COMPOSITIO MATHEMATICA

Tropical fans and the moduli spaces of tropical curves

Andreas Gathmann, Michael Kerber and Hannah Markwig

Compositio Math. 145 (2009), 173-195.

Tropical fans and the moduli spaces of tropical curves

Andreas Gathmann, Michael Kerber and Hannah Markwig

Abstract

We give a rigorous definition of tropical fans (the 'local building blocks for tropical varieties') and their morphisms. For a morphism of tropical fans of the same dimension we show that the number of inverse images (counted with suitable tropical multiplicities) of a point in the target does not depend on the chosen point; a statement that can be viewed as one of the important first steps of tropical intersection theory. As an application we consider the moduli spaces of rational tropical curves (both abstract and in some \mathbb{R}^{r}) together with the evaluation and forgetful morphisms. Using our results this gives new, easy and unified proofs of various tropical independence statements, e.g. of the fact that the numbers of rational tropical curves (in any \mathbb{R}^{r}) through given points are independent of the points.

1. Introduction

Tropical geometry has been used recently for many applications in enumerative geometry, both to reprove previously known results (e.g. the Caporaso-Harris formula [GM07] and Kontsevich's formula [GM08] for plane curves) and to find new methods for counting curves (e.g. Mikhalkin's lattice path algorithm [Mik05]). All of these applications involve counting curves with certain conditions, and at some point require an argument why the resulting numbers remain invariant under deformations of the conditions, for example, why the numbers of tropical plane rational curves of degree d through $3 d-1$ points do not depend on the chosen points (when counted with the appropriate tropical multiplicities).

In classical algebraic geometry, the corresponding independence statements simply follow from the fact that the enumerative numbers can be interpreted as intersection numbers of cycles on suitable moduli spaces, and that intersection numbers are always invariant under deformations. Tropically, however, there is no well-established intersection theory at present, and thus so far it was necessary to find alternative proofs of the independence statements in each case: either by tedious $a d-h o c$ computations (as, e.g., in [GM08]) or by relating the tropical numbers to classical numbers for which the invariance is known (as, e.g., in [Mik05]).

The goal of our paper is to fill this gap by establishing the very basics of a 'tropical intersection theory' up to the point needed so that at least some of the above independence statements follow from general principles of this theory, just as in classical algebraic geometry.

[^0]
A. Gathmann, M. Kerber and H. Markwig

To do so we start in $\S 2$ by giving a rigorous definition of the notion of tropical fans (roughly speaking tropical varieties in some vector space all of whose cells are cones with apex at the origin, i.e. a 'local picture' of a general tropical variety), morphisms between them and the image fan of a morphism. Our most important result in this section is Corollary 2.26 which states that for a morphism of tropical fans of the same dimension, with the target being irreducible, the sum of the multiplicities of the inverse images of a general point P in the target is independent of the choice of P. In $\S 3$ we establish the moduli spaces of abstract n-marked rational tropical curves as tropical fans, and show that the forgetful maps between them are morphisms of fans. We then use these results in $\S 4$ to construct tropical analogues of the spaces of rational stable maps to a toric variety. Again, these spaces will be tropical fans, with the evaluation and forgetful maps being morphisms of fans. Finally, in $\S 5$ we present two examples of our results by giving new, easy and generalized proofs of two statements in tropical enumerative geometry that have already occurred earlier in the literature: the statement that the numbers of rational tropical curves in some \mathbb{R}^{r} of given degree and through fixed affine linear subspaces in general position do not depend on the position of the subspaces, and the statement that the degree of the combined evaluation and forgetful map occurring in the proof of the tropical Kontsevich formula is independent of the choice of the points (see [GM08, Proposition 4.4]). Whereas earlier tropical proofs of these statements have been very complicated, our new proofs are now just easy applications of our general statement in Corollary 2.26.

We believe that our work results not only in a better understanding of the moduli spaces of tropical curves, but also of tropical varieties and their intersection-theoretical properties in general (see [Mik06]). Subsequent work on a tropical intersection theory building up on the principles of this paper is in progress.

We should mention that a theorem very similar to our Corollary 2.26 has recently been proved independently by Sturmfels and Tevelev (see [ST08, Theorem 1.1]). In their paper the authors restrict to tropical fans that are tropicalizations of algebraic varieties (note that these objects are just called 'tropicalizations' in their work, whereas their term 'tropical fan' has a meaning different from ours). As a result, they are able to not only prove the independence statement of our Corollary 2.26 but also to show that this invariant is equal to the degree of the corresponding morphism of algebraic varieties. On the other hand, our result is of course applicable in more generality as it does not need the (rather strong) requirement on the tropical fans to be tropicalizations of algebraic varieties. Another consequence of the different point of view in [ST08] compared with our work is that the proofs are entirely different: whereas Sturmfels and Tevelev prove their Theorem 1.1 by relating the tropical set-up to the algebraic set-up, our proof of Corollary 2.26 is entirely combinatorial and does not use any algebraic geometry.

2. Tropical fans

Throughout this section Λ denotes a finitely generated free abelian group (i.e. a group isomorphic to \mathbb{Z}^{N} for some $N \geq 0$) and $V:=\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$ the corresponding real vector space, so that Λ can be considered as a lattice in V. The dual lattice in the dual vector space V^{\vee} is denoted by Λ^{\vee}.

Definition 2.1 (Cones). A cone is a subset $\sigma \subset V$ given by finitely many linear integral equalities and (non-strict) inequalities, i.e. a set of the form

$$
\begin{equation*}
\sigma=\left\{x \in V ; f_{i}(x)=0 \text { for all } i=1, \ldots, n \text { and } g_{j}(x) \geq 0 \text { for all } j=1, \ldots, m\right\} \tag{*}
\end{equation*}
$$

for some $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{m} \in \Lambda^{\vee} \subset V^{\vee}$. We denote by $V_{\sigma} \subset V$ the smallest vector subspace of V that contains σ, and by $\Lambda_{\sigma}:=V_{\sigma} \cap \Lambda \subset \Lambda$ the smallest sublattice of Λ that contains $\sigma \cap \Lambda$. The dimension of σ is defined to be $\operatorname{dim} \sigma:=\operatorname{dim} V_{\sigma}$.

Let σ be a cone in V. A cone $\tau \subset \sigma$ that can be obtained from σ by changing some (maybe none) of the inequalities $g_{j}(x) \geq 0$ in $(*)$ to equalities $g_{j}(x)=0$ is called a face of σ. We write this as $\tau \leq \sigma$ (or as $\tau<\sigma$ if in addition $\tau \subsetneq \sigma$). We obviously have $V_{\tau} \subset V_{\sigma}$ and $\Lambda_{\tau} \subset \Lambda_{\sigma}$ in this case.

Remark and Definition 2.2. It is well known that a cone can be described equivalently as a subset of V that can be written as

$$
\sigma=\left\{\lambda_{1} u_{1}+\cdots+\lambda_{n} u_{n} ; \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}_{\geq 0}\right\}
$$

for some integral vectors $u_{1}, \ldots, u_{n} \in \Lambda$. In this case we say that the cone σ is generated by u_{1}, \ldots, u_{n}. A cone is called an edge if it can be generated by one vector, and simplicial if it can be generated by $\operatorname{dim} \sigma$ vectors (that are then necessarily linearly independent).

If σ is generated by $u_{1}, \ldots, u_{n} \in \Lambda$, then each face of σ can be generated by a suitable subset of $\left\{u_{1}, \ldots, u_{n}\right\}$. In fact, if σ is simplicial, then there is a one-to-one correspondence between faces of σ and subsets of $\left\{u_{1}, \ldots, u_{n}\right\}$. In particular, such a simplicial cone has among its faces exactly n edges, namely $\mathbb{R}_{\geq 0} \cdot u_{1}, \ldots, \mathbb{R}_{\geq 0} \cdot u_{n}$.

Construction 2.3 (Normal vectors). Let $\tau<\sigma$ be cones in V with $\operatorname{dim} \tau=\operatorname{dim} \sigma-1$. By definition, there is a linear form $g \in \Lambda^{\vee}$ that is zero on τ, non-negative on σ and not identically zero on σ. Then g induces an isomorphism $V_{\sigma} / V_{\tau} \rightarrow \mathbb{R}$ that is non-negative and not identically zero on σ / V_{τ}, showing that the cone σ / V_{τ} lies in a unique half-space of $V_{\sigma} / V_{\tau} \cong \mathbb{R}$. As, moreover, $\Lambda_{\sigma} / \Lambda_{\tau} \subset V_{\sigma} / V_{\tau}$ is isomorphic to \mathbb{Z} there is a unique generator of $\Lambda_{\sigma} / \Lambda_{\tau}$ lying in this half-space. We denote it by $u_{\sigma / \tau} \in \Lambda_{\sigma} / \Lambda_{\tau}$ and call it the (primitive) normal vector of σ relative to τ.

Definition 2.4 (Fans). A fan X in V is a finite set of cones in V such that:
(i) all faces of the cones in X are also in X; and
(ii) the intersection of any two cones in X is a face of each (and, hence, by (i) also in X).

The set of all k-dimensional cones of X will be denoted by $X^{(k)}$. The biggest dimension of a cone in X is called the dimension $\operatorname{dim} X$ of X; we say that X is pure-dimensional if each inclusionmaximal cone in X has this dimension. A fan is called simplicial if all of its cones are simplicial. The union of all cones in X will be denoted by $|X| \subset V$.

Example 2.5.
(i) In contrast to the fans considered in toric geometry we do not require our cones to be strictly convex, i.e. a cone might contain a straight line through the origin. So e.g. $\{V\}$ is a fan in our sense with only one cone (that has no faces except itself). By abuse of notation, we denote it simply by V.
(ii) For $f \in \Lambda^{\vee} \backslash\{0\}$ the three cones

$$
\{x \in V ; f(x)=0\}, \quad\{x \in V ; f(x) \geq 0\}, \quad\{x \in V ; f(x) \leq 0\}
$$

form a fan. We call it the half-space fan H_{f}.

A. Gathmann, M. Kerber and H. Markwig

(iii) Let $\Lambda=\mathbb{Z}^{n}$ (and, thus, $V=\mathbb{R}^{n}$), let u_{1}, \ldots, u_{n} be a basis of Λ, and set $u_{0}:=-u_{1}-\cdots-u_{n}$. For each subset $I \subsetneq\{0, \ldots, n\}$ we denote by σ_{I} the simplicial cone of dimension $|I|$ in V spanned by the vectors u_{i} for $i \in I$. Now fix an integer $k \in\{0, \ldots, n\}$ and let L_{k}^{n} be the set of all cones σ_{I} for $|I| \leq k$. Then the conditions of Definition 2.4 are satisfied since the faces of σ_{I} are precisely the σ_{J} with $J \subset I$ by Remark 2.2 and, moreover, we have $\sigma_{I_{1}} \cap \sigma_{I_{2}}=\sigma_{I_{1} \cap I_{2}}$ for all $I_{1}, I_{2} \subsetneq\{0, \ldots, n\}$. Hence, L_{k}^{n} is a fan. It is clearly of pure dimension k. For $n=2$ we obtain the following diagram:

where L_{0}^{2} is just the origin, L_{1}^{2} is the 'tropical line' given by the origin together with the three edges spanned by u_{0}, u_{1}, u_{2} and $\left|L_{2}^{2}\right|=\mathbb{R}^{2}$.
(iv) If X and X^{\prime} are two fans in $V=\Lambda \otimes \mathbb{R}$ and $V^{\prime}=\Lambda^{\prime} \otimes \mathbb{R}$, respectively, it is checked immediately that their product $\left\{\sigma \times \sigma^{\prime} ; \sigma \in X, \sigma^{\prime} \in X^{\prime}\right\}$ is a fan in $V \times V^{\prime}$. We call it the product of the two fans and denote it by $X \times X^{\prime}$. We obviously have $\left|X \times X^{\prime}\right|=|X| \times\left|X^{\prime}\right|$.
(v) In the same way, if X and X^{\prime} are two fans in V it is checked immediately that their intersection $\left\{\sigma \cap \sigma^{\prime} ; \sigma \in X, \sigma^{\prime} \in X^{\prime}\right\}$ is also a fan in V. We call it the intersection of the two fans and denote it by $X \cap X^{\prime}$. It is clear that $\left|X \cap X^{\prime}\right|=|X| \cap\left|X^{\prime}\right|$.

