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ABSTRACT

TheU.K. on Partnership forAdvancedComputing inEurope (PRACE)Weather-Resolving Simulations of

Climate for Global Environmental Risk (UPSCALE) project, using PRACE resources, constructed and ran

an ensemble of atmosphere-only global climate model simulations, using the Met Office Unified Model

Global Atmosphere 3 (GA3) configuration. Each simulation is 27 years in length for both the present climate

and an end-of-century future climate, at resolutions of N96 (130 km), N216 (60 km), and N512 (25 km), in

order to study the impact of model resolution on high-impact climate features such as tropical cyclones.

Increased model resolution is found to improve the simulated frequency of explicitly tracked tropical cy-

clones, and correlations of interannual variability in the North Atlantic and northwestern Pacific lie between

0.6 and 0.75. Improvements in the deficit of genesis in the eastern North Atlantic as resolution increases

appear to be related to the representation ofAfrican easterly waves and theAfrican easterly jet. However, the

intensity of the modeled tropical cyclones as measured by 10-m wind speed remains weak, and there is no

indication of convergence over this range of resolutions. In the future climate ensemble, there is a reduction of

50% in the frequency of Southern Hemisphere tropical cyclones, whereas in the Northern Hemisphere there

is a reduction in the North Atlantic and a shift in the Pacific with peak intensities becoming more common in

the central Pacific. There is also a change in tropical cyclone intensities, with the future climate having fewer

weak storms and proportionally more strong storms.

1. Introduction

There is an increasing need for skillful climate in-

formation at regional and local scales, particularly for

considering variability and extremes, in order to inform

future planning and impact risk assessments, both to

prepare for climate change and to investigate opportu-

nities for renewable energy and for the insurance and

reinsurance industries to understand risk. Current phase 5

of the CoupledModel Intercomparison Project (CMIP5)-

class models (Taylor et al. 2012) generally fall short of

being able to provide information on these small space

and time scales (Christensen et al. 2014), though they

provide a wealth of information on climate uncertainty

and large-scale patterns of variability (Stocker et al. 2014).

Tropical cyclone simulation presents a particular

challenge to the CMIP5 class of model, since these

features are relatively small in size and have complex

circulations driven by convective processes. These as-

pects are particularly weak elements of coupled general

circulationmodels (CGCMs) implemented at horizontal

* Supplemental information related to this paper is available at the

Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00131.1.s1
&Current affiliation: Met Office Hadley Centre, Exeter, United

Kingdom.

Corresponding author address: Malcolm J. Roberts, Met Office

Hadley Centre, FitzRoy Road, Exeter EX1 3PB, United Kingdom.

E-mail: malcolm.roberts@metoffice.gov.uk

574 JOURNAL OF CL IMATE VOLUME 28

DOI: 10.1175/JCLI-D-14-00131.1

� 2015 American Meteorological Society

http://dx.doi.org/10.1175/JCLI-D-14-00131.1.s1
mailto:malcolm.roberts@metoffice.gov.uk


resolutions that allow multicentennial integrations un-

der a variety of forcing scenarios, often with full Earth

system biogeochemistry components.

To address such issues, a long-standing collaboration

exists between the Met Office and the University of

Reading to develop ‘‘weather resolving’’ climate models,

which are able to capture typical weather features such

as fronts and atmospheric rivers (as found in a weather

forecast) while also being integrated over multidecadal

time scales (Shaffrey et al. 2009; Strachan et al. 2013;

Demory et al. 2014; Mizielinski et al. 2014). Many other

groups are also progressing quickly in this direction,

often using higher-resolution components of existing

weather/seasonal forecasting or climate models (e.g.,

Zhao et al. 2009; Murakami and Sugi 2010; Wehner et al.

2010; Manganello et al. 2012; Rathmann et al. 2013;

Bacmeister et al. 2013), as significant progress in model

scalability, supercomputing, data storage, and process-

ing capacity become available. Such developments en-

able investigation into the impact that enhanced

resolution has on aspects of climate, particularly on how

processes are better represented. For tropical cyclone

(TC) simulation, there has been much research on the

impact of complex changes to forcings in future pro-

jections, such as in CMIP3 and CMIP5 experiments

(Zhao et al. 2009; Murakami et al. 2012b; Tory et al.

2013b; Camargo 2013): alternatively, idealized forcings

have been used, such as a uniform 12-K sea surface

temperature (SST) increase or a 2 3 CO2 increase

(Yoshimura and Sugi 2005; Held and Zhao 2011; Daloz

et al. 2015). The latter method attempts to understand

how the differing forcing factors influence the TC clima-

tology, while the former may give some guidance on fu-

ture projections, which are also summarized in Knutson

et al. (2010).

The TC activity in models can be determined in

a variety of ways, such as using explicit feature-

tracking algorithms (Bengtsson et al. 2007a; Zhao

et al. 2009). Alternatively, measures based on the

larger-scale climatology of factors known to influence

TC formation (e.g., wind shear, thermodynamic in-

stability, and humidity) can be computed, such as the

genesis potential index (GPI; Emanuel 1988; Camargo

et al. 2007; Emanuel 2010) ormeasures combining aspects

of both such as Tory et al. (2013a). Walsh et al. (2013)

made a comparison between GPI-based and explicit

tracking of storms in CMIP3 models, showing that lower-

resolution models simulate the large-scale GPI better

than they simulate the TCs explicitly. However, TCs also

have a feedback on the large-scale climate as noted in

observations (D’Asaro et al. 2013), and in coupledmodels

(Hu and Meehl 2009) and are therefore important to

represent explicitly.

As detailed in Mizielinski et al. (2014), the U.K. on

Partnership for Advanced Computing in Europe

(PRACE) Weather-Resolving Simulations of Climate

for Global Environmental Risk (UPSCALE) project

ran the Met Office Unified Model (MetUM), using

a forced atmosphere–land configuration named Global

Atmosphere 3.0 (GA3.0; Walters et al. 2011), on the

Cray XE6 supercomputer Hermit at the High Perfor-

mance Computing Center Stuttgart (HLRS) in Stutt-

gart, Germany. Using a hierarchy of models with

midlatitude resolutions of N96 (130 km), N216 (60 km),

and N512 (25 km) with consistent physics and dynamics

settings, our goal was to investigate the extent to which

such models can reproduce aspects of observed climate

variability and extremes and to help put results from

Intergovernmental Panel on Climate Change (IPCC)-

class models into context. Building on the work of

Strachan et al. (2013), this study investigates higher

resolutions (both horizontally and vertically with a top

at 85 km) with more ensemble members (enabling more

stringent statistical tests) extending to near present day

and with a more recent model configuration that makes

it possible to have even fewer configuration changes

with resolution. In addition, an ensemble of integrations

was performed with an idealized future climate scenario

[representative concentration pathway 8.5 (RCP8.5) at

2100] with strong forcing to see how this affects pro-

jections of climate change, including tropical cyclone

characteristics.

The ultimate goal of our research is to use coupled

models at similarly high resolutions in order to generate

an internally consistent future climate (i.e., in a system

where the atmosphere–land–ocean–ice system can

reach its own equilibrium and be in surface energy bal-

ance). This would require many more ensemble mem-

bers because of the increased internal variability of such

a system (Deser et al. 2012), which increases the diffi-

culty in separating signal from noise. Such experiments

would likely be at least an order of magnitude more

computationally expensive and are strongly affected by

biases in all model components being small enough for

the mean climatology and variability to be realistic. As

shown in Murakami et al. (2014), model biases can sig-

nificantly alter the future projections of TCs. Research

that provides quantification of inherent model error

(e.g., due to coarse resolution) is a necessary pre-

paratory step in that direction.

The manuscript continues as follows: the models,

methods, and data used in this work are summarized in

section 2 and the characteristics of the tropical cyclone

simulation in terms of climatology, variability, seasonal

cycle, and structure are described in section 3, for both

the present climate and future climate simulations.
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There then follows a summary and discussion in sections

4 and 5.

