Tropical Mirror Symmetry for Elliptic Curves

Janko Boehm
joint with Kathrin Bringmann, Arne Buchholz, Hannah Markwig

Technische Universität Kaiserslautern

03 March 2014

Outline

- Mirror theorems
- Hurwitz numbers
- Feynman integrals
- Mirror symmetry for elliptic curves

Outline

- Mirror theorems
- Hurwitz numbers
- Feynman integrals
- Mirror symmetry for elliptic curves
- Tropical Hurwitz numbers
- Correspondence theorem
- Refined tropical mirror symmetry theorem

Outline

- Mirror theorems
- Hurwitz numbers
- Feynman integrals
- Mirror symmetry for elliptic curves
- Tropical Hurwitz numbers
- Correspondence theorem
- Refined tropical mirror symmetry theorem
- Quasimodularity
- Computational point of view

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in \mathbb{P}^{4}, \ldots) and $g \in \mathbb{N}_{0}$:

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in \mathbb{P}^{4}, \ldots) and $g \in \mathbb{N}_{0}$:

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in \mathbb{P}^{4}, \ldots) and $g \in \mathbb{N}_{0}$:

- Mirror constructions: Greene-Plesser '90, Batyrev '93,...

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in \mathbb{P}^{4}, \ldots) and $g \in \mathbb{N}_{0}$:

- Mirror constructions: Greene-Plesser '90, Batyrev '93,...
- String theory: Candelas-Horowitz-Strominger-Witten '85, Candelasde la Ossa-Green-Parkes ' $91, \ldots$

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in \mathbb{P}^{4}, \ldots) and $g \in \mathbb{N}_{0}$:

- Mirror constructions: Greene-Plesser '90, Batyrev '93,...
- String theory: Candelas-Horowitz-Strominger-Witten '85, Candelasde la Ossa-Green-Parkes ' $91, \ldots$
- Algebraic/symplectic geometry: Fulton-Pandharipande '95, Kontsevich '95, Behrend-Fantechi '97,...

Mirror theorems

> Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)
> $\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

$\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.
$\Rightarrow \mathbb{A}_{0}(q)=23 \cdot 5^{3}+\left(4874 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{2^{3}}\right) \cdot q+\left(2537651 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{3^{3}}\right) \cdot q^{2}+\ldots$

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)
$\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.
$\Rightarrow \mathbb{A}_{0}(q)=23 \cdot 5^{3}+\left(4874 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{2^{3}}\right) \cdot q+\left(2537651 \cdot 5^{3}+\frac{23.5^{3}}{3^{3}}\right) \cdot q^{2}+\ldots$
Is enumerative geometry result on X : number of lines, conics, cubics,... (number of genus 0 curves on X of degree d, delicate counting).

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

$\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.
$\Rightarrow \mathbb{A}_{0}(q)=23 \cdot 5^{3}+\left(4874 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{2^{3}}\right) \cdot q+\left(2537651 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{3^{3}}\right) \cdot q^{2}+\ldots$
Is enumerative geometry result on X : number of lines, conics, cubics,... (number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for $g=0,1$ in case of degree $n+1$ hypersurfaces in \mathbb{P}^{n} (Klemm-Pandharipande '07, Zinger '07)

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

$\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.
$\Rightarrow \mathbb{A}_{0}(q)=23 \cdot 5^{3}+\left(4874 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{2^{3}}\right) \cdot q+\left(2537651 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{3^{3}}\right) \cdot q^{2}+\ldots$
Is enumerative geometry result on X : number of lines, conics, cubics,... (number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for $g=0,1$ in case of degree $n+1$ hypersurfaces in \mathbb{P}^{n} (Klemm-Pandharipande '07, Zinger '07)

Questions:

- Mirror theorems for other Calabi-Yau varieties and $g \geq 2$?

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

$\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.
$\Rightarrow \mathbb{A}_{0}(q)=23 \cdot 5^{3}+\left(4874 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{2^{3}}\right) \cdot q+\left(2537651 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{3^{3}}\right) \cdot q^{2}+\ldots$
Is enumerative geometry result on X : number of lines, conics, cubics,... (number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for $g=0,1$ in case of degree $n+1$ hypersurfaces in \mathbb{P}^{n} (Klemm-Pandharipande '07, Zinger '07)

Questions:

- Mirror theorems for other Calabi-Yau varieties and $g \geq 2$?
- Geometric understanding of mirror theorem beyond combinatorics?

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

$\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.
$\Rightarrow \mathbb{A}_{0}(q)=23 \cdot 5^{3}+\left(4874 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{2^{3}}\right) \cdot q+\left(2537651 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{3^{3}}\right) \cdot q^{2}+\ldots$
Is enumerative geometry result on X : number of lines, conics, cubics,... (number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for $g=0,1$ in case of degree $n+1$ hypersurfaces in \mathbb{P}^{n} (Klemm-Pandharipande '07, Zinger '07)

Questions:

- Mirror theorems for other Calabi-Yau varieties and $g \geq 2$?
- Geometric understanding of mirror theorem beyond combinatorics?
- What are the B-model integrals?

Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).

Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).

Definition (Hurwitz numbers)

$N_{d, g}=\frac{1}{|\operatorname{Aut}(f)|}$-weighted number of degree d covers $f: C \rightarrow E$, where C is smooth of genus g and f has $2 g-2$ simple ramifications points.
according to Riemann-Hurwitz formula $2 g(C)-2=d \cdot(2 g(E)-2)+\sum_{P \in C}(e(P)-1)$

Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).

Definition (Hurwitz numbers)

$N_{d, g}=\frac{1}{|\operatorname{Aut}(f)|}$-weighted number of degree d covers $f: C \rightarrow E$, where C is smooth of genus g and f has $2 g-2$ simple ramifications points.
according to Riemann-Hurwitz formula $2 g(C)-2=d \cdot(2 g(E)-2)+\sum_{P \in C}(e(P)-1)$
$N_{d, 0}=0$, so have to look at $g \geq 1$ invariants!

Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).

Definition (Hurwitz numbers)

$N_{d, g}=\frac{1}{|\operatorname{Aut}(f)|}$-weighted number of degree d covers $f: C \rightarrow E$, where C is smooth of genus g and f has $2 g-2$ simple ramifications points.
according to Riemann-Hurwitz formula $2 g(C)-2=d \cdot(2 g(E)-2)+\sum_{P \in C}(e(P)-1)$
$N_{d, 0}=0$, so have to look at $g \geq 1$ invariants!
Hurwitz numbers are the Gromov-Witten invariants in A-model:
Theorem (special case of Okounkov-Pandharipande '06)

$$
N_{g, d}=\int_{\left[\bar{M}_{g, 2 g-2}(E, d)\right]} \psi_{1} \operatorname{ev}_{1}^{*}\left(x_{1}\right) \cdot \ldots \cdot \psi_{2 g-2} \operatorname{ev}_{2 g-2}^{*}\left(p_{2 g-2}\right)
$$

with Psi-classes $\psi_{i}=\operatorname{ch}_{\text {top }}\left(\Omega_{C, x_{i}}^{1} \mapsto\left(C, x_{1}, \ldots, x_{2 g-2}, f\right)\right)$.

Tropical point of view

How to understand all $N_{g, d}$? Pass to tropical geometry:

Tropical point of view

How to understand all $N_{g, d}$? Pass to tropical geometry:

Tropical point of view

How to understand all $N_{g, d}$? Pass to tropical geometry:

For $X=\mathbb{P}^{2}$ (building block of $C-Y$) and $g=0$:

- tropical mirror theorem (Gross '10)

Tropical point of view

How to understand all $N_{g, d}$? Pass to tropical geometry:

For $X=\mathbb{P}^{2}$ (building block of C-Y) and $g=0$:

- tropical mirror theorem (Gross '10)
- partial correspondence theorem (Markwig-Rau '09)

Our results

Our results

- Correspondence theorem for all g and d.

Our results

- Correspondence theorem for all g and d.
- Tropical mirror theorem for all g as corollary to

Our results

- Correspondence theorem for all g and d.
- Tropical mirror theorem for all g as corollary to
- refined tropical mirror theorem for each trivalent connected graph of genus g and branch type.

Our results

- Correspondence theorem for all g and d.
- Tropical mirror theorem for all g as corollary to
- refined tropical mirror theorem for each trivalent connected graph of genus g and branch type.

Why?

- Geometric insight into Feynman integrals.

Our results

- Correspondence theorem for all g and d.
- Tropical mirror theorem for all g as corollary to
- refined tropical mirror theorem for each trivalent connected graph of genus g and branch type.

Why?

- Geometric insight into Feynman integrals.
- Computationally accessible.

Our results

- Correspondence theorem for all g and d.
- Tropical mirror theorem for all g as corollary to
- refined tropical mirror theorem for each trivalent connected graph of genus g and branch type.

Why?

- Geometric insight into Feynman integrals.
- Computationally accessible.
- Can be generalized.

Our results

- Correspondence theorem for all g and d.
- Tropical mirror theorem for all g as corollary to
- refined tropical mirror theorem for each trivalent connected graph of genus g and branch type.

Why?

- Geometric insight into Feynman integrals.
- Computationally accessible.
- Can be generalized.
- Implications in number theory: refined generating functions are quasi-modular.

Feynman integrals (B-side)

Definition

A Feynman graph is a 3-valent, connected graph Γ of genus g.