Definition 2.6 (Subfans). Let X be a fan in V. A fan Y in V is called a subfan of X (denoted by $Y \subset X)$ if each cone of Y is contained in a cone of X. In this case we denote by $C_{Y, X}: Y \rightarrow X$ the map that sends a cone $\sigma \in Y$ to the (unique) inclusion-minimal cone of X that contains σ. Note that for a subfan $Y \subset X$ we obviously have $|Y| \subset|X|$ and $\operatorname{dim} C_{Y, X}(\sigma) \geq \operatorname{dim} \sigma$ for all $\sigma \in Y$.
Example 2.7. The intersection of two fans as in Example 2.5(v) is clearly a subfan of both.
Definition 2.8 (Weighted and tropical fans). A weighted fan in V is a pair $\left(X, \omega_{X}\right)$ where X is a fan of some pure dimension n in V, and $\omega_{X}: X^{(n)} \rightarrow \mathbb{Z}_{>0}$ is a map. We call $\omega_{X}(\sigma)$ the weight of the cone $\sigma \in X^{(n)}$ and write it simply as $\omega(\sigma)$ if no confusion can result. Also, by abuse of notation we write a weighted fan $\left(X, \omega_{X}\right)$ simply as X if the weight function ω_{X} is clear from the context.

A tropical fan in V is a weighted fan $\left(X, \omega_{X}\right)$ in V such that for all $\tau \in X^{(\operatorname{dim} X-1)}$ the balancing condition

$$
\sum_{\sigma>\tau} \omega_{X}(\sigma) \cdot u_{\sigma / \tau}=0 \quad\left(\text { in } V / V_{\tau}\right)
$$

holds (where $u_{\sigma / \tau}$ denotes the primitive normal vector of Construction 2.3).
Example 2.9.
(i) Of course, the fan V of Example 2.5(i) with the weight function $\omega(V):=1$ is a tropical fan (the balancing condition being trivial in this case). The half-space fans H_{f} of Example 2.5(ii) are tropical fans as well if we define the weight of both maximal cones to be one: the balancing condition around the cone $\{x \in V ; f(x)=0\}$ holds because the primitive normal vectors of the two adjacent maximal cones are negatives of each other. We see in Example 2.15 that the fans L_{k}^{n} of Example 2.5(iii) are also tropical fans if the weights of all maximal cones are defined to be one.
(ii) Let $\left(X, \omega_{X}\right)$ be a weighted fan of dimension n, and let $\lambda \in \mathbb{Q}>_{>0}$ such that $\lambda \omega_{X}(\sigma) \in \mathbb{Z}_{>0}$ for all $\sigma \in X^{(n)}$. Then $\left(X, \lambda \cdot \omega_{X}\right)$ is a weighted fan as well; we denote it by $\lambda \cdot X$. It is obvious that $\lambda \cdot X$ is tropical if and only if X is.
(iii) Let $\left(X, \omega_{X}\right)$ and $\left(X^{\prime}, \omega_{X^{\prime}}\right)$ be two weighted fans of dimensions n and n^{\prime} in $V=\Lambda \otimes \mathbb{R}$ and $V^{\prime}=\Lambda^{\prime} \otimes \mathbb{R}$, respectively. We consider their product $X \times X^{\prime}$ of Example 2.5(iv) to be a weighted fan by setting $\omega_{X \times X^{\prime}}\left(\sigma \times \sigma^{\prime}\right):=\omega_{X}(\sigma) \cdot \omega_{X^{\prime}}\left(\sigma^{\prime}\right)$ for $\sigma \in X^{(n)}$ and $\sigma^{\prime} \in$ $X^{\prime\left(n^{\prime}\right)}$. If, moreover, $\left(X, \omega_{X}\right)$ and ($\left.X^{\prime}, \omega_{X^{\prime}}\right)$ are tropical, then so is $X \times X^{\prime}$: the cones in $\left(X \times X^{\prime}\right)^{\left(n+n^{\prime}-1\right)}$ are of the form $\sigma \times \sigma^{\prime}$ for $\sigma \in X^{(n-1)}, \sigma^{\prime} \in X^{\prime\left(n^{\prime}\right)}$ or $\sigma \in X^{(n)}$, $\sigma^{\prime} \in X^{\prime\left(n^{\prime}-1\right)}$, and the balancing conditions in these cases are easily seen to be induced from those of X and X^{\prime}, respectively.

Definition 2.10 (Refinements). Let $\left(X, \omega_{X}\right)$ and $\left(Y, \omega_{Y}\right)$ be weighted fans in V. We say that $\left(Y, \omega_{Y}\right)$ is a refinement of $\left(X, \omega_{X}\right)$ if:
$-Y \subset X ;$
$-|Y|=|X|$ (so, in particular, $\operatorname{dim} Y=\operatorname{dim} X$); and

- $\omega_{Y}(\sigma)=\omega_{X}\left(C_{Y, X}(\sigma)\right)$ for all maximal cones $\sigma \in Y$ (where $C_{Y, X}$ is as in Definition 2.6).

We say that the two weighted fans $\left(X, \omega_{X}\right)$ and $\left(Y, \omega_{Y}\right)$ are equivalent (written $\left(X, \omega_{X}\right)$ $\left.\cong\left(Y, \omega_{Y}\right)\right)$ if they have a common refinement.
Example 2.11.
(i) The half-space fans H_{f} of Example 2.5(ii) are all refinements of the trivial fan V of Example 2.5(i) (with the weights all one as in Example 2.9(i)).
(ii) Let $\left(X, \omega_{X}\right)$ be a weighted fan in V, and let Y be any fan in V with $|Y| \supset|X|$. Then the intersection $X \cap Y$ (see Examples 2.5(v) and 2.7) is a refinement of (X, ω_{X}) by setting $\omega_{X \cap Y}(\sigma):=\omega_{X}\left(C_{X \cap Y, X}(\sigma)\right)$ for all maximal cones $\sigma \in X \cap Y$. In fact, this construction will be our main source for refinements in this paper.
Note that in the special case when $\left(X, \omega_{X}\right)$ and $\left(Y, \omega_{Y}\right)$ are both weighted fans and $|Y|=|X|$ we can form both intersections $X \cap Y$ and $Y \cap X$. The underlying non-weighted fans of these two intersections are of course always the same, but the weights may differ as they are, by construction, always induced by the first fan.
(iii) The equivalence of weighted fans is in fact an equivalence relation: if $X_{1} \cong X_{2}$ with common refinement Y_{1} and $X_{2} \cong X_{3}$ with common refinement Y_{2}, then $Y_{1} \cap Y_{2}$ as in (ii) is a common refinement of X_{1} and X_{3} (note that $Y_{1} \cap Y_{2}=Y_{2} \cap Y_{1}$ in this case as both Y_{1} and Y_{2} are refinements of X_{2}).
(iv) Let $\left(Y, \omega_{Y}\right)$ be a refinement of a weighted fan $\left(X, \omega_{X}\right)$ of dimension n. We claim that $\left(Y, \omega_{Y}\right)$ is tropical if and only if $\left(X, \omega_{X}\right)$ is. In fact, for $\tau \in Y^{(n-1)}$ we have the following two cases.
$-\operatorname{dim} C_{Y, X}(\tau)=n$: Then the n-dimensional cones in Y that have τ as a face must be contained in $C_{Y, X}(\tau)$. It follows that there are exactly two of them, with opposite normal vectors and the same weight (equal to $\omega_{X}\left(C_{Y, X}(\tau)\right)$). In particular, the balancing condition for Y always holds at such cones.
$-\operatorname{dim} C_{Y, X}(\tau)=n-1$: Then the map $\sigma \mapsto C_{Y, X}(\sigma)$ gives a one-to-one correspondence between cones $\sigma \in Y^{(n)}$ with $\sigma>\tau$ and cones $\sigma^{\prime} \in X^{(n)}$ with $\sigma^{\prime}>C_{Y, X}(\tau)$. As this correspondence preserves weights and normal vectors the balancing condition for Y at τ is equivalent to that for X at $C_{Y, X}(\tau)$. As each ($n-1$)-dimensional cone of X occurs as $C_{Y, X}(\tau)$ for some $\tau \in Y^{(n-1)}$ this means that the balancing conditions for X and Y are equivalent.
Consequently, the notion of weighted fans being tropical is well defined on equivalence classes.

A. Gathmann, M. Kerber and H. Markwig

Definition 2.12 (Marked fans). A marked fan in V is a pure-dimensional simplicial fan X in V together with the data of vectors $v_{\sigma} \in(\sigma \backslash\{0\}) \cap \Lambda$ for all $\sigma \in X^{(1)}$ (i.e. v_{σ} is an integral vector generating the edge σ).

Construction 2.13. Let X be a marked fan of dimension n.
(i) Let $\sigma \in X^{(k)}$ be a k-dimensional cone in X. As σ is simplicial by assumption we know by Remark 2.2 that there are exactly k edges $\sigma_{1}, \ldots, \sigma_{k} \in X^{(1)}$ that are faces of σ, and that the vectors $v_{\sigma_{1}}, \ldots, v_{\sigma_{k}}$ generating these edges are linearly independent. Hence,

$$
\tilde{\Lambda}_{\sigma}:=\mathbb{Z} v_{\sigma_{1}}+\cdots+\mathbb{Z} v_{\sigma_{k}}
$$

is a sublattice of Λ_{σ} of full rank and, consequently, $\Lambda_{\sigma} / \tilde{\Lambda}_{\sigma}$ is a finite abelian group. We set $\omega(\sigma):=\left|\Lambda_{\sigma} / \tilde{\Lambda}_{\sigma}\right| \in \mathbb{Z}_{>0}$. In particular, this makes the marked fan X into a weighted fan. In this paper marked fans are always considered as weighted fans in this way.
(ii) Let $\sigma \in X^{(k)}$ and $\tau \in X^{(k-1)}$ with $\sigma>\tau$. As in (i) there are then exactly $k-1$ edges in $X^{(1)}$ that are faces of τ, and k edges that are faces of σ. There is therefore exactly one edge $\sigma^{\prime} \in X^{(1)}$ that is a face of σ but not of τ. The corresponding vector $v_{\sigma^{\prime}}$ will be denoted $v_{\sigma / \tau} \in \Lambda$; it can obviously also be thought of as a 'normal vector' of σ relative to τ. Note, however, that in contrast to the normal vector $u_{\sigma / \tau}$ of Construction 2.3 it is defined in Λ and not just in Λ / Λ_{τ}, and that it need not be primitive.

Lemma 2.14. Let X be a marked fan of dimension n (and, hence, a weighted fan by Construction 2.13(i)). Then X is a tropical fan if and only if for all $\tau \in X^{(n-1)}$ the balancing condition

$$
\left.\sum_{\sigma>\tau} v_{\sigma / \tau}=0 \quad \text { (in } V / V_{\tau}\right)
$$

holds (where the vectors $v_{\sigma / \tau}$ are as in Construction 2.13(ii)).
Proof. We have to show that the given equations coincide with the balancing condition of Definition 2.8. For this it obviously suffices to prove that

$$
\omega(\sigma) \cdot u_{\sigma / \tau}=\omega(\tau) \cdot v_{\sigma / \tau} \quad\left(\text { in } \Lambda_{\sigma} / \Lambda_{\tau} \text { and hence in } V_{\sigma} / V_{\tau}\right)
$$

for all $\sigma \in X^{(n)}$ and $\tau \in X^{(n-1)}$ with $\sigma>\tau$. Using the isomorphism $\Lambda_{\sigma} / \Lambda_{\tau} \cong \mathbb{Z}$ of Construction 2.3 this is equivalent to the equation

$$
\omega(\sigma)=\omega(\tau) \cdot\left|\Lambda_{\sigma} /\left(\Lambda_{\tau}+\mathbb{Z} v_{\sigma / \tau}\right)\right|
$$

in \mathbb{Z}, i.e. using Construction 2.13(i) and the relation $\tilde{\Lambda}_{\sigma}=\tilde{\Lambda}_{\tau}+\mathbb{Z} v_{\sigma / \tau}$ to the equation

$$
\left|\Lambda_{\sigma} /\left(\tilde{\Lambda}_{\tau}+\mathbb{Z} v_{\sigma / \tau}\right)\right|=\left|\Lambda_{\tau} / \tilde{\Lambda}_{\tau}\right| \cdot\left|\Lambda_{\sigma} /\left(\Lambda_{\tau}+\mathbb{Z} v_{\sigma / \tau}\right)\right|
$$

However, this follows immediately from the exact sequence

$$
0 \longrightarrow \Lambda_{\tau} / \tilde{\Lambda}_{\tau} \longrightarrow \Lambda_{\sigma} /\left(\tilde{\Lambda}_{\tau}+\mathbb{Z} v_{\sigma / \tau}\right) \longrightarrow \Lambda_{\sigma} /\left(\Lambda_{\tau}+\mathbb{Z} v_{\sigma / \tau}\right) \longrightarrow 0 .
$$

Example 2.15. We consider again the fans L_{k}^{n} of Example 2.5(iii) and make them into marked fans by setting $v_{\sigma_{\{i\}}}:=u_{i}$ for $i=0, \ldots, n$. We claim that L_{k}^{n} becomes a tropical fan in this way. In fact, to prove this we just have to check the balancing condition of Lemma 2.14. By symmetry it suffices to do this at the $(k-1)$-dimensional cone $\sigma_{\{0, \ldots, k-2\}}$. The k-dimensional cones in L_{k}^{n} containing this cone are exactly $\sigma_{\{0, \ldots, k-2, i\}}$ for $i=k-1, \ldots, n$. Consequently, the balancing
condition that we have to check is just

$$
u_{k-1}+\cdots+u_{n}=0 \quad\left(\text { in } \frac{\mathbb{R}^{n}}{\mathbb{R} u_{0}+\cdots+\mathbb{R} u_{k-2}}\right)
$$

which is obvious since $u_{0}+\cdots+u_{n}=0$. So the L_{k}^{n} are tropical fans of dimension k in \mathbb{R}^{n}. We can think of them as the 'standard k-dimensional linear subspace in \mathbb{R}^{n},

Definition 2.16 (Irreducible fans). Let X be a tropical fan in V. We say that X is irreducible if there is no tropical fan Y of the same dimension in V with $|Y| \subsetneq|X|$.