2. Models, data, and methods

a. Models

The climate models used in this study are based on the

GA3.0 and Global Land 3 (GL3) configurations of the

MetUM and the Joint U.K. Land Environment Simu-

lator (JULES) respectively, as documented in Walters

et al. (2011) and Mizielinski et al. (2014). These refer-

ences describe the many developments compared to the

Hadley Centre Global Environment Model, version 2–

Atmosphere and Ocean (HadGEM2-AO) from CMIP5

(Martin et al. 2011), including the standard use of 85

levels up to 85 km for improved stratospheric repre-

sentation, a prognostic cloud fraction and cloud con-

centrate scheme (Wilson et al. 2008), and modifications

to microphysics to reduce the spurious occurrence of

drizzle (Abel and Shipway 2007). The hierarchy of

horizontal resolutions has been developed such that the

physics and dynamics of the models are kept the same as

far as practically possible, so that any differences in

simulation can be attributed to resolution alone (see

Mizielinski et al. 2014). The horizontal resolutions of the

respective models are shown in Table 1 and span the

range between CMIP5-type resolutions and global

weather forecasting resolution. The model integrations

span February 1985–December 2011 in order to use all

the data then available from the Operational Sea Sur-

face Temperature and Sea Ice Analysis (OSTIA;

Donlon et al. 2012) daily SST and sea ice dataset,

which has a native resolution of 1/208 and is a synthesis

of satellite and in situ observations covering from 1985 to

the present day, where the period 1985–2008 is a re-

analysis (Roberts-Jones et al. 2012). The present climate

(PC) simulations use this surface forcing, together

with CMIP5 Atmospheric Model Intercomparison Pro-

ject phase 2 (AMIP-II) standard forcings for aerosols and

greenhouse gases [described in Taylor et al. (2012) as

‘‘historical’’ using realistic radiative forcings until 2005

and then using RCP4.5 forcings to 2011]. There are five

ensemble members at N96 and N512 resolution and

three members at N216, with each member differing

only in the initial conditions (seeMizielinski et al. 2014).

The number of ensemble members was based purely on

available computing resources.

The future climate (FC) ‘‘time slice’’ integrations

(Bengtsson et al. 1996; Zhao et al. 2009; Murakami et al.

2012b) are an idealized attempt to simulate a future

climate state using only a forced atmosphere–land sur-

face model. As described in Mizielinski et al. (2014), the

change in SST between 2100 and the present day from

the HadGEM2–Earth System (ES) from the IPCC Fifth

Assessment Report (AR5; Collins et al. 2011) under the

strong emissions pathway RCP8.5 scenario (van Vuuren

et al. 2011) is added to the present-day daily OSTIA

SSTs as a repeating annual cycle (with spatial global

pattern), while the sea ice concentrations are taken di-

rectly from the HadGEM2-ES simulation. Greenhouse

gas concentrations are made consistent with those in the

HadGEM2-ES simulation at year 2100. While it is true

that the thermodynamic state is not a unique function of

SST (Emanuel and Sobel 2013) and hence with no in-

teractive ocean coupling this type of experiment is not

the ideal method in which to examine how TCs might

change in future, it has the benefit of being a global

model (and hence able to respond to remote forcings)

and is among the simplest methods to use and interpret.

There are three ensemble members for each model

resolution for the FC integrations.

b. Reanalyses and observations

The reanalysis datasets used in this work have been

obtained from the respective centers, and the horizontal

resolutions of these data are shown in Table 1. Data from

the Interim European Centre forMedium-RangeWeather

Forecasts (ECMWF) Re-Analysis (ERA-Interim) for the

TABLE 1. The GA3.0 model resolution chain together with ERA-Interim (using the nonnative 18 3 18 resolution data), MERRA, and

JRA-25 reanalysis datasets. TheX andY terms are the numbers of grid points in the zonal and meridional directions in the data analyzed,

whereas ‘‘midlatitude’’ refers to the approximate resolution at midlatitudes (508N). The Z term refers to the number of vertical levels or

layers, whereas ‘‘top’’ in parentheses is the height of the top level. Data assimilation method is also included for the reanalyses: note that,

for JRA-25, there is also assimilation of winds near hurricanes using best-track data and Fiorino (2002).

Model resolution/reanalysis

dataset (native resolution) X Y Z (top)

Midlatitude

(km)

Data

assimilation

N96 192 145 85 (85 km) 130 None

N216 432 325 85 (85 km) 60 None

N512 1024 769 85 (85 km) 25 None

ERA-Interim (T255) 360 180 60 (0.1 hPa) 70 4D

MERRA (2/38 3 1/28) 540 360 72 (0.01 hPa) 48 3D

JRA-25 (T106) 288 145 40 (0.4 hPa) 90 3D
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period 1985–2011 (Dee et al. 2011) were used on the

18 3 18 grid (not the native resolution) for both the

6-hourly data used in TC tracking and the monthly data

used for the climatological calculations. The National

Aeronautics and Space Administration (NASA) Mod-

ern Era Retrospective-Analysis for Research and Ap-

plications (MERRA) reanalysis data (Rienecker et al.

2011) and the Japan Meteorological Agency (JMA)

Japanese 25-year Reanalysis Project (JRA-25) re-

analysis data (Onogi et al. 2007) were similarly used.

Observational data for the North Atlantic (NA) and

eastern Pacific (EP) basins were obtained from the

updated National Hurricane Center Hurricane Database

(HURDAT2; Landsea and Franklin 2013) and data for

the remaining basins are from the Joint Typhoon

Warning Center best-track files (Chu et al. 2002). Here

these datasets will be referred to jointly as observations.

These datasets are used in preference to the In-

ternational Best Track Archive for Climate Stewardship

(IBTrACS; Knapp et al. 2010) because they have

unique, 1-min sustained wind speeds reported for each

basin. The definitions used throughout this work for

each basin are defined in Fig. 1 (the separation between

EP and NA lies along Central America), and a tropical

cyclone is assigned to the basin where the maximum

wind speed is attained while the storm has a warm core

unless otherwise stated.

In this work, comparison will only be made for the

period in which the reanalysis datasets overlap with the

model results, typically 1985–2011. Particular seasons

are used—May–November for the Northern Hemi-

sphere (NH) and October–May for the Southern

Hemisphere (SH)—since these periods capture the vast

majority of observed and modeled storms (see Emanuel

2003) and make the processing of these large datasets

more manageable (Strachan et al. 2013).

c. Methods

An objective, resolution-independent feature-tracking

methodology is used to identify and trackTC-like features

in the GCM output and reanalyses. This method is de-

scribed fully inHodges (1995, 1996, 1999) andBengtsson

et al. (2007a). Maxima in low-level 850-hPa relative

vorticity are used for identification and tracking of all

tropical vorticity centers using vorticity spectrally fil-

tered to T42 resolution (in order to perform the feature

tracking on a common grid that has removed grid-scale

anomalies) for both models and reanalyses as described

in Strachan et al. (2013), Manganello et al. (2012), and

Bell et al. (2013). TC identification is performed with

a warm-core check on a common T63 grid using four

vertical pressure levels (850, 500, 300, and 200hPa)

[compared to the three levels used in Strachan et al.

(2013) and Bell et al. (2013)]. The limited number of pa-

rameters used in the method (primarily vorticity and

warm core) has been derived from tracking of reanalysis

datasets and is not tuned for the different models.

All model storms are weak compared to observations

(see Strachan et al. 2013), particularly with regard to

10-m wind speed, as shown in Fig. 2, but also applying to

wind at other levels. This has been a characteristic of the

MetUM for some years over many configurations, and

the cause continues to be investigated. Intensity for the

models and reanalyses will be measured by minimum

mean sea level pressure (MSLP) during TC lifetime,

with the understanding that this is not an official cate-

gorization but based on the original Saffir–Simpson

hurricane scale (Simpson 1974). The categories are de-

fined by the following: .994 hPa, 980–994 hPa, 965–

979 hPa, 945–964 hPa, 920–944 hPa, and ,920 hPa for

tropical storms (TSP) and category (CatP) 1–5 hurri-

canes, respectively (subscript P to distinguish from the

standard 10-m wind speed definition).

Although the model TCs are weak in intensity, they

do satisfy the detection algorithm for structure and

warm core. In fact, when tracking TCs in reanalyses, for

which storm-by-storm matching is possible, we have

shown that our detection algorithm has higher skill for

the higher TC categories, for both mean frequency and

variability (A. Cobb 2014, personal communication). It

FIG. 1. The basin definitions used in this study.
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is expected then that the weakest observed storms

(tropical depressions and storms) in our simulations

would not be robustly detected by our tracking algo-

rithm. Moreover, when making use of observations for

model assessment, weaker storms may depend more on

monitoring practices of individual operational centers.

