed VH

NRCS before incident angle correction. The green curve is the

fitting function for EW1.
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difference between simulated VH NRCS and ob-

served VH NRCS is calculated as

Ds
0
5sObs

0 2sW
0 , (2)

where sObs
0 stands for the observed VH NRCS. There

are 95% samples whose Ds0 are between 24 and 4dB.

For EW1, the fluctuation of Ds0 is similar to NESZ. As

mentioned in section 2, it is mainly because the thermal

noise is not eliminated thoroughly in EW1. However, for

EW2–5, the mean Ds0 values are nearly 0, indicating that

VH NRCS is independent of incident angle in these sub-

swaths. In this study, trigonometric function is used to fit

the relationship between mean Ds0 and incident angle for

EW1. The fitting function is shown as green curve in Fig. 4.

Finally, the wind retrieval function for EW1 can be

corrected with incident angle factor as follows:

sVH
0 5sW

0 1Ds
0
, (3)

Ds
0
5 0:50 sin(90:24u1 121:01), 19:758 # u, 27:558 ,

(4)

where sVH
0 is the VH NRCS in decibels after incident

angle correction, and u is the incident angle (8). For

EW2–5, Ds0 is zero, and sVH
0 5sW

0 . Based on 3852

samples in dataset 1, experiment is made to compare the

VH NRCS simulated by the S1EW.NR model [Eq. (3)]

and the observed VH NRCS. The result is shown in

Fig. 5. The correlation coefficient (r), bias, and standard

deviation (Std) are 0.89, 20.35dB, and 2.40dB, respec-

tively. As thermal noise only affects the NRCS value at

low-to-moderate wind regimes (0–20ms21), the incident

angle correction function [Eq. (4)] can be only applied to

low-to-moderate wind regimes. After thermal noise re-

moval, due to the decrease of the VH NRCS near NESZ,

the range of low wind speeds corresponds to a larger range

of VH NRCS. As a result, the dispersity of these samples’

simulations is big. However, it will not lead to a large error

when the model is used for wind speed retrieval, be-

cause the slopes of the retrieval functions are big for

low wind speeds.

4. Validation and comparison

As mentioned previously, the Sentinel-1 dual-

polarization products provide both copolarization and

CP SAR images. Based on dataset 2, the TCwind speeds

are retrieved from both channels for comparison. In this

paper, CMOD5.N is utilized to retrieve wind speeds

from copolarization SAR images. CMOD5.N provides

an empirical function between VV NRCS sensed by

the European Remote Sensing Satellite-2 (ERS-2) and

Advanced Scatterometer (ASCAT) scatterometers

and ocean surface vector wind at 10-m height. The

wind speeds retrieved from ASCAT and ERS-2 by

CMOD5.N comparewell on averagewith the operational

neutral winds from ECMWF (Hersbach et al. 2007).

CMOD5.N embodies a refit of CMOD5 and has a similar

function to all the other CMOD models:

sVV
0 5B

0
(11B

1
cosf1B

2
cos2f)1:6, (5)

B
0
5 10a01a1U10 f (a

2
U

10
, s

0
)g , (6)

B
1
5

c
14
(11 x)2 c

15
U

10
f0:51 x2 tanh[4(x1 c

16
1 c

17
U

10
)]g

11 exp[0:34(U
10
2 c

18
)]

,

(7)

B
2
5 (2d

1
1d

2
y
2
) exp(2y

2
) , (8)

x5
u2 40

25
, (9)

where sVV
0 is the VV NRCS (dB); Bi is the function of

ocean surface wind speed and radar incident angle; f is

the angle between wind direction and SAR azimuth

look angle in degrees; ci is constant; and ai, s0, g, di, and

y2 can be computed by ci, x, and U10. In this study, the

wind direction information is acquired from H*Wind

and ERA5 as external inputs.

A case study is made for Tropical Storm Karl (2016).