Remark 2.17. Note that the condition of irreducibility remains unchanged under refinements, i.e. it is well defined on equivalence classes of tropical fans.

Example 2.18. Tropical lines, i.e. the tropical fans L_{1}^{n} of Example 2.5(iii) (see also Example 2.15) are irreducible: any one-dimensional fan Y in \mathbb{R}^{n} with $|Y| \subsetneq\left|L_{1}^{n}\right|$ would have to be obtained by simply removing some of the edges of L_{1}^{n} (and possibly changing the weights at the remaining ones), and it is clear that doing so would spoil the balancing condition at the origin since the remaining edge vectors are linearly independent. (In fact, all linear spaces L_{k}^{n} of Example 2.5(iii) are irreducible, but we will not prove this here as we do not need this result.)

In the same way it follows of course that \mathbb{R}^{1} (and, in fact, any tropical fan that is just a straight line through the origin in some \mathbb{R}^{n}) is irreducible.

Remark 2.19. Although there is a notion of irreducible tropical fans it should be noted that there is nothing like a unique decomposition into irreducible components. The easiest example for this is probably the following one-dimensional tropical fan in \mathbb{R}^{2} (where the vectors in the picture denote the markings as in Definition 2.12).

By Example 2.18 it can be realized as a union of irreducible tropical fans either as a union of three straight lines through the origin, or as a union of the tropical line L_{1}^{2} of Example 2.5(iii) and the same line mirrored at the origin.

Proposition 2.20. The product of two irreducible tropical fans (see Example 2.9(iii)) is irreducible.

Proof. Let X and X^{\prime} be irreducible tropical fans of dimensions n and n^{\prime} in $V=\Lambda \otimes \mathbb{R}$ and $V^{\prime}=\Lambda^{\prime} \otimes \mathbb{R}$, respectively, and let Y be a tropical fan of dimension $n+n^{\prime}$ in $V \times V^{\prime}$ with $|Y| \subsetneq\left|X \times X^{\prime}\right|$. By passing from Y to the refinement $Y \cap\left(X \times X^{\prime}\right)$ (see Example 2.11(ii) and (iv)) we may assume that $Y \subset X \times X^{\prime}$. For any $\sigma \times \sigma^{\prime} \in\left(X \times X^{\prime}\right)^{\left(n+n^{\prime}\right)}$ we claim that $A\left(\sigma \times \sigma^{\prime}\right):=C_{Y, X \times X^{\prime}}^{-1}\left(\sigma \times \sigma^{\prime}\right) \cap Y^{\left(n+n^{\prime}\right)}$ is either empty or consists of cones that cover $\sigma \times \sigma^{\prime}$ and all have the same weight. In fact, if this was not the case, then there would have to be a cone $\tau \in Y^{\left(n+n^{\prime}-1\right)}$ with $C_{Y, X \times X^{\prime}}(\tau)=\sigma \times \sigma^{\prime}$ so that to the two sides of τ in $\sigma \times \sigma^{\prime}$ there is either only one cone of $A\left(\sigma \times \sigma^{\prime}\right)$ or two cones with different weights; in both cases the balancing condition for Y would be violated at τ.

A. Gathmann, M. Kerber and H. Markwig

Let us now define a purely $\left(n+n^{\prime}\right)$-dimensional fan Z in $V \times V^{\prime}$ by taking all cones $\sigma \times \sigma^{\prime} \in$ $\left(X \times X^{\prime}\right)^{\left(n+n^{\prime}\right)}$ for which $A\left(\sigma \times \sigma^{\prime}\right) \neq \emptyset$, together with all faces of these cones. Associating to such a cone $\sigma \times \sigma^{\prime} \in Z^{\left(n+n^{\prime}\right)}$ the weight of the cones in $A\left(\sigma \times \sigma^{\prime}\right)$ we make Z into a tropical fan of dimension $n+n^{\prime}$; in fact, it is just a tropical fan of which Y is a refinement.

As $\operatorname{dim} Z=n+n^{\prime}$ and $|Z|=|Y| \subsetneq\left|X \times X^{\prime}\right|$ there must be cones $\sigma_{1} \times \sigma_{1}^{\prime} \in Z$ and $\sigma_{0} \times \sigma_{0}^{\prime} \in$ $\left(X \times X^{\prime}\right) \backslash Z$. We distinguish two cases.

- $\sigma_{0} \times \sigma_{1}^{\prime} \in\left(X \times X^{\prime}\right) \backslash Z$: Then we construct a purely n-dimensional fan X_{0} in V by taking all cones $\sigma \in X^{(n)}$ with $\sigma \times \sigma_{1}^{\prime} \in Z$, together with all faces of these cones. Setting $\omega_{X_{0}}(\sigma):=$ $\omega_{Z}\left(\sigma \times \sigma_{1}^{\prime}\right)$ the fan X_{0} becomes an n-dimensional tropical fan, with the balancing condition inherited from Z (in fact, the balancing condition around a cone $\tau \in X_{0}^{(n-1)}$ follows from the one around $\tau \times \sigma_{1}^{\prime}$ in Z). As $\left|X_{0}\right|$ is neither empty (since $\sigma_{1} \in X_{0}$) nor all of $|X|$ (since $\sigma_{0} \notin X_{0}$) this is a contradiction to X being irreducible.
$-\sigma_{0} \times \sigma_{1}^{\prime} \in Z$: This case follows in the same way by considering the purely n^{\prime}-dimensional fan Y_{0} in V^{\prime} given by all cones $\sigma^{\prime} \in Y^{\left(n^{\prime}\right)}$ with $\sigma_{0} \times \sigma^{\prime} \in Z$, together with all faces of these cones: this leads to a contradiction to X^{\prime} being irreducible.

Lemma 2.21. Let X and Y be tropical fans of dimension n in V. Assume that $|Y| \subset|X|$, and that X is irreducible. Then $Y \cong \lambda \cdot X$ for some $\lambda \in \mathbb{Q}>0$ (see Example 2.9(ii)).

Proof. As X is irreducible we have $|Y|=|X|$. Replacing X and Y by the refinements $X \cap Y$ and $Y \cap X$, respectively (see Example 2.11(ii)) we may assume that X and Y consist of the same cones (with possibly different weights). Let $\lambda:=\min _{\sigma \in X^{(n)}} \omega_{Y}(\sigma) / \omega_{X}(\sigma)>0$, and let $\alpha \in \mathbb{Z}_{>0}$ with $\alpha \lambda \in \mathbb{Z}$. Consider the new weight function $\omega(\sigma)=\alpha\left(\omega_{Y}(\sigma)-\lambda \omega_{X}(\sigma)\right)$ for $\sigma \in X^{(n)}$. By construction, it takes values in $\mathbb{Z}_{\geq 0}$, with value zero occurring at least once. Construct a new weighted fan Z from this weight function by taking all cones $\sigma \in X^{(n)}$ with $\omega(\sigma)>0$, together with all faces of these cones. Then (Z, ω) is a tropical fan as the balancing condition is linear in the weights. It does not cover $|X|$ since at least one maximal cone has been deleted from X by construction. Hence, it must be empty as X was assumed to be irreducible. This means that $\omega_{Y}(\sigma)-\lambda \omega_{X}(\sigma)=0$ for all $\sigma \in X^{(n)}$.

Definition 2.22 (Morphisms of fans). Let X be a fan in $V=\Lambda \otimes \mathbb{R}$, and let Y be a fan in $V^{\prime}=\Lambda^{\prime} \otimes \mathbb{R}$. A morphism $f: X \rightarrow Y$ is a map f from $|X| \subset V$ to $|Y| \subset V^{\prime}$ such that f is \mathbb{Z}-linear, i.e. induced by a linear map from Λ to Λ^{\prime}. By abuse of notation, we often denote the corresponding linear maps from Λ to Λ^{\prime} and from V to V^{\prime} by the same letter f (note, however, that these latter maps are not determined uniquely by $f: X \rightarrow Y$ if $|X|$ does not span V). A morphism of weighted fans is a morphism of fans (i.e. there are no conditions on the weights).

Remark 2.23. It is obvious from the definition that morphisms from $\left(X, \omega_{X}\right)$ to $\left(Y, \omega_{Y}\right)$ are in one-to-one correspondence with morphisms from any refinement of $\left(X, \omega_{X}\right)$ to any refinement of $\left(Y, \omega_{Y}\right)$ simply by using the same map $f:|X| \rightarrow|Y|$.

Construction 2.24. Let X be a purely n-dimensional fan in $V=\Lambda \otimes \mathbb{R}$, and let Y be any fan in $\Lambda^{\prime} \otimes \mathbb{R}$. For any morphism $f: X \rightarrow Y$ we construct an image fan $f(X)$ in V^{\prime} (which is empty or of pure dimension n) as follows. Consider the collection of cones

$$
Z:=\{f(\sigma) ; \sigma \in X \text { contained in a maximal cone of } X \text { on which } f \text { is injective }\}
$$

in V^{\prime}. Note that Z is in general not a fan in V^{\prime} : it satisfies condition (i) of Definition 2.4, but in general not (ii) (since e.g. the images of some maximal cones might overlap in a region of dimension n). To make it into one choose linear forms $g_{1}, \ldots, g_{N} \in \Lambda^{\prime V}$ such that each cone $f(\sigma) \in Z$ can be written as

$$
\begin{equation*}
f(\sigma)=\left\{x \in V^{\prime} ; g_{i}(x)=0, g_{j}(x) \geq 0, g_{k}(x) \leq 0 \text { for all } i \in I_{\sigma}, j \in J_{\sigma}, k \in K_{\sigma}\right\} \tag{*}
\end{equation*}
$$

for suitable index sets $I_{\sigma}, J_{\sigma}, K_{\sigma} \in\{1, \ldots, N\}$. Now we replace X by the fan $\tilde{X}=X \cap H_{g_{1} \circ f}$ $\cap \cdots \cap H_{g_{N} \circ f}$ (see Example 2.5(ii)). This fan satisfies $|\tilde{X}|=|X|$, and by definition each cone of \tilde{X} is of the form

$$
\left\{x \in V ; x \in \sigma, g_{i}(f(x))=0, g_{j}(f(x)) \geq 0, g_{k}(f(x)) \leq 0 \text { for all } i \in I, j \in J, k \in K\right\}
$$

for some $\sigma \in X$ and a partition $I \cup J \cup K=\{1, \ldots, N\}$. By ($*$) the image of such a cone under f is of the form

$$
\begin{aligned}
& \left\{x \in V^{\prime} ; x \in f(\sigma), g_{i}(x)=0, g_{j}(x) \geq 0, g_{k}(x) \leq 0 \text { for all } i \in I, j \in J, k \in K\right\} \\
& \quad=\left\{x \in V^{\prime} ; g_{i}(x)=0, g_{j}(x) \geq 0, g_{k}(x) \leq 0 \text { for all } i \in I^{\prime}, j \in J^{\prime}, k \in K^{\prime}\right\}
\end{aligned}
$$

for some partition $I^{\prime} \cup J^{\prime} \cup K^{\prime}=\{1, \ldots, N\}$, i.e. it is a cone of the fan $H_{g_{1}} \cap \cdots \cap H_{g_{N}}$. Hence, the set of cones

$$
\tilde{Z}:=\{f(\sigma) ; \sigma \in \tilde{X} \text { contained in a maximal cone of } \tilde{X} \text { on which } f \text { is injective }\}
$$

consists of cones in the fan $H_{g_{1}} \cap \cdots \cap H_{g_{N}}$. As these cones now satisfy condition (ii) of Definition 2.4 it follows that \tilde{Z} is a fan in V^{\prime}. It is obvious that it is of pure dimension n.