Finally, weaker storms may be less sensitive to large-

scale drivers (which is the main focus here). As a con-

sequence, in the following the main comparisons with

models and reanalyses will be with observed storms of

hurricane strength category 1 (standard 10-m wind

speed definition) and above (see also Zhao et al. 2009).

The composite structure of the tropical cyclone shown

later is derived from the strongest 10 TCs for each res-

olution over the ensemble, calculated during the warm-

core phase at peak 850-hPa vorticity, and aligned with

the direction of storm travel. It is calculated over a 108

radial cap, with resolution 0.258 3 18, following the

methodology of Bengtsson et al. (2007b) and Catto et al.

(2010).

3. Results

The PC integrations will be discussed before the FC

results.

a. Large-scale global tropical cyclone characteristics

The average number of TCs detected in each basin in

the model ensembles, reanalyses, and observations

(tropical storm strength and above, and hurricane and

above) over the period 1986–2010 are shown in Fig. 3.

The overall frequency shown in Fig. 3a is subdivided into

maximum intensities during TC lifetime so that the

bottom part of the bar denotes storms that are less than

category 1 (CatP 1 for the models/reanalyses), with the

top part showing categories 1–5. The models and re-

analyses have total TC frequencies generally within

the range of the observations (as defined by the range

between TS and hurricanes) but with the majority of

storms being weak sub–CatP 1 strength. As model reso-

lution increases, so does the number of detected storms

(as also found in Strachan et al. 2013), with the main

difference between N216 and N512 being an increase in

more intense storms, with CatP 3 storms beginning to

appear at N216 and N512 (the strongest model storms

havemaximum 10-mwind speeds of around 35ms21with

minimum MSLP of 940hPa; Fig. 2). Models and re-

analyses both have lower TC frequency in the NH

compared to observations and too many TCs in the SH.

Breaking down these totals into individual basins in

Figs. 3b,c, the numbers here have been normalized by

their respective hemispheric total so that it is easier to

examine the distributions between basins. A TC is cat-

egorized in a particular basin if it reaches peak intensity

there.

The models produce typically too few TCs in the NA

with an improvement at N512 and too many in the EP,

with N512 also having relatively fewer in the western

Pacific (WP) andmore in the central Pacific (CP), perhaps

because of their too-zonal track (see below for details). In

FIG. 2. Scatterplot of the maximum lifetime 10-m wind speed (m s21) vs the corresponding

MSLP (hPa) for observed and model storms in the Northern Hemisphere during May–

November of 1985–2011 together with second-order polynomial fits to data points. The observed

wind speeds have been converted to 10 min (from 1 min) using a factor of 0.88, while model data

use the maximum wind during each 6-hourly period. The standard hurricane 10-m wind scale

(categories 1–3) and the MSLP-based (Catp 1–5) scale are also shown (see text for details).
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the SH, where there is generally an excess of storms, the

positive bias is larger in the southwestern Indian Ocean

(SWI) basin, while the Australasian (AU) region has

fewer storms. The models also generate storms in the

SouthAtlantic (SA), where hurricanes are observed to be

rare (McTaggart-Cowan et al. 2006), though subtropical

cyclones are quite common (Evans and Braun 2012).

The reason for the increase in TC frequency with model

resolution is not immediately obvious. The tracking algo-

rithm attempts to be as resolution independent as possible,

with its main threshold of vorticity on the common T42

grid to which all fields are filtered. The increased resolu-

tion allowsmore vorticity structures to be generated at the

native resolution (e.g., via African easterly waves in the

NA) and together with more realistic structures at higher

resolution, which are more likely to be identified by the

algorithm, can generate more storm detections. There are

some indications that, at least with a more recent config-

uration of the MetUM model, the TC total frequency

seems to saturate between 25- and 12-km resolutions

(using a comparable model setup), but with a decrease in

the proportion of weaker storms at the higher resolution

(this will be described in future work).

The TC frequencies in the reanalyses do not follow

model resolution but are affected by different data as-

similation schemes, as discussed by Bengtsson et al.

(2007a). For example, the JRA-25 dataset has the lowest

nominal resolution, but its assimilation scheme en-

hances near-surface wind speeds around tropical cy-

clone centers once the TChas formed (Onogi et al. 2007)

and hence may make them stronger and/or have

a structure more likely to fulfil the identification criteria.

MERRA has the highest resolution of data used here

but the fewest TCs detected, with its basin-by-basin

distribution closely matching the observations.

The track density, defined as transits per month within

a 48 radius of each point, is shown in Fig. 4, using the

warm-core-only portion of the track to allow better

comparison with observations. The increase in model

resolution improves the NA basin, with more tracks

being located in the eastern Atlantic, while at low res-

olution almost all of the tracks are contained within the

Gulf of Mexico [as found in Strachan et al. (2013) and

Bell et al. (2013)]. Increased model resolution enhances

an error in the CP, where the density becomes too high

compared to observations, with tracks that are too zonal,

yielding the basin plot in Fig. 3. Part of this error may be

attributed to differences between the detection algo-

rithm from the model and observed TCs. Observed TCs

will tend to be attributed to a particular basin, depend-

ing on the observing center, and will be detected at

a later stage of development than the vorticity in the

model, even if the latter only uses the warm-core part of

the track. Study of model vorticity also shows that there

are several sources of vorticity in the CP: waves associ-

ated with the intertropical convergence zone, waves

from the eastern Pacific (possibly remnants of African

easterly waves), and waves from convergence zones of

flow from north and south of the equator: some of which

leads to anomalous genesis. However, overall the TCs

simulated by the models travel too zonally, with fewer

storms being generated nearer to the equator in the

western Pacific than seen in the observations. Such

biases are sensitive to changes in model configuration

and parameters, such as convective entrainment rates

(ongoing work).

FIG. 3. (a) Average number of TCs between 1986–2010 for the

global total and the Northern Hemisphere (May–November) and

Southern Hemisphere (October–May) seasons. The total is split

into intensity categories (using warm-core lifetime minimum

MSLP), with the bottom solid color representing intensities ,

category 1 and then successive colors for categories 1–5. The first

bar is for observed tropical storm strength and greater and the

second is for observed hurricane strength and greater. (b) Nor-

malized TC frequency for NorthernHemisphere normalized by the

corresponding (model–observations) total for the NH. (c) As in

(b), but for the Southern Hemisphere. The error bars denote the

interannual standard deviation. The key for the different models–

reanalyses–observations is shown in (c).
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An additional model bias lies in the Gulf of Mexico/

EP region, where the track density is again too high. In

the model the coast of Venezuela generates a continual

stream of vorticity (perhaps from easterly waves gen-

erated over the Caribbean and Gulf of Mexico; Serra

et al. 2010). This feeds vorticity structures both in the

Gulf of Mexico and, together with interactions with

mountains in Central America, is a large source for the

EP and is why many storms found in the EP seem to

originate in the NA (Serra et al. 2010).

In the Southern Hemisphere, the main error in dis-

tribution is found in the SWI basin, where the track

density is strongly enhanced to the west near Mada-

gascar. In observations and reanalyses, it is more evenly

distributed.