Feynman integrals (B-side)

Definition

A Feynman graph is a 3-valent, connected graph Γ of genus g.

$$
\begin{gathered}
\operatorname{By} g(\Gamma)=1-|\operatorname{vert}(\Gamma)|+|\operatorname{edges}(\Gamma)| \text { and } 3|\operatorname{vert}(\Gamma)|=2|\operatorname{edges}(\Gamma)| \\
|\operatorname{vert}(\Gamma)|=2 g-2 \quad|\operatorname{edges}(\Gamma)|=3 g-3
\end{gathered}
$$

Feynman integrals (B-side)

Definition

A Feynman graph is a 3-valent, connected graph Γ of genus g.

$$
\begin{gathered}
\operatorname{By} g(\Gamma)=1-|\operatorname{vert}(\Gamma)|+|\operatorname{edges}(\Gamma)| \text { and } 3|\operatorname{vert}(\Gamma)|=2|\operatorname{edges}(\Gamma)| \\
|\operatorname{vert}(\Gamma)|=2 g-2 \quad|\operatorname{edges}(\Gamma)|=3 g-3
\end{gathered}
$$

Fix labeling z_{i} for vertices and q_{i} for edges.

Feynman integrals (B-side)

Definition

A Feynman graph is a 3-valent, connected graph Γ of genus g.

$$
\begin{gathered}
\operatorname{By} g(\Gamma)=1-|\operatorname{vert}(\Gamma)|+|\operatorname{edges}(\Gamma)| \text { and } 3|\operatorname{vert}(\Gamma)|=2|\operatorname{edges}(\Gamma)| \\
|\operatorname{vert}(\Gamma)|=2 g-2 \quad|\operatorname{edges}(\Gamma)|=3 g-3
\end{gathered}
$$

Fix labeling z_{i} for vertices and q_{i} for edges.

Example

Feynman integrals (B-side)

Definition (Propagator)

$$
P(z, q)=-\frac{1}{4 \pi^{2}} \wp(z, q)-\frac{1}{12} E_{2}(q) \quad \text { for } z \in E=\mathbb{C} / \Lambda
$$

Feynman integrals (B-side)

Definition (Propagator)

$$
P(z, q)=-\frac{1}{4 \pi^{2}} \wp(z, q)-\frac{1}{12} E_{2}(q) \quad \text { for } z \in E=\mathbb{C} / \Lambda
$$

with Weierstra β - \wp-function $\wp=\frac{1}{z^{2}}+\ldots$ and the Eisenstein series

$$
E_{2}=1-24 \sum_{d=1}^{\infty} \sigma_{1}(d) q^{2 d}=1-24 q^{2}-72 q^{4}-\ldots \quad \sigma_{1}(d)=\sum_{m \mid d} m
$$

Feynman integrals (B-side)

Definition (Propagator)

$$
P(z, q)=-\frac{1}{4 \pi^{2}} \wp(z, q)-\frac{1}{12} E_{2}(q) \quad \text { for } z \in E=C / \Lambda
$$

with Weierstra β - \wp-function $\wp=\frac{1}{z^{2}}+\ldots$ and the Eisenstein series

$$
E_{2}=1-24 \sum_{d=1}^{\infty} \sigma_{1}(d) q^{2 d}=1-24 q^{2}-72 q^{4}-\ldots \quad \sigma_{1}(d)=\sum_{m \mid d} m
$$

Definition (Feynman integral)

For ordering $\Omega \in S_{2 g-2}$ of integration paths on E

$$
I_{\Gamma, \Omega}=\int_{\gamma_{2 g-2}} \ldots \int_{\gamma_{1}}\left(\prod_{e \in \operatorname{edges}(\Gamma)} P_{k}\left(z_{e}^{+}-z_{e}^{-}, q\right)\right) d z_{\Omega(1)} \ldots d z_{\Omega(2 g-2)}
$$

Mirror symmetry for elliptic curves

Example

For

we have to integrate

$$
P\left(z_{1}-z_{2}, q\right)^{2} \cdot P\left(z_{1}-z_{3}, q\right) \cdot P\left(z_{2}-z_{4}, q\right) \cdot P\left(z_{3}-z_{4}, q\right)^{2}
$$

Mirror symmetry for elliptic curves

Example

For

we have to integrate

$$
P\left(z_{1}-z_{2}, q\right)^{2} \cdot P\left(z_{1}-z_{3}, q\right) \cdot P\left(z_{2}-z_{4}, q\right) \cdot P\left(z_{3}-z_{4}, q\right)^{2}
$$

Theorem (Dijkgraaf '96)
For $g>1$

$$
\sum_{d} N_{g, d} q^{2 d}=\sum_{g(\Gamma)=g} \frac{1}{|\operatorname{Aut}(\Gamma)|} \sum_{\Omega} l_{\Gamma, \Omega}(q)
$$

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

- π has degree d,

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

- π has degree d,
- C is a tropical curve (metric 3-valent graph) of genus g,

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

- π has degree d,
- C is a tropical curve (metric 3 -valent graph) of genus g,
- has $2 g-2$ simple ramifications (3-valent vertices) at fixed points $p_{1}, \ldots, p_{2 g-2} \in E$,

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

- π has degree d,
- C is a tropical curve (metric 3 -valent graph) of genus g,
- has $2 g-2$ simple ramifications (3-valent vertices) at fixed points $p_{1}, \ldots, p_{2 g-2} \in E$,
with multiplicity $\operatorname{mult}(\pi)=\frac{1}{|\operatorname{Aut}(\pi)|} \cdot \prod_{e \in \operatorname{edges}(C)} w(e)$