If, moreover, X is a weighted fan, then \tilde{X} will be a weighted fan as well (see Example 2.11(ii)). In this case we make \tilde{Z} into a weighted fan by setting

$$
\omega_{\tilde{Z}}\left(\sigma^{\prime}\right):=\sum_{\sigma \in \tilde{X}^{(n)}: f(\sigma)=\sigma^{\prime}} \omega_{\tilde{X}}(\sigma) \cdot\left|\Lambda_{\sigma^{\prime}}^{\prime} / f\left(\Lambda_{\sigma}\right)\right|
$$

for all $\sigma^{\prime} \in \tilde{Z}^{(n)}$ (see Definition 2.1; note that $f\left(\Lambda_{\sigma}\right)$ is a sublattice of $\Lambda_{\sigma^{\prime}}^{\prime}$ of full rank).
We denote the fan $\left(\tilde{Z}, \omega_{\tilde{Z}}\right)$ by $f(X)$ and call it the image fan of f. It is clear from the construction that the equivalence class of $f(X)$ remains unchanged if we replace the g_{1}, \ldots, g_{N} by any larger set of linear forms (this would just lead to a refinement), and hence also if we replace them by any other set of linear forms satisfying $(*)$. Hence, the equivalence class of $f(X)$ does not depend on any choices we made. It is obvious that the equivalence class of $f(X)$ depends in fact only on the equivalence class of X.

By abuse of notation we usually drop the tilde from the above notation and summarize the construction above as follows: given a weighted fan X of dimension n, an arbitrary fan Y and a morphism $f: X \rightarrow Y$, we may assume after passing to an equivalent fan for X that

$$
f(X)=\{f(\sigma) ; \sigma \in X \text { contained in a maximal cone of } X \text { on which } f \text { is injective }\}
$$

is a fan. We consider this to be a weighted fan of dimension n by setting

$$
\omega_{f(X)}\left(\sigma^{\prime}\right):=\sum_{\sigma \in X^{(n)}: f(\sigma)=\sigma^{\prime}} \omega_{X}(\sigma) \cdot\left|\Lambda_{\sigma^{\prime}}^{\prime} / f\left(\Lambda_{\sigma}\right)\right|
$$

for $\sigma^{\prime} \in f(X)^{(n)}$. This weighted fan is well defined up to equivalence.
Proposition 2.25. Let X be an n-dimensional tropical fan in $V=\Lambda \otimes \mathbb{R}, Y$ an arbitrary fan in $V^{\prime}=\Lambda^{\prime} \otimes \mathbb{R}$ and $f: X \rightarrow Y$ a morphism. Then $f(X)$ is an n-dimensional tropical fan as well (if it is not empty).

A. Gathmann, M. Kerber and H. Markwig

Proof. Since we have already seen in Construction 2.24 that $f(X)$ is a weighted fan of dimension n we just have to check the balancing condition of Definition 2.8 . As in this construction we may assume that $f(X)$ just consists of the cones $f(\sigma)$ for all $\sigma \in X$ contained in a maximal cone on which f is injective. Let $\tau^{\prime} \in f(X)^{(n-1)}$ and let $\tau \in X^{(n-1)}$ with $f(\tau)=\tau^{\prime}$. Applying f to the balancing condition for X at τ we obtain

$$
\sum_{\sigma>\tau} \omega_{X}(\sigma) \cdot f\left(u_{\sigma / \tau}\right)=0 \quad\left(\text { in } V^{\prime} / V_{\tau^{\prime}}^{\prime}\right)
$$

for all $\tau \in X^{(n-1)}$. Now let $\sigma^{\prime} \in f(X)$ be a cone with $\sigma^{\prime}>\tau^{\prime}$ and $\sigma \in X$ with $\sigma>\tau$ such that $f(\sigma)=\sigma^{\prime}$. Note that the primitive normal vector $u_{\sigma^{\prime} / \tau^{\prime}}$ is related to the (possibly non-primitive) vector $f\left(u_{\sigma / \tau}\right)$ by

$$
f\left(u_{\sigma / \tau}\right)=\left|\Lambda_{\sigma^{\prime}}^{\prime} /\left(\Lambda_{\tau^{\prime}}^{\prime}+\mathbb{Z} f\left(u_{\sigma / \tau}\right)\right)\right| \cdot u_{\sigma^{\prime} / \tau^{\prime}}
$$

if f is injective on σ and $f\left(u_{\sigma / \tau}\right)=0$ otherwise. Inserting this into the above balancing condition, and using the exact sequence

$$
0 \longrightarrow \Lambda_{\tau^{\prime}}^{\prime} / f\left(\Lambda_{\tau}\right) \longrightarrow \Lambda_{\sigma^{\prime}}^{\prime} / f\left(\Lambda_{\sigma}\right) \longrightarrow \Lambda_{\sigma^{\prime}}^{\prime} /\left(\Lambda_{\tau^{\prime}}^{\prime}+\mathbb{Z} f\left(u_{\sigma / \tau}\right)\right) \longrightarrow 0
$$

we conclude that

$$
\sum_{\sigma>\tau} \omega_{X}(\sigma) \cdot\left|\Lambda_{\sigma^{\prime}}^{\prime} / f\left(\Lambda_{\sigma}\right)\right| \cdot u_{\sigma^{\prime} / \tau^{\prime}}=0 \quad\left(\text { in } V^{\prime} / V_{\tau^{\prime}}^{\prime}\right)
$$

where the sum is understood to be taken over only those $\sigma>\tau$ on which f is injective.
Let us now sum these equations up for all τ with $f(\tau)=\tau^{\prime}$. The above sum then simply becomes a sum over all σ with $f(\sigma)>\tau^{\prime}$ (note that each such σ occurs in the sum exactly once since f is injective on σ so that σ cannot have two distinct codimension-one faces that both map to $\left.\tau^{\prime}\right)$. Splitting this sum up according to the cone $f(\sigma)$ we obtain

$$
\left.\sum_{\sigma^{\prime}>\tau^{\prime}} \sum_{\sigma: f(\sigma)=\sigma^{\prime}} \omega_{X}(\sigma) \cdot\left|\Lambda_{\sigma^{\prime}}^{\prime} / f\left(\Lambda_{\sigma}\right)\right| \cdot u_{\sigma^{\prime} / \tau^{\prime}}=0 \quad \text { (in } V^{\prime} / V_{\tau^{\prime}}^{\prime}\right)
$$

However, using the definition of the weights of $f(X)$ of Construction 2.24 this is now simply the balancing condition

$$
\sum_{\sigma^{\prime}>\tau^{\prime}} \omega_{f(X)}\left(\sigma^{\prime}\right) \cdot u_{\sigma^{\prime} / \tau^{\prime}}=0 \quad \in V^{\prime} / V_{\tau^{\prime}}^{\prime}
$$

for $f(X)$.
Corollary 2.26. Let X and Y be tropical fans of the same dimension n in $V=\Lambda \otimes \mathbb{R}$ and $V^{\prime}=\Lambda^{\prime} \otimes \mathbb{R}$, respectively, and let $f: X \rightarrow Y$ be a morphism. Assume that Y is irreducible. Then there is a fan Y_{0} in V^{\prime} of smaller dimension with $\left|Y_{0}\right| \subset|Y|$ such that:
(i) each point $Q \in|Y| \backslash\left|Y_{0}\right|$ lies in the interior of a cone $\sigma_{Q}^{\prime} \in Y$ of dimension n;
(ii) each point $P \in f^{-1}\left(|Y| \backslash\left|Y_{0}\right|\right)$ lies in the interior of a cone $\sigma_{P} \in X$ of dimension n;
(iii) for $Q \in|Y| \backslash\left|Y_{0}\right|$ the sum

$$
\sum_{P \in|X|: f(P)=Q} \operatorname{mult}_{P} f
$$

does not depend on Q, where the multiplicity mult ${ }_{P} f$ of f at P is defined to be

$$
\operatorname{mult}_{P} f:=\frac{\omega_{X}\left(\sigma_{P}\right)}{\omega_{Y}\left(\sigma_{Q}^{\prime}\right)} \cdot\left|\Lambda_{\sigma_{Q}^{\prime}}^{\prime} / f\left(\Lambda_{\sigma_{P}}\right)\right|
$$

Proof. Consider the tropical fan $f(X)$ in V^{\prime} (see Construction 2.24 and Proposition 2.25). If $f(X)=\emptyset$ (i.e. if there is no maximal cone of X on which f is injective) the statement of the corollary is trivial. Otherwise $f(X)$ has dimension n and satisfies $|f(X)| \subset|Y|$, so as Y is irreducible it follows by Lemma 2.21 that $f(X) \cong \lambda \cdot Y$ for some $\lambda \in \mathbb{Q}>0$. After passing to equivalent fans we may assume that $f(X)$ and Y consist of the same cones, and that these are exactly the cones of the form $f(\sigma)$ for $\sigma \in X$ contained in a maximal cone on which f is injective. Now let Y_{0} be the fan consisting of all cones of Y dimension less than n. Then (i) and (ii) hold by construction. Moreover, each $Q \in|Y| \backslash\left|Y_{0}\right|$ lies in the interior of a unique n-dimensional cone σ^{\prime}, and there is a one-to-one correspondence between points $P \in f^{-1}(Q)$ and n-dimensional cones σ in X with $f(\sigma)=\sigma^{\prime}$. So we conclude that

$$
\sum_{P: f(P)=Q} \operatorname{mult}_{P} f=\sum_{\sigma: f(\sigma)=\sigma^{\prime}} \frac{\omega_{X}(\sigma)}{\omega_{Y}\left(\sigma^{\prime}\right)} \cdot\left|\Lambda_{\sigma^{\prime}}^{\prime} / f\left(\Lambda_{\sigma}\right)\right|=\frac{\omega_{f(X)}\left(\sigma^{\prime}\right)}{\omega_{Y}\left(\sigma^{\prime}\right)}=\lambda
$$

does not depend on Q.
Corollary 2.27. In the situation and with the notation of Corollary 2.26 assume moreover that X and Y are marked fans as in Definition 2.12, and that their structure of tropical fans has been induced by these data as in Construction 2.13(i). Let $\sigma_{1}, \ldots, \sigma_{n} \in X^{(1)}$ be the onedimensional faces of σ_{P}, and let $\sigma_{1}^{\prime}, \ldots, \sigma_{n}^{\prime} \in Y^{(1)}$ be the one-dimensional faces of $\sigma_{Q}^{\prime}=\sigma_{f(P)}^{\prime}$. Then $\operatorname{mult}_{P} f$ is equal to the absolute value of the determinant of the matrix for the linear map $\left.f\right|_{V_{\sigma_{P}}}: V_{\sigma_{P}} \rightarrow V_{\sigma_{Q}^{\prime}}^{\prime}$ in the bases $\left\{v_{\sigma_{1}}, \ldots, v_{\sigma_{n}}\right\}$ and $\left\{v_{\sigma_{1}^{\prime}}, \ldots, v_{\sigma_{n}^{\prime}}\right\}$.
Proof. It is well known that $\left|\Lambda_{\sigma_{Q}^{\prime}}^{\prime} / f\left(\Lambda_{\sigma_{P}}\right)\right|$ is the determinant of the linear map $\left.f\right|_{V_{\sigma_{P}}}: V_{\sigma_{P}} \rightarrow V_{\sigma_{Q}^{\prime}}^{\prime}$ with respect to lattice bases of $\Lambda_{\sigma_{P}}$ and $\Lambda_{\sigma_{Q}^{\prime}}^{\prime}$. The statement of the corollary now follows since the base change to $\left\{v_{\sigma_{1}}, \ldots, v_{\sigma_{n}}\right\}$ and $\left\{v_{\sigma_{1}^{\prime}}, \ldots, v_{\sigma_{n}^{\prime}}\right\}$ clearly leads to factors in the determinant of $\omega_{X}\left(\sigma_{P}\right)$ and $1 / \omega_{Y}\left(\sigma_{Q}^{\prime}\right)$, respectively.