TheVV-polarized (VV)SAR imageofTropical StormKarl

is shown in Fig. 6. Figure 7 shows the SAR-retrieved wind

speed maps between 2222 and 2224 UTC 23 September

FIG. 5. Comparison between simulated and observed VH NRCS

based on dataset 1.
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2016 and corresponding H*Wind map of Tropical Storm

Karl. Figure 7a is derived from VV signals by CMOD5.N.

Figure 7b is derived from VH signals by the S1EW.NR

model. According to NOAA HRD’s track data, the lo-

cation difference of Tropical Storm Karl’s eye between

SAR sensing time and H*Wind analysis time is 0.1178 in

latitude and 0.3528 in longitude.

With the benefit of high spatial resolution, Figs. 7a and

7b show the local information of Tropical Storm Karl’s

wind field structure. The differences between two SAR-

retrieved wind maps are obvious for high wind speeds.

As is shown in Fig. 6, the high VV signals are located

below and above the storm eye. Therefore, for windmap

retrieved from VV signals, the high–wind speed regions

do not match up with the H*Wind map. In addition, its

significant dispersity of high–wind speed regions is not

realistic under TC conditions, according to the Holland

model (Holland 1980; Xie et al. 2006). The outer wind

speeds seem to be overestimated in Fig. 7a. These re-

trieval errors of CMOD5.N illustrate the influence of

wind direction input on retrieval result. The wind map

fromVH signals is consistent very well with theH*Wind

map, especially for the shape and location of high–wind

speed regions near the storm eyewall. To note, the

periodic streaks in Fig. 7b are caused by scalloping

burstwise variation, which needs to be removed in fur-

ther studies.

The scatterplots in Fig. 8 illustrate the comparison

of SAR-retrieved wind speeds from both channels

with H*Wind data and corresponding distributions of

sample density. Due to the high spatial resolution of

H*Wind data, there are 30 918 samples for compari-

son. The latitude and longitude differences between

SAR cells and H*Wind cells are controlled within

0.0018. The samples cover wind speed range from 4

to 31m s21.

FIG. 6. Sentinel-1 VV NRCS map of Tropical Storm Karl between

2222 and 2224 UTC 23 Sep 2016.

FIG. 7. Sentinel-1-retrieved ocean surface wind speed maps of Tropical Storm Karl between 2222 and 2224 UTC 23 Sep 2016 at

0.018 resolution using (a) VV signals and CMOD5.N and (b) VH signals and the S1EW.NR model. (c) SAR-collocated H*Wind ocean

surface wind speed map at 2400 UTC 23 Sep 2016.
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ForVV results, the correlation coefficient, bias, and Std

are 0.69, 0.46ms21, and 3.71ms21, respectively. On one

hand, CMOD5.N underestimates the wind speeds higher

than 20ms21, which is shown in Figs. 7a and 7c. This is

because VV signals become saturated under high wind

speeds. On the other hand, CMOD5.N overestimates

low wind speeds (,7ms21) by about 4ms21. For VH

results, the correlation coefficient, bias, and Std are 0.88,

0.00ms21, and 2.29ms21. These results show that the TC

wind speeds retrieved fromVH signals have much higher

accuracy than wind speeds retrieved from VV signals.

Since Sentinel-1 EWMode imagery has five subswaths,

discontinuities can be seen at interswath boundaries in

VH images. The proposed S1EW.NR model is incident

angle dependent and this leads to discontinuities in

wind retrieval map. To evaluate this discontinuity, wind

speed PDFs are calculated from the retrieval result and

H*Wind data of Tropical StormKarl. The PDFs on both

sides of function boundaries are computed in a bin of

0.88. In Fig. 9, it is clear that the PDFs of H*Wind wind

speeds (red curves) are very similar in adjacent incident

angle regions, while the PDFs of retrieval wind speeds

are more different as expected, especially for interswath

boundary of EW1 and EW2. Such discontinuity can also

be seen in Fig. 7b. At interswath boundary of EW1

and EW2, the correlation coefficient of PDFs is 0.91 for

retrieval result and 0.98 for H*Wind data. At interswath

boundary of EW3 and EW4, the correlation coeffi-

cient of PDFs is 0.98 for retrieval result and 0.99 for

H*Wind data. This means that discontinuity is greater at

interswath boundary of EW1 and EW2. These results

show that discontinues GMF and swaths can cause dis-

continuities of wind speed PDF.