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

- π has degree d,
- C is a tropical curve (metric 3 -valent graph) of genus g,
- has $2 g-2$ simple ramifications (3-valent vertices) at fixed points $p_{1}, \ldots, p_{2 g-2} \in E$,
with multiplicity $\operatorname{mult}(\pi)=\frac{1}{|\operatorname{Aut}(\pi)|} \cdot \prod_{e \in \operatorname{edges}(C)} w(e)$
Tropical covers are balanced w.r.t. weights $w(e)$:

Correspondence Theorem

As a direct generalization of (Cavalieri-Johnson-Markwig '10) and (Bertrand-Brugallé-Mikhalkin '11) obtain correspondence theorem:

Correspondence Theorem

As a direct generalization of (Cavalieri-Johnson-Markwig '10) and (Bertrand-Brugallé-Mikhalkin '11) obtain correspondence theorem:

Theorem (BBBM '13)

$N_{d, g}=N_{d, g}^{\text {trop }}$ by correspondence of tropical and algebraic covers.

Correspondence Theorem

As a direct generalization of (Cavalieri-Johnson-Markwig '10) and (Bertrand-Brugallé-Mikhalkin '11) obtain correspondence theorem:

Theorem (BBBM '13)

$N_{d, g}=N_{d, g}^{\text {trop }}$ by correspondence of tropical and algebraic covers.

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=?
$$

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=?
$$

Two trivalent, connected combinatorial types (non-metric graphs)

of genus $g=3$ with

- $2 g-2=4$ vertices
- $3 g-3=6$ edges
- no bridges

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=?
$$

Two trivalent, connected combinatorial types (non-metric graphs)

of genus $g=3$ with

- $2 g-2=4$ vertices
- $3 g-3=6$ edges
- no bridges (weight 0 edges would be contracted):

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=
$$

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=
$$

$$
\operatorname{mult}(\pi)=2^{2} \cdot 3^{2}=36
$$

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=
$$

$$
\operatorname{mult}(\pi)=2^{2} \cdot 3^{2}=36 \quad \operatorname{mult}(\pi)=\frac{1}{2} \cdot 2^{2} \cdot 3=6
$$

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=
$$

$\operatorname{mult}(\pi)=2^{2} \cdot 3^{2}=36 \quad \operatorname{mult}(\pi)=\frac{1}{2} \cdot 2^{2} \cdot 3=6$
$\operatorname{mult}(\pi)=2^{2} \cdot 3=12$

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=
$$

$$
\operatorname{mult}(\pi)=2^{2} \cdot 3^{2}=36 \quad \operatorname{mult}(\pi)=\frac{1}{2} \cdot 2^{2} \cdot 3=6 \quad \operatorname{mult}(\pi)=2^{2} \cdot 3=12
$$

$\operatorname{mult}(\pi)=\frac{1}{2} \cdot 2 \cdot 2=2$

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=
$$

$$
\operatorname{mult}(\pi)=2^{2} \cdot 3^{2}=36 \quad \operatorname{mult}(\pi)=\frac{1}{2} \cdot 2^{2} \cdot 3=6 \quad \operatorname{mult}(\pi)=2^{2} \cdot 3=12
$$

4.

$\operatorname{mult}(\pi)=\frac{1}{2} \cdot 2 \cdot 2=2$

$$
\operatorname{mult}(\pi)=2^{2}=4
$$

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=112+48=160
$$

$\operatorname{mult}(\pi)=2^{2} \cdot 3^{2}=36 \quad \operatorname{mult}(\pi)=\frac{1}{2} \cdot 2^{2} \cdot 3=6 \quad \operatorname{mult}(\pi)=2^{2} \cdot 3=12$

$\operatorname{mult}(\pi)=\frac{1}{2} \cdot 2 \cdot 2=2$

$$
\operatorname{mult}(\pi)=2^{2}=4
$$

Labeled tropical covers (refined A-side)

Fix a base point $p_{0} \in E$.
Let Γ be a Feynman graph, $\underline{a}=\left(a_{1}, \ldots, a_{3 g-3}\right) \in \mathbb{N}^{3 g-3}$, and $\Omega \in S_{2 g-2}$.

Definition

$N_{a, \Gamma, \Omega}^{\text {trop }}=$ weighted number of labeled tropical covers $\pi: C \rightarrow E$ such that

Labeled tropical covers (refined A-side)

Fix a base point $p_{0} \in E$.
Let Γ be a Feynman graph, $\underline{a}=\left(a_{1}, \ldots, a_{3 g-3}\right) \in \mathbb{N}^{3 g-3}$, and $\Omega \in S_{2 g-2}$.