The reanalysis track densities (again using only the

warm-core portion of the track) are shown in Fig. 4 and,

as expected, are much more comparable to the obser-

vations. The JRA-25 dataset generally has higher track

densities in most basins compared to the ERA-Interim

and MERRA, and is in best agreement with the obser-

vations. The data assimilation around TCs is again likely

to be aiding this. The reanalysis datasets are also better

than the higher-resolution models in the CP, where they

FIG. 4. Track density (transits per month per unit area equivalent to a 48 spherical cap) for (left) model ensembles (top)–(bottom) N96, N216,

and N512; (right) reanalyses (top)–(next to bottom) ERA-Interim, JRA-25, and MERRA; and (bottom) observed hurricanes over the period

1986–2010. The Northern Hemisphere period is set to May–November and the Southern Hemisphere period is set to October–May.
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have a more realistic gap between EP and WP activity,

suggesting that it is not the detection of early formation

vorticity structure resulting in the model bias above.

b. Seasonal cycle

The seasonal cycle of tropical cyclones in each basin

for models, averaged over each resolution ensemble,

and observed hurricanes for 1986–2010 is shown in

Fig. 5. Bearing in mind that the detection of storms is

constrained to using May–November and October–May

periods for the NH and SH, respectively, the shape of

the seasonal cycle is well represented, particularly in the

WP. In the NA, the season starts too early and does not

increase strongly through July–September, as seen in the

observations and reanalyses. The early part of this bias

may be due to storms generated in the NA traveling into

the EP in July and being classified there. The latter part

is almost entirely due to a lack of genesis of eastern

Atlantic TCs at this time of year, as shown in Kossin

et al. (2010) in their ‘‘cluster 3’’ of storms originating in

the eastern Atlantic and Daloz et al. (2015), showing

how this cluster has peak frequency in August–

September. The low frequency, particularly at low

resolution, seems to be related to a reduced number of

African easterly waves (AEWs), whose seasonal clima-

tology at 158W is shown in Fig. 6 (top), as measured by

the method of Bain et al. (2013), where an analysis of

Hovmöller diagrams of curvature vorticity at 700hPa is

used to identify propagating waves (once wind fields

have been interpolated to a common N96 grid) between

58 and 158N. The model AEW seasonal cycle peaks

earlier than in the reanalyses, and the AEW numbers

gradually increase with model resolution. However,

they remain much weaker in terms of peak 700-hPa

vorticity than the reanalyses and completely miss the

seasonal cycle in vorticity (Fig. 6, bottom). This is con-

sistent with the changed structure of theAfrican easterly

jet (AEJ), which the southern flank of the AEJ has

a much weaker meridional wind gradient in the mod-

els than the reanalyses (Fig. 7) and anAEJ core located

farther south. This would in turn restrict the formation

of AEWs to the south of the jet, and they have been

shown by Chen et al. (2008) to be particularly associ-

ated with TC formation in the eastern Atlantic. As an

aside, seasonal hindcasts from the Met Office coupled

Global Seasonal Forecast System, version 5 (GloSea5;

MacLachlan et al. 2015), using the same atmospheric

model at N216 resolution coupled to a 1/48 ocean

model, has stronger AEWvorticity and anAEJ located

in a similar position to the N512 model (Fig. 7) with

a stronger meridional wind gradient and an im-

proved eastern Atlantic TC formation rate (Camp

et al. 2014, manuscript submitted to Quart. J. Roy.

Meteor. Soc.). This improvement may be attributable

to the seasonal initialization of, for example, land sur-

face properties such as soil moisture and the ocean, as

well as full ocean coupling.

The EP has too many storms in the higher-resolution

models, with the strong peak in July apparently due to

storms with vorticity genesis in the Gulf of Mexico

(Bengtsson et al. 2006, 2007a) perhaps because of too

many easterly waves propagating into this region (Serra

et al. 2010) and with a dip in September that is not seen

in observations. The northern Indian Ocean (NI) region

has somewhat different characteristics, with fewer TCs

at higher resolution and a poor seasonal cycle. Part of

this may be explained by the poor simulation of the

Indian monsoon in the model (Walters et al. 2011): the

onset is late, which may affect the early season, and

the excessive activity in September–October may be the

result of both the early retreat of the monsoon and some

monsoon depressions being classified as TCs. The N512

model does have somewhat reduced monsoon circula-

tion biases, and at higher resolution it is somewhat easier

for the tracking code to distinguish between depressions

and TCs; for these reasons, it has fewer TCs.

In general, the Southern Hemisphere has too many

storms, a typical model error also seen in Strachan et al.

(2013), with the southern Pacific (SP) having a more

exaggerated peak in February–March than observed,

whereas the other basins have a reasonably timed, if

exaggerated, cycle. This is also true for reanalyses and

may suggest that in these regions with significantly fewer

in situ observations the large-scale environmentmay not

be well represented; however, cyclogenesis indices

based on reanalyses (Menkes et al. 2012; Strachan et al.

2013) suggest that the cyclogenesis environment is not

unreasonable. Apart from differences in absolute num-

bers, there is little sensitivity of the seasonal cycle to

model resolution.

c. Interannual variability

The interannual variability in TC frequency (model

and reanalyses) and hurricanes (observations) for the

NA is shown in Fig. 8. As seen previously, the higher-

resolution models produce more storms on average,

and N512 in particular reproduces all but the 2005

peak well, with its ensemble range almost always con-

taining the observations. The reanalysis datasets repre-

sent the interannual variability realistically, with the

number of diagnosed storms generally at or above ob-

served hurricane numbers, with a good representation

of 2005 in particular. Note that reanalyses have a rea-

sonable chance of containing some of the weaker

storms given the observational constraints used in their

production.
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Correlations of interannual variability for the North-

ern Hemisphere basins are shown in Table 2 for model

ensemble means and individual members and for re-

analyses. In the NA, the correlation for all model en-

semble means is significant (at the 95% level using

a two-tailed t test) and increases with model resolution.

In the WP, all models have significant ensemble corre-

lations of above 0.6, though in this case the N512 model

has the lowest correlation. The EP has somewhat lower

correlation, only N216 is significant, and other basins are

poorly correlated. For the reanalyses datasets, the cor-

relations are similarly high in the NA and WP, higher

than the models in the NI and similar to models in the

EP. In general JRA-25 has the best correlations, perhaps

again because of the assimilation of winds around hur-

ricanes. The fact that the reanalyses are not perfectly

FIG. 5. Monthly average frequency of modeled and reanalysis tropical cyclones and observed hurricanes for TC

basins defined at the top of each panel. Model data use the ensemble mean for 1986–2010; and observations and

reanalyses are for 1986–2010. Note that, for model and reanalysis data, the Northern Hemisphere basins represent

only May–November and the Southern Hemisphere only October–May. Solid lines are PC, dashed lines are FC,

black and gray lines are reanalyses, and gray bars are observations.
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correlated may be attributed to limitations in both the

datasets themselves and in identification criteria used to

select a subset of all vorticity tracks, as it is likely that

most of the observed hurricanes are represented in some

way in the reanalyses [see Strachan et al. (2013) for

ERA-Interim]. How the structure of the storm (both

horizontally and vertically) is represented in the datasets

will influence whether they are detected by the identi-

fication criteria.

As discussed in Chen and Lin (2013), the correlation

between each ensemble member and the ensemble

mean of the other members gives some measure of the

internal variability (‘‘weather noise’’). Stronger inter-

member correlation would suggest that the forcing plays

a stronger role in interannual variability. These corre-

lations are shown in Table 3: in common with Chen and

Lin (2013), the EP has the strongest intermember cor-

relation, especially at N512, but here the EP has the

weakest ensemble average correlation with observed

storms (Table 2). This suggests that the model is biased

in a way that strongly influences all members, or the

model is not responding to the forcing in the correct way.

It is possible that the results differ from Chen and Lin

(2013) because of the configurations used, with their

integrations being seasonal in length with persisted SST

anomalies that encourage larger internal variability.

Their NA correlation is also larger than seen here, so

model initialization may be important.

ATLANTIC BASIN

In addition to explicitly tracking TCs, the large-scale

climatology can act as a strong constraint on TC for-

mation even if precursors such as vorticity structure fa-

vor formation, particularly in the Atlantic. The GPI is

a standard measure of the amenability of the large-scale

mean environment to tropical cyclone formation

(Emanuel 1988; Camargo et al. 2007; Emanuel 2010).

Figure 9 shows the GPI for the Atlantic for the models

and reanalyses (following Emanuel 2010) calculated as

the July–October monthly mean taken over the main

development region (MDR; defined by 7.58–208N, 158–

858W). The ensemble correlation of the model GPI with

themodel storm counts is very high [as shown in Table 5,

where both older (GPI; Camargo et al. 2007) and up-

dated (GPI2010; Emanuel 2010, 2013) correlations are

shown], while the correlation of the GPI with the ob-

served hurricane counts is slightly lower. However, the

fact that the GPI remains almost the same for the dif-

ferent resolution models, while as seen above the ex-

plicitly tracked TC frequency increases with model

resolution, suggests that theGPI in theAtlantic is a good

guide for relative (normalized) TC interannual vari-

ability but cannot distinguish the absolute TC frequency

differences between the model resolutions. It also

FIG. 6. (top) The mean seasonal cycle of the number of AEWs

(with positive vorticity) at 158Wbetween 58 and 158N forN96 (red),

N216 (blue), and N512 (green), with solid lines showing the present

climate and dashed lines showing the future climate, and for re-

analyses (black–gray). (bottom) Mean vorticity of the AEWs

shown in (top) using the same color key. The ensemble range is

indicated by the shading.