Under 0.258 3 0.258 resolution, the same analysis has

been performed to compare the S1EW.NR model and

CMOD5.N. The wind directions used for CMOD5.N are

acquired from ERA5. Retrieval maps and corresponding

ERA5 wind map are shown in Fig. 10. In Figs. 10a and

10b, the locations of maximum wind speed are similar to

Figs. 7a and 7b. However, the values of maximum wind

speed retrieved from both signals are higher than the

maximum wind speed from ERA5 by about 10m s21.

According to the National Hurricane Center’s (NHC)

report, the maximum wind speed of Tropical Storm

Karl was 55kt (28.29ms21) at the SAR sensing time.

Obviously, the ERA5 underestimates the maximum wind

speed for this case. Compared with H*Wind data, al-

though the time ofERA5data is closer to the SARsensing

time, the accuracy of ERA5 data is affected by smoothing

of wind filed. For low–wind speed regions, the VV results

are higher than VH results in the upper-left corner of the

map and lower than VH results in the lower-left corner of

themap. The different features of low–wind speed regions

between this experiment and previous experiment illus-

trate the dependence of VV NRCS on wind direction.

In this study, experiment has also been made to re-

trieve wind speeds from the Sentinel-1 dual-polarization

images of Hurricane Helene (2018) and Hurricane

Florence (2019). The validation results are shown in

Fig. 11. To note, in order to test the S1EW.NR model

FIG. 8. Comparisons between H*Wind wind speeds and SAR-retrieved wind speeds of Tropical Storm Karl using

(a) VV signals and CMOD5.N and (b) VH signals and the S1EW.NR model.
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with the second instrument of Sentinel-1 mission, a SAR

image of Hurricane Helene at 0818 UTC 12 September

2018 is collected from Sentinel-1B dataset. Two SAR

images of Hurricane Florence are observed by Sentinel-1A

at 2132 UTC 7 September 2018 and at 0939 UTC

8 September 2018. In 2018, Hurricane Florence caused

major damage to the U.S. East Coast. Unfortunately, the

Sentinel-1 images are only available for Florence at the

tropical storm category. When considering 1226 samples,

the correlation coefficient, bias, and Std of VV results are

0.63, 0.65ms21, and 4.28ms21, respectively. The correla-

tion coefficient, bias, and Std of VH results are 0.74,

20.11ms21, and 3.54ms21, respectively. The VH results

are more consistent with ERA5 data. As expected, the

low wind speeds retrieved by the S1EW.NRmodel have

large Std due to the decrease of VHNRCS after thermal

noise removal. According to the results of samples with

high density (yellow dots in Fig. 11), both CMOD5.N

and the S1EW.NR model perform well under moderate

wind speeds. Compared with the previous experiment,

low spatial resolution has negative influence on retrieval

results.

Asmentioned above, the proposedGMF is developed

by ERA5 wind data and has been validated against

model wind speeds from H*Wind and ERA5. To eval-

uate the correlation between retrieval results and ob-

served wind speeds and compare the S1EW model and

the S1EW.NR model, the SMAP measurements are

collected in dataset 2 as wind speed references. The

S1EW model is derived from SMAP wind speed ob-

servations and S-1A images and able to retrieve wind

speeds from VH SAR images without thermal noise

removal (Gao et al. 2019). Since thematching samples of

the SMAP data are less than the ERA5 data, the SMAP

data are only used for validation in this paper. As is

shown in Fig. 12 and Table 1, there are 2664 matching

samples for 14 SAR images in 5 TCs. The wind speeds

range from 3 to 35m s21. The correlation coefficient,

bias, and Std ofVH results retrieved by the S1EWmodel

are 0.86, 20.17ms21, and 3.80ms21, respectively. The

correlation coefficient, bias, and Std of VH results re-

trieved by the S1EW.NRmodel are 0.85, 0.20m s21, and

3.26ms21, respectively. The retrieval results of both

models show good agreement with SMAP observations.