Definition

$N_{a, \Gamma, \Omega}^{\text {trop }}=$ weighted number of labeled tropical covers $\pi: C \rightarrow E$ such that

- a_{k} is number of points in $\pi^{-1}\left(p_{0}\right) \cap q_{k}$

Labeled tropical covers (refined A-side)

Fix a base point $p_{0} \in E$.
Let Γ be a Feynman graph, $\underline{a}=\left(a_{1}, \ldots, a_{3 g-3}\right) \in \mathbb{N}^{3 g-3}$, and $\Omega \in S_{2 g-2}$.

Definition

$N_{a, \Gamma, \Omega}^{\text {trop }}=$ weighted number of labeled tropical covers $\pi: C \rightarrow E$ such that

- a_{k} is number of points in $\pi^{-1}\left(p_{0}\right) \cap q_{k}$
- π has $2 g-2$ simple ramifications (3-valent vertices) at fixed points $p_{1}, \ldots, p_{2 g-2} \in E$,
- C is a tropical curve of combinatorial type Γ,

Labeled tropical covers (refined A-side)

Fix a base point $p_{0} \in E$.
Let Γ be a Feynman graph, $\underline{a}=\left(a_{1}, \ldots, a_{3 g-3}\right) \in \mathbb{N}^{3 g-3}$, and $\Omega \in S_{2 g-2}$.

Definition

$N_{a, \Gamma, \Omega}^{\text {trop }}=$ weighted number of labeled tropical covers $\pi: C \rightarrow E$ such that

- a_{k} is number of points in $\pi^{-1}\left(p_{0}\right) \cap q_{k}$
- π has $2 g-2$ simple ramifications (3-valent vertices) at fixed points $p_{1}, \ldots, p_{2 g-2} \in E$,
- C is a tropical curve of combinatorial type Γ,
- $\pi\left(x_{\Omega(i)}\right)=p_{i}$

Labeled tropical covers (refined A-side)

Fix a base point $p_{0} \in E$.
Let Γ be a Feynman graph, $\underline{a}=\left(a_{1}, \ldots, a_{3 g-3}\right) \in \mathbb{N}^{3 g-3}$, and $\Omega \in S_{2 g-2}$.

Definition

$N_{a, \Gamma, \Omega}^{\text {trop }}=$ weighted number of labeled tropical covers $\pi: C \rightarrow E$ such that

- a_{k} is number of points in $\pi^{-1}\left(p_{0}\right) \cap q_{k}$
- π has $2 g-2$ simple ramifications (3-valent vertices) at fixed points $p_{1}, \ldots, p_{2 g-2} \in E$,
- C is a tropical curve of combinatorial type Γ,
- $\pi\left(x_{\Omega(i)}\right)=p_{i}$
counted with multiplicity

$$
\operatorname{mult}(\pi)=\prod_{e \in \operatorname{edges}(C)} w(e)
$$

Example

Example

$$
\underline{a}=(0,1,1,0,1,0) \quad \Gamma=q_{2} \underbrace{\left.q_{3} \underbrace{}_{q_{4}} \overbrace{x_{4}}^{q_{1}}\right|_{q_{5}} ^{q_{1}} \quad q_{6} \quad \Omega=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2
\end{array}\right), ~\left(x_{3}\right.}_{x_{2}}
$$

Example

$$
\underline{a}=(0,1,1,0,1,0) \quad \Gamma=q_{2}(\underbrace{q_{3}}_{x_{2}} \underbrace{q_{1}}_{q_{4}} \overbrace{x_{4}}^{q_{1}} \quad q_{6} \quad \Omega=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2
\end{array}\right)
$$

Example

$$
\underline{a}=(0,1,1,0,1,0) \quad \Gamma=q_{2} \underbrace{\left.q_{3} \underbrace{}_{q_{4}} \overbrace{x_{4}}^{q_{1}}\right|_{q_{5}} ^{q_{1}} \quad q_{6} \quad \Omega=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2
\end{array}\right), ~\left(x_{3}\right.}_{x_{2}}
$$

Example

$$
\underline{a}=(0,1,1,0,1,0) \quad \Gamma=q_{2}(\left.\underbrace{q_{3}}_{x_{2}} \underbrace{q_{1}}_{x_{4}}\right|_{q_{5}} ^{q_{1}} \quad q_{6} \quad \Omega=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{array}\right)
$$

$N_{a, \Gamma, \Omega}^{\text {trop }}=$

$12=16$

Refined Feynman integrals

Definition (Refined Feynman integrals)

$$
\digamma_{\Gamma, \Omega}\left(q_{1}, \ldots, q_{3 g-3}\right)=\int_{\gamma_{2 g-2}} \ldots \int_{\gamma_{1}}\left(\prod_{k=1}^{3 g-3} P_{k}\left(z_{k}^{+}-z_{k}^{-}, q_{k}\right)\right) d z_{\Omega(1)} \ldots d z_{\Omega(2 g-2)}
$$

Refined Feynman integrals

Definition (Refined Feynman integrals)