FIG. 7. Mean zonal wind at 158W and 700 hPa for models and

reanalyses averaged over August–September for 1986–2010, and

theGloSea5 seasonal hindcast set (1996–2009). Note the latitude of

the African easterly jet (minimum of the zonal wind), which shifts

northward with resolution.
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suggests that the large-scale mean state represented by

the different resolution models is quite similar, which

may be expected given the same imposed SST forcing

though the strength of remote teleconnections may

differ. In addition, as noted by Menkes et al. (2012), the

standard deviation of the GPI is also much less than the

observed TC interannual variability (the GPI standard

deviation shown here is around 0.4, while the TC fre-

quency standard deviation is around 2–3 for models and

even higher for reanalyses).

Although TC frequency is reasonably well repre-

sented by the models at higher resolutions, accumulated

cyclone energy (ACE) is a more robust and represen-

tative measure (Bell et al. 2000), accumulating as it does

FIG. 8. (top)NorthAtlantic interannual variability of tropical cyclone frequency for different

model resolutions together with observed hurricanes. The solid line shows the ensemble mean,

while the shading indicates the range. (bottom) North Atlantic interannual variability from

reanalysis datasets (dashed lines), their ensemble mean (blue), and observed hurricanes.

TABLE 2. Pearson correlation of interannual variability of TC frequency from the present climate integrations at different resolutions

with observed hurricane frequency for each basin for the May–November period (NH) and October–May (SH). Shown are the ensemble

mean correlations (with p value), together with individual member correlations. The reanalyses are ERA-Interim, JRA-25, andMERRA

(in that order). Boldface implies significant at the 95% level. All basins but the southern Indian Ocean (SI) basin are noted in the text.

Basin N96 N216 N512 Reanalyses

NA 0.65 (2 3 1024) 0.57, 0.58,

0.47, 0.56, 0.38

0.66 (2 3 1024) 0.55,

0.69, 0.46

0.75 (6 3 1024) 0.67, 0.65,

0.56, 0.56, 0.70

0.9 (1 3 10210) 0.76,

0.88, 0.89

WP 0.71 (5 3 1025) 0.58, 0.57,

0.58, 0.54, 0.51

0.74 (1 3 1025) 0.70,

0.52, 0.62

0.60 (7 3 1025) 0.45, 0.49,

0.54, 0.42, 0.44

0.70 (5 3 1025) 0.65,

0.54, 0.57

EP 0.29 (0.15) 0.35, 0.29, 0.04,

0.30, 0.14

0.47 (0.01) 0.34, 0.47,

0.34

0.33 (0.1) 0.28, 0.34, 0.39,

0.20, 0.21

0.44 (0.02) 0.1, 0.56,

0.26

NI 20.21 (0.3) 0.06, 20.16,

20.34, 20.005, 20.08

20.05 (0.8) 0.08,

20.02, 20.16

20.34 (0.08) 0.31, 20.34,

20.36, 20.44, 20.11

0.32 (0.1) 0.03, 0.39,

0.39

SI 0.01 (0.9) 20.22, 0.03, 0.09,

0.28, 20.13

0.07 (0.7) 20.10,

0.26, 0.0

20.24 (0.23) 20.07, 20.17,

20.34, 20.03, 20.06

0.67 (2 3 1024) 0.46,

0.67, 0.47

AU 0.27 (0.18) 0.57, 20.09,

0.33, 0.12, 20.03

0.07 (0.7) 0.15,

20.15, 0.21

20.02 (0.9) 20.11, 0.12, 20.17,

0.0, 0.12

0.41 (0.04) 0.4, 0.37,

0.18

SP 0.58 (0.002) 0.38, 0.51,

0.38, 0.48, 0.42

0.35 (0.08) 0.49, 0.26,

0.13

0.53 (0.005) 0.33, 0.42, 0.54,

0.53, 0.38

0.71 (7 3 1025) 0.62,

0.66, 0.36
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tropical cyclone frequency over a season and the in-

tensity and lifetime of each storm through integrating

the squared wind speed along each track every 6 h. The

correlations inACE variability for the NA are 0.59, 0.71,

and 0.77 for the N96, N216, and N512 ensembles, re-

spectively, and 0.91 for the reanalyses ensemble in the

NA: hence, very similar to the TC frequency correlation

shown in Table 2. However, this hides the fact that the

meanACE in themodels and reanalyses is much smaller

than observed, typically by 3–10 times. This is due to

a combination of shorter track length when using the

warm-core definition (though in the NA the main cause

is the lack of TC genesis in the easternAtlantic) and very

weak 10-m wind speeds, with the latter being the more

significant. If the model 10-m wind speeds are scaled up

using the observed wind speed–MSLP relationship

(Fig. 2), then the model average ACE is comparable to

that observed (not shown). This suggests that the MSLP

associated with TCs in the model is reasonable and

would lend support to the hypothesis that the modeled

storms tend to be too large in size with a consequent

weakening of the wind speeds: that is, a weaker pressure

gradient.

In addition to the TC frequency, it is also important to

reproduce the spatial distribution, since this can have

important consequences for the TC track and the like-

lihood of landfall (Kossin et al. 2010; Daloz et al. 2015).

If the NA is split into western and eastern regions di-

vided at 608W and TCs are counted by their genesis

point, then the model ensembles have significant cor-

relations of around 0.6 (see Table 4) in the western

Atlantic but smaller (and for N96 not significant) cor-

relations in the eastern Atlantic, though there are

fewer storms here even when using the full length track

rather than just the warm-core part. The reanalyses

generally have a smaller difference between the cor-

relation in the eastern and western Atlantic. The

model correlations remain high as they are weighted by

the greater numbers in the Gulf of Mexico, but this

distribution significantly reduces the frequency of

TABLE 3. The correlation of TC interannual frequency for each

member of the ensemble (M1–M5 for N96–N512 or M1–M3 for

N216)with the ensemblemeanof the othermembers of the ensemble

for all TC regions. Boldface implies significant at the 95% level.

Correlation M1 M2 M3 M4 M5 Mean Median

NA N96 0.65 0.64 0.76 0.66 0.62 0.67 0.65

NA N216 0.69 0.70 0.57 0.65 0.69

NA N512 0.77 0.84 0.66 0.72 0.73 0.74 0.73

WP N96 0.70 0.73 0.63 0.57 0.61 0.65 0.63

WP N216 0.64 0.64 0.63 0.64 0.64

WP N512 0.61 0.60 0.63 0.72 0.57 0.63 0.61

EP N96 0.54 0.56 0.83 0.71 0.51 0.63 0.56

EP N216 0.56 0.63 0.59 0.59 0.59

EP N512 0.74 0.82 0.78 0.76 0.9 0.80 0.78

NI N96 0.19 0.36 20.22 20.02 0.18 0.1 0.18

NI N216 20.02 0.21 0.15 0.34 0.15

NI N512 0.06 0.38 0.22 0.27 0.27 0.24 0.27

SI N96 0.37 0.54 0.22 0.36 0.30 0.36 0.36

SI N216 0.41 0.54 0.61 0.52 0.54

SI N512 0.49 0.33 20.01 0.44 0.39 0.33 0.39

AU N96 0.32 0.37 0.33 0.27 0.36 0.33 0.33

AU N216 0.38 0.32 0.28 0.33 0.32

AU N512 0.31 0.28 0.0 0.21 0.36 0.23 0.28

SP N96 0.65 0.51 0.53 0.58 0.65 0.58 0.58

SP N216 0.68 0.68 0.62 0.66 0.68

SP N512 0.60 0.68 0.77 0.82 0.80 0.73 0.77

FIG. 9. The interannual variability in GPI2010 averaged over July–October for models (solid

colored lines are the ensemble mean for present climate, the dashed lines are for the future

climate, and shadings are the range) and reanalyses (black lines), calculated as a scaled area-

weighted total over the North Atlantic MDR.
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landfall on the eastern coast of the United States (not

shown) and may change the likely model response in

a future climate (see section 3e).