3. Tropical $\mathcal{M}_{0, n}$, Grassmannians, and the space of trees

In this section we want to show that the moduli space $\mathcal{M}_{0, n, \text { trop }}$ of rational n-marked abstract tropical curves is a tropical fan in the sense of Definition 2.8, and that the forgetful map is a morphism of fans.

Let us start by recalling the relevant definitions from [GM08].
Definition 3.1 (Graphs).
(i) Let $I_{1}, \ldots, I_{n} \subset \mathbb{R}$ be a finite set of closed, bounded or half-bounded real intervals. We pick some (not necessarily distinct) boundary points $P_{1}, \ldots, P_{k}, Q_{1}, \ldots, Q_{k} \in I_{1} \amalg \cdots \amalg I_{n}$ of these intervals. The topological space Γ obtained by identifying P_{i} with Q_{i} for all $i=1, \ldots, k$ in $I_{1} \amalg \cdots \amalg I_{n}$ is called a graph. As usual, the genus of Γ is simply its first Betti number $\operatorname{dim} H_{1}(\Gamma, \mathbb{R})$.
(ii) For a graph Γ the boundary points of the intervals I_{1}, \ldots, I_{n} are called the flags, their image points in Γ the vertices of Γ. If F is such a flag then its image vertex in Γ will be denoted by ∂F. For a vertex V the number of flags F with $\partial F=V$ is called the valence of V and denoted by val V. We denote by Γ^{0} and Γ^{\prime} the sets of vertices and flags of Γ, respectively.

A. Gathmann, M. Kerber and H. Markwig

(iii) The open intervals $I_{1}^{\circ}, \ldots, I_{n}^{\circ}$ are naturally open subsets of Γ; they are called the edges of Γ. An edge will be called bounded (respectively unbounded) if its corresponding open interval is. We denote by Γ^{1} (respectively Γ_{0}^{1} and Γ_{∞}^{1}) the set of edges (respectively bounded and unbounded edges) of Γ. Every flag $F \in \Gamma^{\prime}$ belongs to exactly one edge that we will denote by $[F] \in \Gamma^{1}$. The unbounded edges will also be called the ends of Γ.

Definition 3.2 (Abstract tropical curves). A (rational, abstract) tropical curve is a connected graph Γ of genus zero all of whose vertices have valence at least three. An n-marked tropical curve is a tuple $\left(\Gamma, x_{1}, \ldots, x_{n}\right)$ where Γ is a tropical curve and $x_{1}, \ldots, x_{n} \in \Gamma_{\infty}^{1}$ are distinct unbounded edges of Γ. Two such marked tropical curves $\left(\Gamma, x_{1}, \ldots, x_{n}\right)$ and ($\left.\tilde{\Gamma}, \tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)$ are called isomorphic (and will from now on be identified) if there is a homeomorphism $\Gamma \rightarrow \Gamma$ mapping x_{i} to \tilde{x}_{i} for all i and such that every edge of Γ is mapped bijectively onto an edge of $\tilde{\Gamma}$ by an affine map of slope ± 1, i.e. by a map of the form $t \mapsto a \pm t$ for some $a \in \mathbb{R}$. The space of all n-marked tropical curves (modulo isomorphisms) with precisely n unbounded edges will be denoted by $\mathcal{M}_{0, n, \text { trop }}$. (It can be thought of as a tropical analogue of the moduli space $\bar{M}_{0, n}$ of n-pointed stable rational curves.)

Remark 3.3. The isomorphism condition of Definition 3.2 means that every edge of a marked tropical curve has a parametrization as an interval in \mathbb{R} that is unique up to translations and sign. In particular, every bounded edge E of a tropical curve has an intrinsic length that we will denote by $l(E) \in \mathbb{R}_{>0}$.

One way to fix this translation and sign ambiguity is to pick a flag F of the edge E : there is then a unique choice of parametrization such that the corresponding closed interval is [0, $l(E)$] (or $[0, \infty$) for unbounded edges), with the chosen flag F being the zero point of this interval. We call this the canonical parametrization of E with respect to the flag F.
Definition 3.4 (Combinatorial types). The combinatorial type of a marked tropical curve ($\Gamma, x_{1}, \ldots, x_{n}$) is defined to be the homeomorphism class of Γ relative x_{1}, \ldots, x_{n} (i.e. the data of ($\Gamma, x_{1}, \ldots, x_{n}$) modulo homeomorphisms of Γ that map each x_{i} to itself).

Lemma 2.10 of [GM08] states that there are only finitely many combinatorial types of curves in $\mathcal{M}_{0, n, \text { trop }}$. The subset of curves of type α in $\mathcal{M}_{0, n, \text { trop }}$ is the interior of a cone in \mathbb{R}^{k} (where k is the number of bounded edges) given by the inequalities that all lengths are positive, i.e. it is the positive orthant of \mathbb{R}^{k}. Example 2.13 of [GM08] describes how these cones are glued locally in $\mathcal{M}_{0, n, \text { trop }}$.

Note that this construction is exactly the same as the construction of the space of (phylogenetic) trees \mathbb{T}_{n} in [BHV01, pp. 9-13].

Fix $n \geq 3$ and consider the space $\mathbb{R}^{\binom{n}{2}}$ indexed by the set \mathcal{T} of all subsets $T \subset[n]:=\{1, \ldots, n\}$ with $|T|=2$. In order to embed $\mathcal{M}_{0, n, \text { trop }}$ into a quotient of $\mathbb{R}^{\binom{n}{2}}$, consider the map

$$
\begin{aligned}
\operatorname{dist}_{n}: \mathcal{M}_{0, n, \text { trop }} & \longrightarrow \mathbb{R}^{\binom{n}{2}} \\
\left(\Gamma, x_{1}, \ldots, x_{n}\right) & \longmapsto\left(\operatorname{dist}_{\Gamma}\left(x_{i}, x_{j}\right)\right)_{\{i, j\} \in \mathcal{T}}
\end{aligned}
$$

where $\operatorname{dist}_{\Gamma}\left(x_{i}, x_{j}\right)$ denotes the distance between the unbounded edges (or leaves) x_{i} and x_{j}, that is, the sum of the lengths of all edges on the (unique) path leading from x_{i} to x_{j}. Furthermore, define a linear map Φ_{n} by

$$
\begin{aligned}
\Phi_{n}: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{\binom{n}{2}} \\
a & \longmapsto\left(a_{i}+a_{j}\right)_{\{i, j\} \in \mathcal{T}} .
\end{aligned}
$$

Denote by Q_{n} the $\left(\binom{n}{2}-n\right)$-dimensional quotient vector space $\mathbb{R}^{\binom{n}{2}} / \operatorname{Im}\left(\Phi_{n}\right)$, and by $q_{n}: \mathbb{R}^{\binom{n}{2}} \rightarrow$ Q_{n} the canonical projection.

Theorem 3.5 ([SS04, Theorem 4.2]). The map $\varphi_{n}:=q_{n} \circ \operatorname{dist}_{n}: \mathcal{M}_{0, n, \text { trop }} \rightarrow Q_{n}$ is an embedding, and the image $\varphi_{n}\left(\mathcal{M}_{0, n, \text { trop }}\right) \subset Q_{n}$ is a simplicial fan of pure dimension $n-3$. The interior of its k-dimensional cells corresponds to combinatorial types of graphs with n marked leaves and exactly k bounded edges.

Construction 3.6. For each subset $I \subset[n]$ of cardinality $1<|I|<n-1$, define v_{I} to be the image under φ_{n} of a tree with one bounded edge of length one, the marked ends with labels in I on one side of the bounded edge and the marked ends with labels in $[n] \backslash I$ on the other. Note that $v_{I}=v_{[n] \backslash I}$ by construction. As an example, the following diagram shows the five-marked rational curve corresponding to the vector $v_{\{1,2,5\}}=v_{\{3,4\}} \in Q_{5}$.

By Theorem 3.5, the v_{I} generate the edges of the simplicial fan $\varphi_{n}\left(\mathcal{M}_{0, n, \text { trop }}\right)$. Let $\Lambda_{n}:=\left\langle v_{I}\right\rangle_{\mathbb{Z}}$ $\subset Q_{n}$ be the lattice in Q_{n} generated by the vectors v_{I}.

Theorem 3.7. The marked fan $\left(\varphi_{n}\left(\mathcal{M}_{0, n, \text { trop }}\right),\left\{v_{I}\right\}\right)$ is a tropical fan in Q_{n} with lattice Λ_{n}. In other words, using the embedding φ_{n} the space $\mathcal{M}_{0, n, \text { trop }}$ can be thought of as a tropical fan of dimension $n-3$.

Proof. By Lemma 2.14 we have to prove that

$$
\sum_{\sigma>\tau} v_{\sigma / \tau}=0 \in Q_{n} / V_{\tau}
$$

for all $\tau \in \varphi_{n}\left(\mathcal{M}_{0, n, \text { trop }}\right)^{(n-4)}$ and $v_{\sigma / \tau}$ as in Construction 2.13(ii).
In order to prove this fix a cell $\tau \in \varphi_{n}\left(\mathcal{M}_{0, n, \text { trop }}\right)^{(n-4)}$. As τ is a cell of codimension one, the curves in the interior of τ have exactly one vertex V of valence four and all other vertices of valence three. Denote by $I_{s} \subset[n]$ for $s=1, \ldots, 4$ the set of marked ends lying behind the s th edge adjacent to V. By construction there are exactly three combinatorial types $\sigma_{1}, \sigma_{2}, \sigma_{3}>\tau$ in $\mathcal{M}_{0, n, \text { trop }}$, obtained from τ by replacing the vertex V with an edge as in the following diagram (where we have only drawn the relevant part of the graphs and the labels denote the marked ends lying behind the corresponding edges).

τ

σ_{1}

σ_{2}

σ_{3}

Note that $v_{I_{1} \cup I_{2}}$ is an edge of σ_{1} which is not an edge of τ; hence, we have $v_{\sigma_{1} / \tau}=v_{I_{1} \cup I_{2}}$, and similarly $v_{\sigma_{2} / \tau}=v_{I_{1} \cup I_{3}}$ and $v_{\sigma_{3} / \tau}=v_{I_{1} \cup I_{4}}$.

A. Gathmann, M. Kerber and H. Markwig

Now let $C \in \tau$ be the point corresponding to the curve obtained from the combinatorial type τ by setting the lengths of each bounded edge E to one if E is adjacent to V and zero otherwise.

Note that this operation changes the combinatorial type in general. Furthermore, let $a \in \mathbb{R}^{n}$ be the vector with $a_{i}=1$ if the marked end x_{i} is adjacent to V and $a_{i}=0$ otherwise. We claim that

$$
v_{\sigma_{1} / \tau}+v_{\sigma_{2} / \tau}+v_{\sigma_{3} / \tau}=\Phi_{n}(a)+\operatorname{dist}_{n}(C) \in \mathbb{R}^{\binom{n}{2}},
$$

from which the required balancing condition then follows after passing to the quotient by $\operatorname{Im} \Phi_{n}+V_{\tau}$. We check this equality coordinate-wise for all $T=\{i, j\} \in \mathcal{T}$. We may assume that i and j do not lie in the same I_{s} since otherwise the T-coordinate of every term in the equation is zero. Then the T-coordinate on the left-hand side is two since x_{i} and x_{j} are on different sides of the newly inserted edge for exactly two of the types $\sigma_{1}, \sigma_{2}, \sigma_{3}$. On the other hand, if we denote by $0 \leq c \leq 2$ the number how many of the two ends x_{i} and x_{j} are adjacent to V, then the T-coordinates of $\Phi_{n}(a)$ and $\operatorname{dist}_{n}(C)$ are c and $2-c$, respectively; so the proposition follows.

Remark 3.8. A slightly different proof of this balancing condition has recently been found independently by Mikhalkin in [Mik07, § 2].