$\tau_{\Gamma, \Omega}\left(q_{1}, \ldots, q_{3 g-3}\right)=\int_{\gamma_{2 g-2}} \ldots \int_{\gamma_{1}}\left(\prod_{k=1}^{3 g-3} P_{k}\left(z_{k}^{+}-z_{k}^{-}, q_{k}\right)\right) d z_{\Omega(1)} \ldots d z_{\Omega(2 g-2)}$

Example

For

we have to integrate
$P\left(z_{1}-z_{2}, q_{1}\right) \cdot P\left(z_{1}-z_{2}, q_{2}\right) \cdot P\left(z_{1}-z_{3}, q_{3}\right) \cdot P\left(z_{2}-z_{4}, q_{4}\right) \cdot P\left(z_{3}-z_{4}, q_{5}\right) \cdot P\left(z_{3}-z_{4}, q_{6}\right)$

Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM '13)

$$
\sum_{\underline{a}} N_{\underline{a}, \Gamma, \Omega}^{\text {trop }} q^{2 \underline{a}}=l_{\Gamma, \Omega}\left(q_{1}, \ldots, q_{3 g-3}\right)
$$

Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM '13)

$$
\sum_{\underline{a}} N_{\underline{a}, \Gamma, \Omega}^{\text {trop }} q^{2 \underline{a}}=l_{\Gamma, \Omega}\left(q_{1}, \ldots, q_{3 g-3}\right)
$$

Setting $q_{i}=q$ we get:

Corollary (Tropical mirror theorem)

$$
\sum_{d} N_{d, g}^{\text {trop }} q^{2 d}=\sum_{\Gamma} \frac{1}{|\operatorname{Aut}(\Gamma)|} \sum_{\Omega} l_{\Gamma, \Omega}(q)
$$

Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM '13)

$$
\sum_{\underline{a}} N_{\underline{a}, \Gamma, \Omega}^{t r o p} q^{2 \underline{a}}=I_{\Gamma, \Omega}\left(q_{1}, \ldots, q_{3 g-3}\right)
$$

Setting $q_{i}=q$ we get:
Corollary (Tropical mirror theorem)

$$
\sum_{d} N_{d, g}^{\text {trop }} q^{2 d}=\sum_{\Gamma} \frac{1}{|\operatorname{Aut}(\Gamma)|} \sum_{\Omega} I_{\Gamma, \Omega}(q)
$$

Together with the correspondence theorem this proves:

Corollary (Mirror symmetry for elliptic curves)

For elliptic curves $\mathbb{A}_{g}=\mathbb{B}_{g}$ for all g.

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$,

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 ,

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 , integral becomes residue,

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 , integral becomes residue, difference becomes quotient,

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 , integral becomes residue, difference becomes quotient, derivative of inverse function yields factor $\frac{1}{x_{k}}$,

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 , integral becomes residue, difference becomes quotient, derivative of inverse function yields factor $\frac{1}{x_{k}}$, propagator becomes:

Theorem (BBBM '13)

$$
P(x, q)=\sum_{w=1}^{\infty} w x^{2 w}+\sum_{a=1}^{\infty} \sum_{w \mid a} w\left(x^{2 w}+x^{-2 w}\right) q^{2 a}
$$

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 , integral becomes residue, difference becomes quotient, derivative of inverse function yields factor $\frac{1}{x_{k}}$, propagator becomes:

Theorem (BBBM '13)

$$
P(x, q)=\sum_{w=1}^{\infty} w x^{2 w}+\sum_{a=1}^{\infty} \sum_{w \mid a} w\left(x^{2 w}+x^{-2 w}\right) q^{2 a}
$$

Define

$$
P_{a}(x, y, q)= \begin{cases}\frac{x^{2} y^{2}}{\left(x^{2}-y^{2}\right)^{2}} & \text { for } a=0 \\ \sum_{w \mid a} w \frac{x^{4 w}+y^{4 w}}{(x y)^{2 w}} & \text { for } a>0\end{cases}
$$

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 , integral becomes residue, difference becomes quotient, derivative of inverse function yields factor $\frac{1}{x_{k}}$, propagator becomes:

Theorem (BBBM '13)

$$
P(x, q)=\sum_{w=1}^{\infty} w x^{2 w}+\sum_{a=1}^{\infty} \sum_{w \mid a} w\left(x^{2 w}+x^{-2 w}\right) q^{2 a}
$$

Define

$$
P_{a}(x, y, q)= \begin{cases}\frac{x^{2} y^{2}}{\left(x^{2}-y^{2}\right)^{2}} & \text { for } a=0 \\ \sum_{w \mid a} w \frac{x^{4 w}+y^{4 w}}{(x y)^{2 w}} & \text { for } a>0\end{cases}
$$

Corollary

$$
N_{\underline{a}, \Gamma, \Omega}^{\text {trop }}=\operatorname{const}_{x_{\Omega(2 g-2)}} \ldots \operatorname{const}_{\chi_{\Omega(1)}} \prod_{k=1}^{3 g-3} P_{a_{k}}\left(x_{k}^{+}, x_{k}^{-}, q_{k}\right)
$$