To try and further understand the links between trop-

ical cyclone interannual variability and aspects of climate

variability in the NA, Table 5 shows correlations between

NA TC frequency and other modes of observed climate

variability: the Atlantic meridional mode [AMM; a mea-

sure of meridional tropical SST gradient calculated using

the SST method of Chiang and Vimont (2004) and

Vimont and Kossin (2007, hereafter VM07) averaged

over August–October], the Niño-3.4 index averaged over

August–October, the Atlantic multidecadal oscillation

(AMO), and AEW count as diagnosed previously. As

described in VM07, the AMM acts as a strong constraint

on TC frequency and hence is highly correlated with in-

terannual storm counts in both models and reanalyses.

The AMO, which is also thought to interact with the

AMM (see VM07), is also significantly correlated with

storm counts and is likely to have even higher correlations

over longer time periods (Smith et al. 2010; VM07). El

Niño influences the NA primarily through an increase in

wind shear (Bell et al. 2014, and references therein). The

correlation with Niño-3.4 variability is somewhat stronger

in the N512 ensemble than found in either reanalyses or

observations, while correlation with AEW frequency is

marginally significant at the higher resolutions and several

reanalyses.

To gain insight into some aspects of the complex re-

lationship between TC frequency and individual modes

of climate variability, Fig. 10 shows relationships be-

tween TC frequency and these various modes in-

dividually, as well as between the AMM and the AEW

number, to illustrate the correlations above: each model

symbol denotes an ensemble mean for a given year,

while each reanalysis dataset is shown individually. Al-

though the interannual correlation of TC frequency and

AEWnumber is relatively weak, as discussed previously

there seems to be a relationship between mean AEW

numbers and TC frequency and hence indicating that

AEW activity is an important precursor (Chen et al.

2008; Serra et al. 2010). Overall the increased variance in

TC frequency at higher resolution allows the N512

model to have a wider spread of points, which seems to

bring the fitted lines closer to those from the reanalyses.

To further investigate this relationship from a multi-

variate perspective, multiple linear regression (Wilks

2011) has been attempted to determine which of these

covariates play the most robust roles in the interannual

variability and whether there is any systematic difference

with resolution. Table 6 shows the coefficients fit using an

ordinary least squares model between the TC interannual

frequency (model or reanalyses) and the above indices of

climate variability, together with the coefficient of mul-

tiple determination (R2). Perhaps the most interesting

resolution-dependent aspect is the respective roles of the

AMM and AMO: at N96, the exclusion of the AMM as

a predictor makes no difference to R2 and the AMM

coefficient is not significantly different from zero. In

contrast, for N216, N512, and reanalyses, the AMO co-

efficient is not bounded from zero and R2 is unchanged

when theAMOpredictor is removed. This is undoubtedly

due in part to the covarying of the AMO and AMM,

which are themselves highly correlated at 0.8, but hints at

more response to the AMM at higher resolutions. The

N512 has the most similar covariability of the AMM and

TABLE 4. The TC frequency correlations between PC in-

tegrations and observed hurricane counts in the NA and divided

into those with genesis in the eastern Atlantic (58–408N, 608–308W)

and western Atlantic (58–408N, 1008–608W). The reanalyses order

is as in Table 2. Boldface implies significant at the 95% level.

N96 N216 N512 Reanalyses

NA 0.65 0.63 0.75 0.76, 0.88, 0.89

Eastern NA 0.16 0.45 0.47 0.69, 0.76, 0.67

Western NA 0.67 0.56 0.71 0.74, 0.85, 0.84

TABLE 5. Table of correlations of tropical cyclone frequency from present climate (PC) integrations with different modes of climate

variability in the North Atlantic (using a 5 member ensemble for N96 andN512 and 3 members for N216) for 1985–2011. Boldface implies

significant at the 95% level.

Mode of variability N96 N216 N512 Reanalyses Obs

Atlantic meridional mode 0.73 0.72 0.68 0.65, 0.67, 0.74 0.73

Atlantic multidecadal oscillation 0.69 0.60 0.43 0.40, 0.54, 0.44 0.53

African easterly wave No. 0.19 0.48 0.57 0.41, 0.25, 0.39

Niño-3.4 20.47 20.35 20.67 20.54, 20.46, 20.57 20.52

Model GPI vs model TC frequency 0.88 0.86 0.82 0.64, 0.80, 0.62

Model GPI2010 vs model TC frequency 0.88 0.85 0.86 0.69, 0.80, 0.66

Model GPI vs obs TC frequency 0.77 0.77 0.80 0.39, 0.76, 0.50

Model GPI2010 vs obs TC frequency 0.78 0.79 0.82 0.49, 0.77, 0.56

AMM vs AEW 0.18 0.24 0.41 0.50, 0.55, 0.54

AMO vs AEW 0.1 0.23 0.32 0.52, 0.57, 0.66
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Niño-3.4 coefficients compared to the reanalyses with

similar changes in R2 when each predictor is removed in

turn. The AEW variability seems to play a weak role in

the TC interannual variability, particularly at low

resolution: removing the AEWas a predictor makes little

difference to R2 for N96 and the reanalyses and only

seems to explain an additional 4%–6% of variance at

N216 and N512 (e.g., R2 reducing from 0.5 to 0.46).

FIG. 10. (a) Relationship betweenNATC frequency (x axis) andAEWnumber, where scatter points are ensemble

mean values for each year for different resolution models, together with the three reanalysis datasets. Linear re-

lationships are fitted using least squares. (b) As in (a), but with the Niño-3.4 index. (c) As in (a), but with the AMM

index. (d) As in (a), but with the AMO index. (e) Relationship between AMM index and AEW number. The solid

black line is ERA-Interim, the dashed black line is JRA-25, and the dotted black line MERRA, with lines colored as

their corresponding symbols are.

TABLE 6. The coefficients obtained by multiple linear regression of the model and reanalyses NA TC frequency time series onto AEW

numbers and other climate indices. Each model ensemble and the reanalyses are fit as a continuous one-dimensional (number of years3

ensemble number) time series using an ordinary least squares model. Numbers in parentheses are the 95% confidence limits and co-

efficients in boldface are significantly different from zero. TheR2 is the coefficient of multiple determination with the initial value using all

four predictors; the values in parentheses are for when each predictor in turn is excluded (in the same order as in the table).

Model resolution AEW AMM AMO Niño-3.4 R2

N96 20.01 (20.1, 0.07) 0.17 (20.13, 0.5) 3.86 (1.4, 6.3) 20.70 (21.1, 20.3) 0.4 (0.4, 0.4, 0.36, 0.34)

N216 0.18 (0.06, 0.3) 0.78 (0.3, 1.2) 0.0 (23.7, 3.7) 0.09 (20.6, 0.8) 0.44 (0.38, 0.36, 0.44, 0.44)

N512 0.17 (0.06, 0.3) 0.83 (0.4, 1.3) 21.44 (24.9, 2.0) 21.33 (21.9, 20.7) 0.50 (0.46, 0.45, 0.50, 0.43)

Reanalyses 0.11 (20.1, 0.3) 1.41 (0.6, 2.3) 22.42 (29.4, 4.6) 21.47 (22.6, 20.4) 0.46 (0.45, 0.38, 0.46, 0.41)
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An attempt to visualize the combined four-dimensional

relationship between NATC frequency, the AMM index,

the AEW count, and the Niño-3.4 index in August–

October is shown in a supplementary material figure

(available at the Journals Online website: http://dx.doi.org/

10.1175/JPO-D-14-00131.s1); the first three as axes and the

latter as a color shading, with dark red indicating strongEl

Niño conditions and dark blue indicating strong La Niña

conditions, with the size of the circles scaled by the AMM

index magnitude. This shows that in both models and re-

analyses the AMM index is a strong constraint on TC

activity, with the smallest and largest storm counts co-

inciding with the AMM index extremes (also Fig. 10c).