Remark 3.9. The space of trees appears in [SS04] as a quotient of the tropical Grassmannian. Let us review how the tropical Grassmannian is defined. Tropical varieties can be defined as images of usual algebraic varieties over the field K of Puiseux series. An element of K is a Puiseux series $p(t)=a_{1} t^{q_{1}}+a_{2} t^{q_{2}}+a_{3} t^{q_{3}}+\cdots$, where $a_{i} \in \mathbb{C}$ and $q_{1}<q_{2}<q_{3}<\cdots$ are rational numbers which share a common denominator. Define the valuation of $p(t)$ to be $\operatorname{val}(p(t))=-q_{1}$, if $p(t) \neq 0$, and $-\infty$ otherwise. Let $V(I)$ be a variety in $\left(K^{*}\right)^{n}$. Its tropicalization $\operatorname{Trop}(I)$ is defined to be the closure of the set

$$
\left\{\left(\operatorname{val}\left(y_{1}\right), \ldots, \operatorname{val}\left(y_{n}\right)\right) \mid\left(y_{1}, \ldots, y_{n}\right) \in V(I)\right\} \subset \mathbb{R}^{n}
$$

The tropicalization of an ideal can also be computed using initial ideals: it is equal to the closure of the set of $w \in \mathbb{Q}^{n}$ such that the initial ideal $\mathrm{in}_{w} I$ contains no monomial (see [SS04, Theorem 2.1]). In this way, it can be considered as a subfan of the Gröbner fan of I and inherits its fan structure (this is explained, for example, in [BJSST07]). Theorem 2.5.1 of [Spe05] shows that $\operatorname{Trop}(I)$ is a tropical fan.

In [SS04], the tropical Grassmannian $\mathcal{G}_{2, n}$ is defined to be the tropicalization of the ideal $I_{2, n}$ of the usual Grassmannian in its Plücker embedding. The ideal $I_{2, n}$ is an ideal in the polynomial ring with $\binom{n}{2}$ variables. For example, we have

$$
I_{2,4}=\left\langle p_{12} p_{34}-p_{13} p_{24}+p_{14} p_{23}\right\rangle \subset K\left[p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\right] .
$$

(We label the variables with subsets of size two of $\{1, \ldots, n\}$.) The tropical Grassmannian $\mathcal{G}_{2, n}:=\operatorname{Trop}\left(I_{2, n}\right)$ is a tropical fan in $\mathbb{R}^{\binom{n}{2}}$.

The lineality space of $\mathcal{G}_{2, n}$ (that is, the intersection of all cones of $\mathcal{G}_{2, n}$) is equal to the image of Φ_{n} (see [SS04, p. 6]). As $\operatorname{Im}\left(\Phi_{n}\right)$ is contained in every cone of $\mathcal{G}_{2, n}$, we can reduce $\mathcal{G}_{2, n}$ modulo $\operatorname{Im}\left(\Phi_{n}\right)$ and define the reduced tropical Grassmannian

$$
\mathcal{G}_{2, n}^{\prime}:=\mathcal{G}_{2, n} / \operatorname{Im}\left(\Phi_{n}\right) \subset \mathbb{R}^{\binom{n}{2}} / \operatorname{Im}\left(\Phi_{n}\right) .
$$

Then $\mathcal{G}_{2, n}^{\prime}$ is also a tropical fan. Theorem 3.4 of [SS04] states that $\mathcal{G}_{2, n}^{\prime}$ is equal to the space of phylogenetic trees \mathbb{T}_{n}.
Example 3.10. For $n=4$ the space $\mathcal{M}_{0,4, \text { trop }}$ is embedded by φ_{4} in $Q_{4}=\mathbb{R}^{\binom{4}{2}} / \operatorname{Im} \Phi_{n} \cong \mathbb{R}^{6} / \mathbb{R}^{4} \cong$ \mathbb{R}^{2}, and the lattice $\Lambda_{4} \subset Q_{4}$ is spanned by the three vectors $v_{\{1,2\}}=v_{\{3,4\}}, v_{\{1,3\}}=v_{\{2,4\}}$, and $v_{\{1,4\}}=v_{\{2,3\}}$. The space $\mathcal{M}_{0,4, \text { trop }}$ is of dimension one and has three maximal cones, each spanned by one of the three vectors above. By the balancing condition of Theorem 3.7 the sum of these three vectors is zero in Q_{4}, and hence any two of them form a basis of Λ_{4}. With (the negative of) such a basis $\varphi_{4}\left(\mathcal{M}_{0,4, \text { trop }}\right)$ simply becomes the standard tropical line $L_{1}^{2} \subset \mathbb{R}^{2}$ as in Example 2.5(iii).

For the rest of this section we now consider the forgetful maps between the moduli spaces of abstract curves and show that they are morphisms of fans. For simplicity we only consider the map that forgets the last marked end.
Definition 3.11 (Forgetful maps). Let $n \geq 4$ be an integer. We have a forgetful map ft from $\mathcal{M}_{0, n, \text { trop }}$ to $\mathcal{M}_{0, n-1, \text { trop }}$ which assigns to an n-marked curve $\left(C, x_{1}, \ldots, x_{n}\right)$ the (stabilization of the) $(n-1)$-marked curve ($C, x_{1}, \ldots, x_{n-1}$) (see [GM08, Definition 4.1]). By stabilization we mean that we have to straighten two-valent vertices that possibly emerge when removing the marked end x_{n}.

Proposition 3.12. With the tropical fan structure of Theorem 3.7 the forgetful map $\mathrm{ft}: \mathcal{M}_{0, n, \text { trop }} \rightarrow \mathcal{M}_{0, n-1, \text { trop }}$ is a morphism of fans in the sense of Definition 2.22.
Proof. Let pr: $\mathbb{R}\binom{n}{2} \rightarrow \mathbb{R}\binom{n-1}{2}$ denote the projection to those coordinates $T \in \mathcal{T}$ with $n \notin T$. As $\operatorname{pr}\left(\operatorname{Im}\left(\Phi_{n}\right)\right)=\operatorname{Im}\left(\Phi_{n-1}\right)$, the map pr induces a linear map $\widetilde{\mathrm{pr}}: Q_{n} \rightarrow Q_{n-1}$.

We claim that $\widetilde{\mathrm{pr}}_{\mid \varphi_{n}\left(M_{0, n, \text { trop }}\right)}$ is the map induced by ft , hence we have to show the commutativity of the following diagram.

So let $C=\left(\Gamma, x_{1}, \ldots, x_{n}\right) \in \mathcal{M}_{0, n, \text { trop }}$ be an abstract n-marked rational tropical curve. If x_{n} is not adjacent to exactly one bounded and one unbounded edge, then forgetting x_{n} does not change any of the distances $\operatorname{dist}_{C}\left(x_{i}, x_{j}\right)$ for $i, j \neq n$; so in this case we are done.

Now assume that x_{n} is adjacent to one unbounded edge x_{k} and one bounded edge E of length $l(E)$. Then the distances between marked points are given by

$$
\operatorname{dist}_{\mathrm{ft}(C)}\left(x_{i}, x_{j}\right)= \begin{cases}\operatorname{dist}_{C}\left(x_{i}, x_{j}\right)-l(E) & \text { if } j=k \\ \operatorname{dist}_{C}\left(x_{i}, x_{j}\right) & \text { if } j \neq k\end{cases}
$$

hence $\widetilde{\operatorname{pr}}\left(\varphi_{n}(C)\right)=\varphi_{n-1}(\mathrm{ft}(C))+\Phi_{n-1}\left(l(E) \cdot e_{k}\right)$, where e_{k} denotes the k th standard unit vector in \mathbb{R}^{n-1}. We conclude that $\widetilde{\mathrm{pr}} \circ \varphi_{n}=\varphi_{n-1} \circ \mathrm{ft}$. Hence, the diagram is commutative.

A. Gathmann, M. Kerber and H. Markwig

It remains to check that $\widetilde{\operatorname{pr}}\left(\Lambda_{n}\right) \subset \Lambda_{n-1}$. It suffices to check this on the generators v_{I}; and we can assume $n \in I$ since $v_{I}=v_{[n] \backslash I}$. We obtain

$$
\widetilde{\operatorname{pr}}\left(v_{I}\right)= \begin{cases}v_{I \backslash\{n\}} & \text { if }|I| \geq 3, \\ 0 & \text { if }|I|=2\end{cases}
$$

4. Tropical curves in \mathbb{R}^{r}

In this section we consider tropical analogues of the algebro-geometric moduli spaces of (rational) stable maps as introduced already in, e.g., [GM08]. Similarly to the classical case the points of these spaces correspond to marked abstract tropical curves together with a suitable map to some \mathbb{R}^{r}. We would like to make these spaces into tropical fans by considering the underlying abstract tropical curves and using the fan structure of $\mathcal{M}_{0, n, \text { trop }}$ developed in $\S 3$. In order for this to work it turns out however that we have to modify the construction of [GM08] slightly: in the underlying abstract tropical curves we have to label all ends and not just the contracted ends corresponding to the marked points.

Definition 4.1 (Tropical $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right)$). A (parametrized) labeled n-marked tropical curve in \mathbb{R}^{r} is a tuple $\left(\Gamma, x_{1}, \ldots, x_{N}, h\right)$ for some $N \geq n$, where $\left(\Gamma, x_{1}, \ldots, x_{N}\right)$ is an abstract N-marked tropical curve with exactly N ends and $h: \Gamma \rightarrow \mathbb{R}^{r}$ is a continuous map satisfying the following.
(i) On each edge of Γ the map h is of the form $h(t)=a+t \cdot v$ for some $a \in \mathbb{R}^{r}$ and $v \in \mathbb{Z}^{r}$. The integral vector v occurring in this equation if we pick for E the canonical parametrization starting at $V \in \partial E$ (see 3.3) will be denoted by $v(E, V)$ and called the direction of E (at V). If E is an unbounded edge and V its only boundary point we write $v(E)$ instead of $v(E, V)$ for simplicity.
(ii) For every vertex V of Γ we have the balancing condition

$$
\sum_{E \mid V \in \partial E} v(E, V)=0
$$

(iii) We have $v\left(x_{i}\right)=0$ for $i=1, \ldots, n$ (i.e. each of the first n ends is contracted by h), whereas $v\left(x_{i}\right) \neq 0$ for $i>n$ (i.e. the remaining $N-n$ ends are 'non-contracted ends').
Two labeled n-marked tropical curves $\left(\Gamma, x_{1}, \ldots, x_{N}, h\right)$ and $\left(\tilde{\Gamma}, \tilde{x}_{1}, \ldots, \tilde{x}_{N}, \tilde{h}\right)$ in \mathbb{R}^{r} are called isomorphic (and will from now on be identified) if there is an isomorphism $\varphi:\left(\Gamma, x_{1}, \ldots, x_{N}\right) \rightarrow$ $\left(\tilde{\Gamma}, \tilde{x}_{1}, \ldots, \tilde{x}_{N}\right)$ of the underlying abstract curves such that $\tilde{h} \circ \varphi=h$.

The degree of a labeled n-marked tropical curve is defined to be the $(N-n)$-tuple $\Delta=\left(v\left(x_{n+1}\right), \ldots, v\left(x_{N}\right)\right) \in\left(\mathbb{Z}^{r} \backslash\{0\}\right)^{N-n}$ of directions of its non-contracted ends. Its combinatorial type is given by the data of the combinatorial type of the underlying abstract marked tropical curve ($\Gamma, x_{1}, \ldots, x_{N}$) together with the directions of all of its (bounded as well as unbounded) edges. For the rest of this work the number N is always related to n and Δ by $N=n+\# \Delta$ and thus denotes the total number of (contracted or non-contracted) ends of an n-marked curve in \mathbb{R}^{r} of degree Δ.

The space of all labeled n-marked tropical curves of a given degree Δ in \mathbb{R}^{r} is denoted by $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right)$. For the special choice

$$
\Delta=\left(-e_{0}, \ldots,-e_{0}, \ldots,-e_{r}, \ldots,-e_{r}\right)
$$

with $e_{0}:=-e_{1}-\cdots-e_{r}$ and where each e_{i} occurs exactly d times we also denote this space by $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, d\right)$ and say that these curves have degree d.

Definition 4.2 (Evaluation map). For $i=1, \ldots, n$ the map

$$
\begin{aligned}
\mathrm{ev}_{i}: & \mathcal{M}_{0, n, \text { trop }}^{\mathrm{lab}}\left(\mathbb{R}^{r}, \Delta\right) \\
\left(\Gamma, x_{1}, \ldots x_{N}, h\right) & \longmapsto h\left(\mathbb{R}_{i}\right)
\end{aligned}
$$

is called the ith evaluation map (note that this is well defined for the contracted ends since for them $h\left(x_{i}\right)$ is a point in $\left.\mathbb{R}^{r}\right)$.