For the wind speeds retrieved from the S1EW.NR

model, its Std is 14% lower than the Std of S1EW-

retrieved wind speeds. It indicates that the thermal noise

removal could improve retrieval accuracy by reducing

dispersity. However, the correlation coefficient and bias

of the S1EWmodel are better than the S1EW.NRmodel

because the S1EW model is fitted by these SMAP wind

speeds (Gao et al. 2019).

5. Conclusions

This study illustrates that it is possible to retrieve TC

ocean surface wind speed from both VV and VH SAR

images of the Sentinel-1 satellites. The accuracy of wind

speeds retrieved from VV SAR images is affected by

prior input of wind direction and saturation of NRCS

under high wind speed. However, VH NRCS is inde-

pendent of wind direction and does not have saturation

problem under high wind speed, indicating that it has

great potential to retrieve wind speed with high accuracy

under TC conditions. In addition, with the benefit of

high spatial resolution, SAR images could be used to

monitor local information of the TC structure.

In this paper, an empirical GMF has been presented

for the thermal-noise-removed VH images of the

Sentinel-1 dual-polarization EW Mode GRD products.

Based on 20 SAR images and collocated ERA5 data

FIG. 9. Wind speed PDFs computed from retrieval result (blue)

andH*Wind data (red) at interswath boundaries between (a) EW1

and EW2 and (b) EW3 and EW4.
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under TC conditions, a subswath-based piecewise

function is used to describe the relationship between

VH NRCS and wind speed up to 35m s21. Compared

with the S1EWmodel andMS1Amodel, the proposed

S1EW.NR model has simpler structure and less

coefficients. In this new model, VH NRCS is dependent

on wind speed and radar incident angle. For subswath 1,

due to the effect of the remainder thermal noise, the

S1EW.NR model has been corrected by a sine function

of incident angle.

FIG. 10. Sentinel-1-retrieved ocean surface wind speed maps of Tropical Storm Karl between 2222 and 2224 UTC 23 Sep 2016 at

0.258 resolution using (a) VV signals and CMOD5.N, and (b) VH signals and the S1EW.NR model. (c) SAR-collocated ERA5 ocean

surface wind speed map at 2200 UTC 23 Sep 2016.

FIG. 11. Comparisons between ERA5 wind speeds and SAR-retrieved wind speeds of Tropical Storm Karl, Hurricane

Helene, andTropical StormFlorence using (a)VV signals andCMOD5.Nand (b)VH signals and the S1EW.NRmodel.
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In this paper, the S1EW.NR model is validated with

both observed wind data and model wind data at two

different spatial resolutions. The proposed model is

also compared with the copolarization radar GMF

CMOD5.N. According to the case study of Tropical

Storm Karl, the wind speed map retrieved by the

S1EW.NR model is more consistent with the SAR-

collocated H*Wind map than the result retrieved

by CMOD5.N. For VV retrieval results, the correla-

tion coefficient, bias, and Std are 0.69, 0.46m s21,

and 3.71m s21, respectively. For VH retrieval results,

the correlation coefficient, bias, and Std are 0.88,

0.00m s21, and 2.29m s21, respectively. Validation

and comparison are made to test the S1EW.NRmodel

by the Sentinel-1 images of Hurricane Helene and

Tropical Storm Florence and the corresponding

ERA5 data. For VV retrieval results, the correla-

tion coefficient, bias, and Std are 0.63, 0.65m s21,

and 4.28ms21, respectively. For VH retrieval results,

the correlation coefficient, bias, and Std are 0.74,

20.11m s21, and 3.54m s21, respectively. In this paper,

the S1EW.NR model is tested by the SMAP wind

observations, the correlation coefficient, bias, and Std

are 0.85, 0.20m s21, and 3.26ms21, respectively. Results

show that the S1EW.NR model is more accurate and

reliable than CMOD5.N and has smaller Std than the

S1EW model for TC wind speed retrieval. In addition,

the retrieval results at two different spatial resolutions

indicate that both the S1EW.NR model and CMOD5.N

perform better at higher spatial resolution.
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