Niño-3.4 conditions are also important, with the largest TC

counts coinciding with strong La Niña conditions, though

the strongest El Niño events do not necessarily produce

the fewest storms (also seen in Bell et al. 2014); indeed,

if coincident with high AMM index, they can have a rela-

tively high TC activity. Similarly, in years where Niño-3.4

is weak (gray color) it is only at the high resolutions and

the reanalyses that such years can attain stronger TC ac-

tivity (also Fig. 10b), which points to a local forcing factor.

d. TC structure

The composite structure of the strongest 10 tropical

cyclones from each model resolution ensemble is de-

rived at peak intensity during the warm-core phase and

aligned such that their direction of travel is northward,

on a common 108 cylindrical grid. The cross section of

wind speed along the northern axis/direction of travel

from each of these composites is shown in Figs. 11a–c.

As model resolution is increased, the winds get stronger

as expected, with a tighter core (the radius of peak wind

shrinks from about 38 at N96 to about 28 at N512, shown

by the contour) and a more upright structure; however,

Manganello et al. (2012) show that, with a resolution

comparable to N512, their radius of maximum wind is

closer to 0.758 with correspondingly stronger wind

speeds, though this is still considerably larger than some

observational studies such as Stern and Nolan (2009) of

0.58 or less. The relatively large size of the model storms

is also consistent with the 10-mwind–MSLP relationship

shown in Fig. 2; although the MSLP minima can be

relatively deep, the associated wind speeds are much

weaker than observations.

Associated with this wind field is a temperature

anomaly (relative to the mean temperature over a 108

radius), and this is shown in Figs. 11d–f. The peak tem-

perature anomaly occurs at between 200 and 300 hPa in

all model resolutions, though the maximum increases

from 4 to 7.5K betweenN96 andN512, while the surface

to peak anomaly is about 3K at N96 and 5K at N512.

This is significantly smaller than, for example, that

shown in models by Hill and Lackmann (2011) and

Manganello et al. (2012) and in observations by Frank

(1977), even when the anomaly is taken over the same

radius (not shown), and may indicate why the tropical

cyclones in the model are weak at all resolutions: one

possibility is that the convective parameterization does

not have its maximum heating at the correct height,

which may limit the intensification of the storm. Further

work is ongoing to understand the reasons for this.

e. Future climate results

The FC forcing is a strong perturbation to the PC

using an RCP8.5 scenario at year 2100 from one IPCC

AR5 model (HadGEM2-ES). It is also somewhat of

a hybrid given that some aspects of the forcing, including

aerosols and the baseline SST interannual cycle, remain

the same as in the PC ensemble, while the greenhouse

gases, DSST, and sea ice have been changed. Recent

work in particular suggests that aerosol forcing plays an

important role in TC climatology and variability (Booth

et al. 2012; Dunstone et al. 2013), both directly via ra-

diation and indirectly via their forcing of the SSTs. Re-

gional TC changes are also sensitive to the pattern of

SST change (Sugi et al. 2009), and this pattern is shown

for June–August in Mizielinski et al. (2014).

The seasonal cycle for the FC integrations (Fig. 5)

generally has a much lower amplitude in the NA and the

whole SH, with a slightly enhanced amplitude in the NI.

The NA andWP seem to have a slightly delayed peak in

the cycle, the former consistent with the shift in the

AEW seasonal cycle (Fig. 6) and with projected changes

in SST as in Dwyer et al. (2012).

The change in track density distribution between FC

and PC is shown in Fig. 12 for each model resolution.

The main changes are broadly consistent with those

found byMurakami et al. (2012a), with reductions in TC

tracks in the western NA, WP and throughout the SH,

and a large increase in the CP. The most noticeable

difference between the resolutions is the reduction in

the eastern NA particularly at N512, because of the

lower resolutions having so few TCs here in the PC that

little or no reduction is possible in the FC.

Some of these changes in track density are consistent

with the change inGPI (Emanuel 2010) between FC and

PC, as shown in Fig. 13, particularly in the CP and

western NA/Gulf of Mexico. Examination of the rela-

tive change in the individual terms of the GPI (not

shown) suggests that changes to wind shear play a dom-

inant role here, with the terms involving relative vor-

ticity and potential intensity also contributing (the latter

particularly in the EP/CP likely because of SST in-

creases), while the moist static energy ratio term gen-

erally declines. The NA TC change does not seem to be
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due to basic AEW properties, as these are similar or

slightly more intense in the FC, as shown in Fig. 6, and

have a slight shift to later in the season. The interannual

variability of GPI in the NA is somewhat reduced, mainly

in the later years of the simulation (Fig. 9). Since a dis-

proportionate amount of TC genesis in the models is

concentrated in the western NA region in the PC ensem-

ble, the reduction in the FC is likely stronger than would

be the case in a model with a better genesis distribution.

There are also regions where the GPI changes and

track density differences do not agree. The NA has

a strongGPI increase farther north, in a similar region to

that shown in Emanuel (2013), suggesting a more ame-

nable TC genesis environment. However, there is no

evidence of an increase in explicit tracks (indeed a de-

crease at N512), suggesting that either there are no

precursor vorticity structures to help genesis to occur or

that the model resolutions are not sufficient to ade-

quately represent TCs in this region. The far west of the

WP also indicates opposite trends fromGPI and tracked

storms at all resolutions, with theGPI increase primarily

due to the potential intensity term, with a smaller

FIG. 11. (a)–(c) Cross section of wind speed on pressure levels from the composite of the 10 strongest storms at each resolution, mapped

onto a 108 spherical cap, taken from the storm center through the axis of direction of travel of the storm. The 1000-hPa level is the 10-m

wind speed,with scale in meters per second. (d)–(f) Cross section of composite temperature anomaly on pressure levels over the same 108

cap, otherwise as in (a)–(c), with scale in kelvin.
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contribution from the wind shear. Broadly, the SH has

similar trends inGPI and track density, with weaker SST

warming than in the NH and generally small or negative

changes to GPI components.

Figure 14 (top) shows the percentage change in

average TC frequency between the FC and PC in-

tegrations, where the changes in the CP are 200%–250%

but based on low frequency in the present climate (see

Fig. 3). The total decrease, of around 20% at all reso-

lutions, is dominated by a strong 50%decrease in the SH

(as seen in Fig. 14) and a much smaller (to insignificant

at higher resolution) decrease in the NH (also seen in

Gleixner et al. 2014). There is a strong decrease in the

NA, while the Pacific shows a TC track shift with slightly

fewer at the edges of the basin and a big increase in the

CP, as also found in Li et al. (2010) and Murakami et al.

(2012b). The NI and SA are the only places where the

different model resolutions disagree on the sign of fre-

quency change, but these are relatively small in magni-

tude (and note caution about the NI simulation

FIG. 12. Change in tropical cyclone track density (storm transits per month per unit area

equivalent to a 48 spherical cap) between the future climate and present climate integrations for

the whole 1986–2010 period and for the whole ensemble at each model resolution: (top)–

(bottom) N96, N216, and N512.
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discussed earlier). Otherwise, there is no strong resolu-

tion sensitivity, with particularly the N216 and N512

results agreeing closely, which may be partly due to all

models using the same SST forcing and hence being

strongly constrained.

Although the TCs simulated by the model are rather

weak in terms of 10-m wind speed, the change in in-

tensity in the FC compared to PC, shown in Fig. 14

(bottom), shows the shift to higher intensities also seen

in many previous studies (Zhao et al. 2009; Murakami

et al. 2012b; Rathmann et al. 2013; Bell et al. 2013). This

shift is more pronounced at N216 and N512 resolutions,

with between 5% and 10% decrease in the weakest

storms and small increases at higher intensities.

However, these results should be treated with caution,

given the prescribed, patterned future SST used here

and the lack of coupling to the ocean, which can have

important effects (Bell et al. 2013).