Implementation of Feynman integrals in Singular

Example

SINGULAR
A Computer Algebra System for Polynomial Computations
by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann
FB Mathematik der Universitaet, D-67653 Kaiserslautern

$0<l^{/}$| Development |
| :--- |
| version 4 |
| Dec 2013 |

Implementation of Feynman integrals in Singular

Example

SINGULAR
A Computer Algebra System for Polynomial Computations
by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann
FB Mathematik der Universitaet, D-67653 Kaiserslautern
> LIB "ellipticcovers.lib";

Implementation of Feynman integrals in Singular

Example

SINGULAR

A Computer Algebra System for Polynomial Computations

$_{0<1}^{/}$| Development 2013 |
| :--- |

> LIB "ellipticcovers.lib";
$>$ graph Gamma $=$ makeGraph(list(1,2,3,4)

```
    list(list(1, 3),list (1, 2),list(1, 2),list(2,4),list(3,4),list(3,4)));
```


Implementation of Feynman integrals in Singular

Example

SINGULAR

A Computer Algebra System for Polynomial Computations

> LIB "ellipticcovers.lib";
$>$ graph Gamma $=$ makeGraph(list(1,2,3,4)

$$
\text { list }(\operatorname{list}(1,3), \operatorname{list}(1,2), \operatorname{list}(1,2), \operatorname{list}(2,4), \operatorname{list}(3,4), \operatorname{list}(3,4))) \text {; }
$$

$>$ Gamma;
$[[1,3],[1,2],[1,2],[2,4],[3,4],[3,4]]$
Graph with 4 vertices and 6 edges

Implementation of Feynman integrals in Singular

Example

SINGULAR

A Computer Algebra System for Polynomial Computations

> LIB "ellipticcovers.lib";
$>$ graph Gamma $=$ makeGraph(list(1,2,3,4)

$$
\text { list }(\operatorname{list}(1,3), \operatorname{list}(1,2), \operatorname{list}(1,2), \operatorname{list}(2,4), \operatorname{list}(3,4), \operatorname{list}(3,4))) \text {; }
$$

$>$ Gamma;
$[[1,3],[1,2],[1,2],[2,4],[3,4],[3,4]]$
Graph with 4 vertices and 6 edges
$>$ ring $R=(0, x(1 . .4)), q(1 . .6), d p$;

Implementation of Feynman integrals in Singular

Example

SINGULAR

A Computer Algebra System for Polynomial Computations

> LIB "ellipticcovers.lib";
$>$ graph Gamma $=$ makeGraph(list (1,2,3,4) ,

```
    list(list(1, 3),list (1, 2),list(1, 2),list(2,4),list(3,4),list(3,4)));
```

$>$ Gamma;
$[[1,3],[1,2],[1,2],[2,4],[3,4],[3,4]]$
Graph with 4 vertices and 6 edges
$>\operatorname{ring} \mathrm{R}=(0, \mathrm{x}(1 . .4)), \mathrm{q}(1 . .6), \mathrm{dp}$;
$>$ gromovWitten (Gamma,list(0,1,1,0,1,0));
32

Implementation of Feynman integrals in Singular

Example

SINGULAR

A Computer Algebra System for Polynomial Computations

> LIB "ellipticcovers.lib";
$>$ graph Gamma $=$ makeGraph(list (1,2,3,4) ,

```
    list(list(1, 3),list (1, 2),list(1, 2),list(2,4),list(3,4),list(3,4)));
```

$>$ Gamma;
$[[1,3],[1,2],[1,2],[2,4],[3,4],[3,4]]$
Graph with 4 vertices and 6 edges
$>\operatorname{ring} \mathrm{R}=(0, \mathrm{x}(1 . .4)), \mathrm{q}(1 . .6), \mathrm{dp}$;
$>$ gromovWitten (Gamma,list(0,1,1,0,1,0));
32
$>$ generatingFunction (Gamma,2);
$8 * \mathrm{q}(1) \wedge 2+8 * q(2) * \mathrm{q}(3)+8 * \mathrm{q}(4)^{\wedge} 2+8 * \mathrm{q}(5) * \mathrm{q}(6)$

Quasi-modularity

Corollary (BBBM '13, generalization of Kaneko-Zagier '95)

For all Feynman graphs Γ of genus g and all orders Ω the function $l_{\Gamma, \Omega}$ is a quasi-modular form ($I_{\Gamma, \Omega} \in \mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right]$) of weight $6 g-6$.

Eisenstein series $\quad E_{2 k}=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{2 n} \quad \sigma_{k-1}(n)=\sum_{m \mid n} m^{k-1}$

Quasi-modularity

Corollary (BBBM '13, generalization of Kaneko-Zagier '95)

For all Feynman graphs Γ of genus g and all orders Ω the function $I_{\Gamma, \Omega}$ is a quasi-modular form ($I_{\Gamma, \Omega} \in \mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right]$) of weight $6 g-6$.