Construction 4.3 (Tropical $\mathcal{M}_{0, n, \text { trop }}\left(\mathbb{R}^{r}, \Delta\right)$). Let $N \geq n \geq 0$ and let $\Delta=\left(v_{n+1}, \ldots, v_{N}\right) \in$ $\left(\mathbb{Z}^{r} \backslash\{0\}\right)^{N-n}$. It is obvious from the definitions that the subgroup G of the symmetric group \mathbb{S}_{N-n} consisting of all permutations σ of $\{n+1, \ldots, N\}$ such that $v_{\sigma(i)}=v_{i}$ for all $i=n+1, \ldots, N$ acts on the space $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right)$ by relabeling the non-contracted ends. We denote the quotient space $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right) / G$ by $\mathcal{M}_{0, n, \text { trop }}\left(\mathbb{R}^{r}, \Delta\right)$ and call this the space of (unlabeled) n-marked tropical curves in \mathbb{R}^{r} of degree Δ in \mathbb{R}^{r}; its elements can obviously be thought of as n-marked tropical curves in \mathbb{R}^{r} for which we have only specified how many of its ends have a given direction, but where no labeling of these (non-contracted) ends is given. Consequently, when considering unlabeled curves we can (and usually will) think of Δ as a multiset $\left\{v_{n+1}, \ldots, v_{N}\right\}$ instead of as a vector $\left(v_{n+1}, \ldots, v_{N}\right)$.

Note that this definition of $\mathcal{M}_{0, n, \text { trop }}\left(\mathbb{R}^{r}, \Delta\right)$ agrees with that given in [GM08], and that for curves of degree d the group G above is precisely $\left(\mathbb{S}_{d}\right)^{r+1}$.

Remark 4.4. Proposition 2.1 of [NS06] tells us that there are only finitely many combinatorial types in any given moduli space $\mathcal{M}_{0, n, \text { trop }}\left(\mathbb{R}^{r}, \Delta\right)$ (and, thus, also in $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right)$). Proposition 2.11 of [GM08] states that the subset of curves of a fixed combinatorial type is a cone in a real vector space, and Example 2.13 of [GM08] shows how these cones are glued locally. (These results are only stated there for plane tropical curves, but it is obvious that they hold in the same way if we replace \mathbb{R}^{2} by \mathbb{R}^{r}.) Hence, the moduli spaces of labeled or unlabeled n-marked tropical curves in \mathbb{R}^{r} are polyhedral complexes.

Remark 4.5. We now show how one can use the tropical fan structure of $\mathcal{M}_{0, n, \text { trop }}$ to make the moduli spaces $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, d\right)$ of labeled curves in \mathbb{R}^{r} into tropical fans as well. The idea is the same as in the classical algebro-geometric case: the non-contracted ends of the tropical curves in \mathbb{R}^{r} can be thought of as their intersection points with the $r+1$ coordinate hyperplanes of \mathbb{P}^{r}; so passing from unlabeled to labeled curves corresponds to labeling these intersection points (which is one possible strategy to construct the moduli spaces of stable maps in algebraic geometry). The final moduli spaces of stable maps then arise by taking the quotient by the group of possible permutations of the labels. Note that this makes the spaces of stable maps into stacks instead of varieties (as the group action is not, in general, free); and similarly our moduli spaces of unlabeled tropical curves in \mathbb{R}^{r} can only be thought of as 'tropical stacks' instead of tropical varieties. To avoid this notion of tropical stacks (which has not been developed yet) we always work with labeled tropical curves in this paper. Of course this is not a problem for enumerative purposes since we can always count labeled curves first and then divide the result by $|G|$ in the end.

A. Gathmann, M. Kerber and H. Markwig

Now let us make the relation between the spaces $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right)$ and $\mathcal{M}_{0, N, \text { trop }}$ (with $N=n+\# \Delta$) precise. For this we consider the forgetful map

$$
\begin{aligned}
\psi: \quad \mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right) & \longrightarrow \mathcal{M}_{0, n+\# \Delta, \text { trop }} \\
\left(\Gamma, x_{1}, \ldots, x_{N}, h\right) & \longmapsto\left(\Gamma, x_{1}, \ldots, x_{N}\right)
\end{aligned}
$$

that forgets the map to \mathbb{R}^{r} but keeps all (contracted and non-contracted) unbounded edges. For this construction (and the rest of this paper) we assume for simplicity that $N \geq 3$, so that this map is well defined.

Lemma 4.6. The forgetful map ψ induces a bijection of combinatorial types of the two moduli spaces $\mathcal{M}_{0, n, \text { trop }}^{\mathrm{lab}}\left(\mathbb{R}^{r}, \Delta\right)$ and $\mathcal{M}_{0, N, \text { trop }}$ with $N=n+\# \Delta$.

Proof. It is clear that ψ induces a well-defined map between combinatorial types of labeled and abstract tropical curves. By definition the only additional data in the combinatorial type of a labeled curve compared to the underlying abstract curve is the directions of the edges. As the directions of the ends are fixed by Δ it therefore suffices to show that for a given (combinatorial type of a) graph Γ and fixed directions of the ends there is a unique choice of directions for the bounded edges compatible with the balancing condition of Definition 4.1.

We prove this by induction on N. The statement is clear for $N=3$ since there are no bounded edges in this case. In order to prove the induction step we show first that there is a vertex V_{1} of valence l with $l-1$ ends adjacent. Assume that there is no such vertex. Then

$$
N \leq \sum_{V}(\operatorname{val} V-2)=\sum_{V} \operatorname{val} V-2 \cdot k,
$$

where k denotes the number of vertices. As

$$
k=N-2-\sum_{V}(\operatorname{val} V-3)=N-2-\sum_{V} \operatorname{val} V+3 k
$$

we have

$$
N \leq \sum_{V} \operatorname{val} V-\sum_{V} \operatorname{val} V+N-2
$$

which is a contradiction.
So assume that the (contracted or non-contracted) ends $x_{i_{1}}, \ldots, x_{i_{l-1}}$ are adjacent at a vertex V_{1} of valence l. Let E be the only bounded edge which is adjacent to V_{1}. Then the directions of $x_{i_{1}}, \ldots, x_{i_{l-1}}$ are fixed (by Δ for the non-contracted ends and to be zero for the contracted ends), so there is a unique choice for the direction of E compatible with the balancing condition at V_{1}. Now remove the unbounded edges $x_{i_{1}}, \ldots, x_{i_{l-1}}$ from Γ and make E into an unbounded edge with this new fixed direction. This new graph has $N-(l-1)+1$ ends, which is less than N as l is at least three. Therefore, we can apply induction and conclude that the directions of all bounded edges are determined.

For the rest of this paper we assume for simplicity that $n>0$, i.e. that there is at least one contracted end.

Proposition 4.7. With notation as above, the map

$$
\begin{aligned}
\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right) & \rightarrow Q_{N} \times \mathbb{R}^{r} \\
C & \mapsto\left(\varphi_{N}(\psi(C)), \mathrm{ev}_{1}(C)\right)
\end{aligned}
$$

is an embedding whose image is the tropical fan $\varphi_{N}\left(\mathcal{M}_{0, N, \text { trop }}\right) \times \mathbb{R}^{r}$. So $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right)$ can be thought of as a tropical fan of dimension $r+N-3=r+n+\# \Delta-3$, namely as the fan $\mathcal{M}_{0, n+\# \Delta, \text { trop }} \times \mathbb{R}^{r}$.

Proof. It is clear that the given map is a continuous map of polyhedral complexes. By Lemma 4.6 it suffices to check injectivity and compute its image for a fixed combinatorial type α. As in [GM08, Proposition 2.11] the cell of $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right)$ corresponding to curves of type α is given by $\mathbb{R}_{>0}^{k} \times \mathbb{R}^{r}$, where the first positive coordinates are the lengths of the bounded edges, and the second r coordinates are the position of a root vertex (that we choose to be the vertex V adjacent to x_{1} here). This is true because we can recover the map h if we know the position $h(V)$ and the lengths of each bounded edge (in addition to the information of α). The map of the proposition obviously sends this cell bijectively to the product of the corresponding cell of $\varphi_{N}\left(\mathcal{M}_{0, N, \text { trop }}\right)$ and \mathbb{R}^{r} (since the position of the root vertex $h(V)$ is unrestricted).

Proposition 4.8. With the tropical fan structure of Proposition 4.7 the evaluation maps $\mathrm{ev}_{i}: \mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right) \rightarrow \mathbb{R}^{r}$ are morphisms of fans (in the sense of Definition 2.22).

Proof. As usual let $N=n+\# \Delta$, and identify $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right)$ with the space $\mathcal{M}_{0, N, \text { trop }} \times \mathbb{R}^{r}$ as in Proposition 4.7. For all $1 \leq i \leq n$, consider the linear map

$$
\begin{aligned}
\operatorname{ev}_{i}^{\prime}: \mathbb{R}^{\binom{N}{2}} \times \mathbb{R}^{r} & \longrightarrow \mathbb{R}^{r} \\
\left(a_{\{1,2\}}, \ldots, a_{\{N-1, N\}}, b\right) & \longmapsto b+\frac{1}{2} \sum_{\substack{k=2 \\
k \neq i}}^{N}\left(a_{\{1, k\}}-a_{\{i, k\}}\right) v_{k},
\end{aligned}
$$

where v_{k} is the direction of the k th end, i.e. $v_{1}=\cdots=v_{n}=0$ and $\left(v_{n+1}, \ldots, v_{N}\right)=\Delta$. $\operatorname{As~ev}_{i}^{\prime}\left(\operatorname{Im}\left(\Phi_{N}\right) \times\{0\}\right)=\{0\}$, the map ev i_{i}^{\prime} induces a linear map $\widetilde{\mathrm{ev}_{i}^{\prime}}: Q_{N} \times \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$.

We claim that $\left.\widetilde{\text { ev }_{i}^{\prime}}\right|_{\mathcal{M}_{0, N, \text { trop }} \times \mathbb{R}^{r}}$ is the map induced by ev_{i}, hence we have to show the commutativity of the following diagram.

As the case $i=1$ is trivial, and using the additivity of the function $\sum_{k=1}^{N} v_{k}\left(a_{1 k}-a_{i k}\right)$, we may assume that there exists only one edge E, and that this edge separates x_{1} and x_{i}. Let V be the vertex adjacent to x_{1}, and let $T_{1} \subset[N]$ be the set of ends lying on the connected component of $\Gamma \backslash\{E\}$ containing x_{1} (so that $1 \in T$ and $i \notin T$). Since by the balancing condition of Definition 4.1 the equation $v(E, V)=\sum_{k \notin T_{1}} v_{k}=-\sum_{k \in T_{1}} v_{k}$ holds, we obtain

$$
\begin{aligned}
\left.\widetilde{\mathrm{ev}_{i}^{\prime}} \circ\left(\varphi_{N} \times \mathrm{id}\right)\right)\left(\Gamma, x_{1}, \ldots, x_{N}, h\left(x_{1}\right)\right) & =h\left(x_{1}\right)+\frac{1}{2}\left[-\sum_{k \in T_{1}} l(E) v_{k}+\sum_{k \notin T_{1}} l(E) v_{k}\right] \\
& =h\left(x_{1}\right)+l(E) v(E, V) \\
& =h\left(x_{i}\right)
\end{aligned}
$$

A. Gathmann, M. Kerber and H. Markwig

as required (where $l(E)$ denotes the length of E). It remains to check that $\widetilde{\operatorname{ev}_{i}^{\prime}}\left(\Lambda_{N} \times \mathbb{Z}^{r}\right) \subset \mathbb{Z}^{r}$. It suffices to check that $\widetilde{\operatorname{ev}_{i}^{\prime}}\left(v_{I}, b\right) \in \mathbb{Z}^{r}$ for the generators v_{I} of Λ_{N} (see Construction 3.6) and all $b \in \mathbb{Z}^{r}$. Assuming $1 \in I$, we obtain

$$
\widetilde{\operatorname{ev}_{i}^{\prime}}\left(v_{I}, b\right)= \begin{cases}b-\sum_{k \in I} v_{k} & \text { if } i \notin I, \\ b & \text { if } i \in I,\end{cases}
$$

which finishes the proof as $v_{k} \in \mathbb{Z}^{r}$.

Example 4.9. As an example of the calculation in the above proof we consider the space $\mathcal{M}_{0,2, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{2}, 1\right)=\mathcal{M}_{0,5, \text { trop }} \times \mathbb{R}^{2}$, so that the curves have $N=5$ unbounded edges with directions $v_{1}=v_{2}=0, v_{3}=(1,1), v_{4}=(-1,0), v_{5}=(0,-1)$. We consider curves of the combinatorial type drawn in the following diagram.