Since the FC SST forcing consists of the addition of

a repeating annual cycle, one might expect that the NA

interannual variability of TCs in the FCwould be similar

to the present climate but with the frequency modified

by the change in mean state. This is found to be true

when considering the correlations of the FC GPI with

the observed TC frequency (0.71, 0.72, and 0.78 for N96,

N216, and N512, respectively), which is just slightly

lower than the PC GPI correlations with observed TCs

(0.77, 0.77, and 0.8 from Table 5). This is obvious given

FIG. 13. Change in GPI2010 between the future climate and present climate integrations for

the whole 1986–2010 period and for the whole ensemble at each model resolution, where the

Northern Hemisphere uses the July–October mean and the Southern Hemisphere uses the

December–February mean: (top)–(bottom) N96, N216, and N512.
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the similarity in GPI for PC and FC (Fig. 9), which

correlate at about 0.9 between themselves. As found

previously, this confirms that the GPI is a good measure

of relative normalized TC frequency in PC and indeed at

the lower resolutions may be a better measure than the

tracked TCs (Walsh et al. 2013). However, the correla-

tion between explicitly tracked TCs in the FC and PC

integrations is much less than 0.9, being 0.43, 0.51, and

0.66 forN96, N216, andN512, respectively. This suggests

that there may be other factors that change the TC

frequency in the FC that are not accounted for by the

GPI. Examining the correlation between the GPI and

explicit TC frequency in the FC (0.7, 0.8, and 0.82) and

PC (0.88, 0.86, and 0.82) reinforces this result that the

lower-resolution models have reduced correspondence

between GPI and explicitly tracked TCs in the future

climate.

4. Conclusions

This work has described the results from an ensemble

of forced atmospheric model integrations at resolutions

of 130, 60, and 25 km, using both present climate and an

end-of-century future climate forcing. It has shown that,

as model resolution is increased in a controlled and

systematic way, the representation of tropical cyclones

improves in terms of their climatology, frequency, sea-

sonal cycle, and structure so that at 25-km resolution the

model replicates many aspects of the observed clima-

tology. The interannual variability in the North Atlantic

and northwestern Pacific is in good agreement with the

observed hurricane frequency with correlations of be-

tween 0.6 and 0.75, with realistic teleconnections with

modes of climate variability such as the El Niño–

Southern Oscillation.

The main biases in the models involve genesis regions

and storm intensity. There is a deficit in tropical cyclone

genesis in the eastern Atlantic, which is reduced at the

highest model resolution, and this seems to be associ-

ated with the properties of the African easterly waves

and African easterly jet. Conversely, there is an excess

in tropical cyclones in the eastern and central Pacific,

a bias also seen in other models (Bengtsson et al. 2007a),

which may be due to a combination of factors including

an increase in vorticity sources at higher resolution.

Such biases can have important consequences for

whether the storms make landfall, which is of great im-

portance for future impacts studies and risk assessment.

The intensity of themodeled tropical cyclones is weak as

measured by 10-m wind speed, and even at 25-km res-

olution it only achieves category 1 status, whereas the

minimum mean sea level pressure can reach 940 hPa:

this is likely due to the storms remaining relatively large

in size. The cause of this bias continues to be in-

vestigated: recent dynamical core improvements to the

MetUM (Wood et al. 2014) have allowed further deep-

ening of the TC MSLP minima but have only slightly

increased the wind speeds.

The weakness of simulated TC intensity, even though

the frequency is well represented in the present climate,

is a particular problem when investigating projections of

future changes in TC climatology, given the general con-

sensus of increases in the intensity of the strongest storms

(Zhao et al. 2009; Murakami et al. 2012b; Rathmann et al.

2013; Bell et al. 2013). An idealized strong climate

change forcing using RCP8.5 shows a general reduction

in TC frequency (particularly in the Southern Hemi-

sphere and North Atlantic), with a shift in tracks in the

Pacific from the basin edges to the central Pacific, such

that many more occur near Hawaii (as seen in Murakami

et al. 2012b). The reduction in the Atlantic seems to be

due to aspects of the mean state such as increased wind

shear, particularly in the Gulf of Mexico, since other

precursor factors such as AEWs are mostly unchanged,

though the seasonal cycle does peak later in the year.

FIG. 14. (top) Percentage change in tropical cyclone frequency in

each basin between the future climate and present climate in-

tegrations. The error bars denote the combined interannual vari-

ability. (bottom) Normalized change in TC intensity category (as

measured by minimum MSLP; Catp) between the future climate

and present climate integrations for each model resolution.
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The relative frequency of weaker storms decreases while

the strongest storms increase.

5. Discussion

Further study of different tracking methods and

identification criteria is required and being done as part

of the U.S. Climate Variability and Predictability Re-

search Program (CLIVAR) Hurricane Working Group

(HWG; http://www.usclivar.org/working-groups/hurricane;

Walsh et al. 2013; Horn et al. 2015) since there continue

to be uncertainties related to the details of these

methods. There are a variety of tracking methods for

explicitly simulated storms in climate models, although

the typical model resolution used, for example, in the

long CMIP5 integrations is rather low (on average about

1.58; IPCC AR5) to reliably contain the whole spectrum

of TC intensities. Walsh et al. (2013) showed that lower-

resolution models represent large-scale indices such as

GPI better than storm structures explicitly. There are

downscaling and seeding methods (Knutson et al. 2013;

Emanuel et al. 2010) that allow explicit simulation of the

storm structures, with much higher intensities being

captured, but there are issues with the large-scale forc-

ing of such models to make it consistent with the global

model, as well as seeding rates and lack of feedback of

the idealized TC on the environment. There are

methods for assessing the TC climatology from the

large-scale environment (Camargo 2013; Tory et al.

2013b), but as shown here this does not produce relative

changes between model resolutions and often gives an

opposite signed response under climate change forcing

than does explicitly tracking the storms (Emanuel 2013),

as seen in this study, particularly in the NA. The gradual

increase in resolution possible for global, long-term

climate integrations may eventually help to unpick this

issue, but together with the need for ensembles of in-

tegrations this is expensive (Manganello et al. 2012;

Mizielinski et al. 2014), both computationally and ana-

lytically.

An understanding of the observed TC genesis regions

and the precursors for formation also continues to be

important to enable closer comparison withmodels. The

tracking algorithms can trace the source vorticity

structure back a long way; in particular for storms that

strengthen in the EP, the source vorticity in models is

often in the Atlantic (Serra et al. 2010). Using satellite

imagery to discover whether this also happens in the real

world, as done in case studies by Serra et al. (2010) and

Rappaport andMayfield (1992), could then help improve

understanding of these genesis precursors. Further de-

velopment of high-resolution reanalysis datasets, perhaps

with data assimilationmethods such as that used in JRA-25

to enhance the winds around TCs (only for those of TS

strength and above), would also help both to test

tracking algorithms and to give further insight into the

genesis, evolution, and decay of tropical cyclones.

From this work it is difficult to say very much about

TC intensity changes in the future since the model

storms are relatively weak, only up to category 3 and

even then only based onmean sea level pressure criteria.

Small improvements have been achieved with some

enhancement to model dynamics, but the surface winds

are significantly weaker than those found in other

models of similar resolution. However, it is unclear

whether models at this resolution, using parameteriza-

tions of convection, can properly represent the processes

found in tropical cyclones and hence represent the in-

tensity for the right reasons.

More work is needed to understand model biases in

the eastern Atlantic, where TC genesis is low, both be-

cause the genesis region has an important influence on

TC tracks and potential landfall and because projections

in TC changes in a FC state will have the wrong sensi-

tivity. Ongoing comparison with the coupled seasonal

forecast model GloSea5 (Camp et al. 2014, manuscript

submitted to Quart. J. Roy. Meteor. Soc.), which shares

the same atmospheric component but has different TC

biases, may be valuable here, as might further in-

vestigation of differences between models at high reso-

lution such as in Shaevitz et al. (2015). There are strong

indications that African easterly waves play an impor-

tant role and that their representation is sensitive to both

model resolution and potentially to coupling or initiali-

zation. It may be that regional models, in which the

AEW properties could be controlled/modified as part of

the lateral boundary condition, are particularly useful to

understand further the influence on tropical cyclone

formation.

Although there is no evidence of convergence of TC

frequency with resolution in this study, particularly in

the North Atlantic, more recent work using MetUM

global models with resolutions up to 12 km suggests that

there is little further increase in global TC frequencies

using the same tracking algorithm but a redistribution in

intensities with fewer of the weakest storms being re-

tained. If this could be confirmed and also found in other

models, it would be a strong place from which to in-

vestigate and understand why the observed global TC

frequency stays within a relatively narrow range.
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