Eisenstein series $\quad E_{2 k}=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{2 n} \quad \sigma_{k-1}(n)=\sum_{m \mid n} m^{k-1}$ $E_{4}=1+240 q^{2}+2160 q^{4}+\ldots \quad E_{6}=1-504 q^{2}-16632 q^{4}-\ldots$

Example

For $\Gamma=\circlearrowleft$ Singular gives

$$
I_{\Gamma}=32 q^{4}+1792 q^{6}+25344 q^{8}+182272 q^{10}+886656 q^{12}+O\left(q^{14}\right)
$$

Quasi-modularity

Corollary (BBBM '13, generalization of Kaneko-Zagier '95)

For all Feynman graphs Γ of genus g and all orders Ω the function $I_{\Gamma, \Omega}$ is a quasi-modular form ($I_{\Gamma, \Omega} \in \mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right]$) of weight $6 g-6$.

Eisenstein series $\quad E_{2 k}=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{2 n} \quad \sigma_{k-1}(n)=\sum_{m \mid n} m^{k-1}$ $E_{4}=1+240 q^{2}+2160 q^{4}+\ldots \quad E_{6}=1-504 q^{2}-16632 q^{4}-\ldots$

Example

For $\Gamma=\circlearrowleft$ Singular gives

$$
I_{\Gamma}=32 q^{4}+1792 q^{6}+25344 q^{8}+182272 q^{10}+886656 q^{12}+O\left(q^{14}\right)
$$

hence, by quasi-modularity,

$$
I_{\Gamma}=\frac{16}{1492992}\left(4 E_{6}^{2}+4 E_{4}^{3}-12 E_{2} E_{4} E_{6}-3 E_{2}^{2} E_{4}^{2}+4 E_{2}^{3} E_{6}+6 E_{2}^{4} E_{4}-3 E_{2}^{6}\right) .
$$

Quasi-modularity

Corollary (BBBM '13, generalization of Kaneko-Zagier '95)

For all Feynman graphs Γ of genus g and all orders Ω the function $I_{\Gamma, \Omega}$ is a quasi-modular form ($I_{\Gamma, \Omega} \in \mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right]$) of weight $6 g-6$.

Eisenstein series $\quad E_{2 k}=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{2 n} \quad \sigma_{k-1}(n)=\sum_{m \mid n} m^{k-1}$ $E_{4}=1+240 q^{2}+2160 q^{4}+\ldots \quad E_{6}=1-504 q^{2}-16632 q^{4}-\ldots$

Example

For $\Gamma=\circlearrowleft$ Singular gives

$$
I_{\Gamma}=32 q^{4}+1792 q^{6}+25344 q^{8}+182272 q^{10}+886656 q^{12}+O\left(q^{14}\right)
$$

hence, by quasi-modularity,

$$
t_{\Gamma}=\frac{16}{1492992}\left(4 E_{6}^{2}+4 E_{4}^{3}-12 E_{2} E_{4} E_{6}-3 E_{2}^{2} E_{4}^{2}+4 E_{2}^{3} E_{6}+6 E_{2}^{4} E_{4}-3 E_{2}^{6}\right) .
$$

\Rightarrow Can compute $I_{\Gamma}(q)$ fast up to arbitrary high order.

References

图 J. Böhm, K. Bringmann, A. Buchholz, H. Markwig, Tropical mirror symmetry for elliptic curves, http://arxiv.org/abs/1309.5893 (2013).
J. Böhm, K. Bringmann, A. Buchholz, H. Markwig, ellipticcovers.lib. A Singular 4 library for Gromov-Witten invariants of elliptic curves, Singular distribution.
(1. Aivental, Equivariant Gromov-Witten invariants, Internat. Math.

Res. Notices 13 (1996).
围 B. Lian, K. Liu, S. Yau, Mirror principle I, Asian J. Math. 1 (1997).
R A. Gathmann, Relative Gromov-Witten invariants and the mirror formula, Math. Ann. 325 (2003).

R A. Okounkov, R. Pandharipande, Gromov-Witten theory, Hurwitz theory and completed cycles, Ann. Math. 163 (2006).

References

R. Dijkgraaf, Mirror symmetry and elliptic curves, in Progr. Math. 129 (1995).

R M. Roth, N. Yui, Mirror symmetry for elliptic curves: the A-model (fermionic) counting, Clay Math. Proc. 12 (2010).
(1) M. Gross, Mirror symmetry for \mathbb{P}^{2} and tropical geometry, Adv. Math. 224 (2010).

國 B. Bertrand, E. Brugallé, G. Mikhalkin, Tropical open Hurwitz numbers, Rend. Semin. Mat. Univ. Padova 125 (2011).
圖 R. Cavalieri, P. Johnson, H. Markwig, Tropical Hurwitz numbers, J. Algebr. Comb. 32 (2010).

- M. Kaneko, D. Zagier, A generalized Jacobi theta function and quasimodular forms, in Progr. Math. 129 (1995).