We can read off immediately from the picture that $\mathrm{ev}_{2}(C)=h\left(x_{1}\right)+a(1,0)+b(0,-1)$.
On the other hand, we compute using the formula of the proof of Proposition 4.8:

$$
\begin{aligned}
& \left(\widetilde{\mathrm{ev}_{2}^{\prime}} \circ\left(\varphi_{N} \times \mathrm{id}\right)\right)\left(C, x_{1}, \ldots, x_{5}, h\left(x_{1}\right)\right) \\
& \quad=\widetilde{\operatorname{ev}_{2}^{\prime}}\left(\operatorname{dist}_{C}\left(x_{1}, x_{2}\right), \ldots, \operatorname{dist}_{C}\left(x_{4}, x_{5}\right), h\left(x_{1}\right)\right) \\
& =h\left(x_{1}\right)+\frac{1}{2} \sum_{k=3}^{5}\left(\operatorname{dist}_{C}\left(x_{1}, x_{k}\right)-\operatorname{dist}_{C}\left(x_{i}, x_{k}\right)\right) v_{k} \\
& =h\left(x_{1}\right)+\frac{1}{2}\left[(a-b) v_{3}+(0-(a+b)) v_{4}+((a+b)-0) v_{5}\right] \\
& =h\left(x_{1}\right)+\frac{1}{2}\left[a\left(v_{3}-v_{4}+v_{5}\right)+b\left(-v_{3}-v_{4}+v_{5}\right)\right] \\
& =h\left(x_{1}\right)+a(1,0)+b(0,-1) .
\end{aligned}
$$

Remark 4.10. Just as in $\S 3$ we can define forgetful maps on the moduli space of labeled tropical curves in \mathbb{R}^{r} as well. We can forget certain contracted ends, but we can also forget all noncontracted ends and the \mathbb{R}^{r} factor in $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right)=\mathcal{M}_{0, N, \text { trop }} \times \mathbb{R}^{r}$, which corresponds to forgetting the map h. The same argument as in Proposition 3.12 shows that these forgetful maps are morphisms as well.

Remark 4.11. In Proposition 4.7 we have constructed the tropical fan structure on the moduli space $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right)$ using the evaluation at the first (contracted) marked end. If we use a different contracted end x_{i} with $i \in\{2, \ldots, n\}$ instead, the two embeddings in $Q_{N} \times \mathbb{R}^{r}$ only differ by the addition of $\mathrm{ev}_{i}(C)-\mathrm{ev}_{1}(C)$ in the \mathbb{R}^{r} factor. As this is an isomorphism by Proposition 4.8 it follows that the tropical fan structure defined in Proposition 4.7 is natural in the sense that it does not depend on the choice of contracted end.

5. Applications

In this final section we want to apply our results to reprove and generalize two statements in tropical enumerative geometry that have occurred earlier in the literature. The first application simply concerns the number of rational tropical curves in some \mathbb{R}^{r} through given conditions.

Theorem 5.1. Let $r \geq 2$, let Δ be a degree of tropical curves in \mathbb{R}^{r} (i.e. a multiset of elements of $\mathbb{Z}^{r} \backslash\{0\}$ that sum up to zero), and let $n>0$ be such that $r+n+\# \Delta-3=n r$. Then the number of rational tropical curves of degree Δ in \mathbb{R}^{r} through n points in general position (counted with multiplicities) does not depend on the position of the points.

Proof. Let ev $:=\operatorname{ev}_{1} \times \cdots \times \mathrm{ev}_{n}: \mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right) \rightarrow \mathbb{R}^{n r}$. By Proposition 4.7 the space $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right)$ is a tropical fan, and by Proposition 4.8 the map ev is a morphism of fans (of the same dimension). As $\mathbb{R}^{n r}$ is irreducible we know from Corollary 2.26 that for general $Q \in \mathbb{R}^{n r}$ the number

$$
\sum_{C \in\left|\mathcal{M}_{0, n, \text { trop }}^{\mathrm{aba}}\left(\mathbb{R}^{r}, \Delta\right)\right|: \mathrm{ev}(C)=Q} \operatorname{mult}_{C} \mathrm{ev}
$$

does not depend on Q. So if we define the tropical multiplicity of a curve C occurring in this sum to be mult C_{C} ev we conclude that the number of labeled curves of degree Δ in \mathbb{R}^{r} through the n points in \mathbb{R}^{r} specified by Q does not depend on the choice of (general) Q. The statement for unlabeled curves now follows simply by dividing the resulting number by the order $|G|$ of the symmetry group of the non-contracted ends as in Construction 4.3.

Remark 5.2. In the proof of Theorem 5.1 we have defined the tropical multiplicity of a curve to be the multiplicity of the evaluation map as in Corollary 2.26. By Corollary 2.27 this multiplicity can be computed on a fixed cell of $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{r}, \Delta\right)$ as the absolute value of the determinant of the matrix obtained by expressing the evaluation map in terms of the basis on the source given by the vectors v_{I} (see Construction 3.6) that span the given cell. However, note that the coordinates on the given cell with respect to this basis are simply the lengths of the bounded edges. It follows that the determinant that we have to consider is precisely the same as that used in [GM08, §3]. In particular, in the case $r=2$ it follows by [GM08, Proposition 3.8] that our multiplicity of the curves agrees with Mikhalkin's usual notion of multiplicity as in [Mik05, Definitions 4.15 and 4.16].

Remark 5.3. For simplicity we have formulated Theorem 5.1 only for the case of counting tropical curves through given points. Of course, the very same proof can be used for counting curves through given affine linear subspaces (with rational slopes) if one replaces the evaluation maps ev_{i} by their compositions with the quotient maps $\mathbb{R}^{r} \rightarrow \mathbb{R}^{r} / L_{i}$, where L_{i} is the linear subspace chosen at the i th contracted end. This setup has been considered e.g. by Nishinou and Siebert in [NS06].

As our second application we consider the map occurring in the proof of the tropical Kontsevich formula (see [GM08, Proposition 4.4]).
Theorem 5.4. Let $d \geq 1$ and let $n=3 d$. Define

$$
\pi:=\operatorname{ev}_{1}^{1} \times \operatorname{ev}_{2}^{2} \times \mathrm{ev}_{3} \times \cdots \times \mathrm{ev}_{n} \times \mathrm{ft}_{4}: \mathcal{M}_{0, n, \text { trop }}\left(\mathbb{R}^{2}, d\right) \rightarrow \mathbb{R}^{2 n-2} \times \mathcal{M}_{0,4, \text { trop }}
$$

i.e. π describes the first coordinate of the first marked point, the second coordinate of the second marked point, both coordinates of the other marked points, and the point in $\mathcal{M}_{0,4, \text { trop }}$ defined by

A. Gathmann, M. Kerber and H. Markwig

the first four marked points. Then $\operatorname{deg}_{\pi}(Q):=\sum_{P \in \pi^{-1}(Q)} \operatorname{mult}_{\pi}(P)$ (where mult ${ }_{\pi}(P)$ is defined in [GM08, Definition 3.1]) does not depend on Q (as long as Q is in a general position).

Proof. We define the map

$$
\pi^{\prime}:=\operatorname{ev}_{1}^{1} \times \operatorname{ev}_{2}^{2} \times \mathrm{ev}_{3} \times \cdots \times \mathrm{ev}_{n} \times \mathrm{ft}_{4}: \mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{2}, d\right) \rightarrow \mathbb{R}^{2 n-2} \times \mathcal{M}_{0,4, \text { trop }}
$$

obtained from π by replacing $\mathcal{M}_{0, n, \text { trop }}\left(\mathbb{R}^{2}, d\right)$ by $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{2}, d\right)$. Then for each inverse image $P \in \mathcal{M}_{0, n, \text { trop }}\left(\mathbb{R}^{2}, d\right)$ with $\pi(P)=Q$ there exist $\left|\mathbb{S}_{d}^{3}\right|$ different $P^{\prime} \in \mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{2}, d\right)$ with $\pi^{\prime}\left(P^{\prime}\right)=$ Q of the same multiplicity $\operatorname{mult}_{\pi^{\prime}}\left(P^{\prime}\right)=\operatorname{mult}_{\pi}(P)$ (for the different labelings of the non-marked unbounded edges). Hence,

$$
\left|\mathbb{S}_{d}^{3}\right| \cdot \operatorname{deg}_{\pi}(Q)=\operatorname{deg}_{\pi^{\prime}}(Q)
$$

So it is enough to show that $\operatorname{deg}_{\pi^{\prime}}(Q)$ does not depend on Q. By Proposition 4.7 the space $\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{2}, d\right)$ is a tropical fan. By Example 3.10 the space $\mathcal{M}_{0,4, \text { trop }}$ is just a tropical line in \mathbb{R}^{2} and thus an irreducible tropical fan by Example 2.18. As $\mathbb{R}^{2 n-2}$ is also an irreducible tropical fan (consisting of just one cone), we can conclude using Proposition 2.20 that $Y:=\mathbb{R}^{2 n-2} \times \mathcal{M}_{0,4, \text { trop }}$ is an irreducible tropical fan. Obviously, the source and target of π^{\prime} are of the same dimension. As π^{\prime} is a morphism of fans by Propositions 3.12 and 4.8 we can apply Corollary 2.26 and conclude that

$$
\sum_{P \in\left|\mathcal{M}_{0, n, \text { trop }}^{\text {lab }}\left(\mathbb{R}^{2}, d\right)\right|: \pi^{\prime}(P)=Q} \operatorname{mult}_{P} \pi^{\prime}
$$

does not depend on Q. So it remains to show that $\operatorname{mult}_{P} \pi^{\prime}=\operatorname{mult}_{\pi^{\prime}}(P)$. This follows from Corollary 2.27 in the same way as in Remark 5.2.

Remark 5.5. In the same way as in Theorem 5.1 the result of Theorem 5.4 can of course be generalized immediately to the case of curves in \mathbb{R}^{r} of arbitrary degree Δ and with various linear subspaces as conditions.

References

BHV01 L. Billera, S. Holmes and K. Vogtmann, Geometry of the space of phylogenetic trees, Adv. Appl. Math. 27 (2001), 733-767.
BJSST07 T. Bogart, A. Jensen, D. Speyer, B. Sturmfels and R. Thomas, Computing tropical varieties, J. Symbolic Comput. 42 (2007), 54-73.

GM07 A. Gathmann and H. Markwig, The Caporaso-Harris formula and plane relative Gromov-Witten invariants in tropical geometry, Math. Ann. 338 (2007), 845-868.
GM08 A. Gathmann and H. Markwig, Kontsevich's formula and the WDVV equations in tropical geometry, Adv. Math. 217 (2008), 537-560.
Mik05 G. Mikhalkin, Enumerative tropical geometry in \mathbb{R}^{2}, J. Amer. Math. Soc. 18 (2005), 313-377.
Mik06 G. Mikhalkin, Tropical geometry and its applications, in Proc. int. conf. on mathematics, Madrid, Spain, 2006, 827-852 (math.AG/0601041).
Mik07 G. Mikhalkin, Moduli spaces of rational tropical curves, in Proc. Gökova geometry-topology conf. (GGT), Gökova, 2007, 39-51 (arXiv/0704.0839).
NS06 T. Nishinou and B. Siebert, Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006), 1-51.
Spe05 D. Speyer, Tropical geometry, PhD thesis, University of California, Berkeley, CA (2005).

SS04 D. Speyer and B. Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), 389-411.
ST08 B. Sturmfels and J. Tevelev, Elimination theory for tropical varieties, Math. Res. Lett. 15 (2008), 543-562.

Andreas Gathmann andreas@mathematik.uni-kl.de Fachbereich Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany

Michael Kerber mkerber@mathematik.uni-kl.de
Fachbereich Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany

Hannah Markwig markwig@ima.umn.edu
Institute for Mathematics and its Applications (IMA), University of Minnesota, Lind Hall 400, 207 Church Street SE, Minneapolis, MN 55455, USA

[^0]: Received 10 November 2007, accepted in final form 5 August 2008.
 2000 Mathematics Subject Classification 14N35, 51M20 (primary), 14N10 (secondary).
 Keywords: tropical geometry, tropical curves, enumerative geometry.
 The second author would like to thank the Institute for Mathematics and its Applications (IMA) in Minneapolis for their hospitality. The third author would like to thank Ionut Ciocan-Fontanine, Diane Maclagan and Grisha Mikhalkin for many helpful discussions.
 This journal is © Foundation Compositio Mathematica 2009.

