Tropical Mirror Symmetry for Elliptic Curves

Janko Boehm joint with Kathrin Bringmann, Arne Buchholz, Hannah Markwig

Technische Universität Kaiserslautern

03 March 2014

Outline

- Mirror theorems
- Hurwitz numbers
- Feynman integrals
- Mirror symmetry for elliptic curves

Outline

- Mirror theorems
- Hurwitz numbers
- Feynman integrals
- Mirror symmetry for elliptic curves
- Tropical Hurwitz numbers
- Correspondence theorem
- Refined tropical mirror symmetry theorem

Outline

- Mirror theorems
- Hurwitz numbers
- Feynman integrals
- Mirror symmetry for elliptic curves
- Tropical Hurwitz numbers
- Correspondence theorem
- Refined tropical mirror symmetry theorem
- Quasimodularity
- Computational point of view

For Calabi-Yau variety X (elliptic curve, quintic in $\mathbb{P}^4,...$) and $g\in\mathbb{N}_0$:

For Calabi-Yau variety X (elliptic curve, quintic in $\mathbb{P}^4,...$) and $g\in\mathbb{N}_0$:

For Calabi-Yau variety X (elliptic curve, quintic in $\mathbb{P}^4,...$) and $g\in\mathbb{N}_0$:

• Mirror constructions: Greene-Plesser '90, Batyrev '93,...

For Calabi-Yau variety X (elliptic curve, quintic in $\mathbb{P}^4,...$) and $g\in\mathbb{N}_0$:

- Mirror constructions: Greene-Plesser '90, Batyrev '93,...
- String theory: Candelas-Horowitz-Strominger-Witten '85, Candelasde la Ossa-Green-Parkes '91,...

For Calabi-Yau variety X (elliptic curve, quintic in $\mathbb{P}^4,...$) and $g\in\mathbb{N}_0$:

- Mirror constructions: Greene-Plesser '90, Batyrev '93,...
- String theory: Candelas-Horowitz-Strominger-Witten '85, Candelas-de la Ossa-Green-Parkes '91,...
- Algebraic/symplectic geometry: Fulton-Pandharipande '95, Kontsevich '95, Behrend-Fantechi '97,...

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

 $\mathbb{A}_0 = \mathbb{B}_0$ for quintic hypersurface in \mathbb{P}^4 .

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

 $\mathbb{A}_0 = \mathbb{B}_0$ for quintic hypersurface in \mathbb{P}^4 .

$$\Rightarrow \mathbb{A}_0(q) = \frac{23 \cdot 5^3}{3^3} + \left(4874 \cdot 5^3 + \frac{23 \cdot 5^3}{2^3}\right) \cdot q + \left(2537651 \cdot 5^3 + \frac{23 \cdot 5^3}{3^3}\right) \cdot q^2 + \dots$$

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

 $\mathbb{A}_0 = \mathbb{B}_0$ for quintic hypersurface in \mathbb{P}^4 .

$$\Rightarrow \mathbb{A}_0(q) = {\color{red} 23 \cdot 5^3} + ({\color{blue} 4874 \cdot 5^3} + {\color{blue} \frac{23 \cdot 5^3}{2^3}}) \cdot q + ({\color{blue} 2537651 \cdot 5^3} + {\color{blue} \frac{23 \cdot 5^3}{3^3}}) \cdot q^2 + ...$$

Is enumerative geometry result on X: number of lines, conics, cubics,... (number of genus 0 curves on X of degree d, delicate counting).

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

 $\mathbb{A}_0 = \mathbb{B}_0$ for quintic hypersurface in \mathbb{P}^4 .

$$\Rightarrow \mathbb{A}_0(q) = {\color{red} 23 \cdot 5^3} + ({\color{blue} 4874 \cdot 5^3} + {\color{blue} \frac{23 \cdot 5^3}{2^3}}) \cdot q + ({\color{blue} 2537651 \cdot 5^3} + {\color{blue} \frac{23 \cdot 5^3}{3^3}}) \cdot q^2 + ...$$

Is enumerative geometry result on X: number of lines, conics, cubics,... (number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for g=0,1 in case of degree n+1 hypersurfaces in \mathbb{P}^n (Klemm-Pandharipande '07, Zinger '07)

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

 $\mathbb{A}_0 = \mathbb{B}_0$ for quintic hypersurface in \mathbb{P}^4 .

$$\Rightarrow \mathbb{A}_0(q) = {\color{red}23 \cdot 5^3} + ({\color{blue}4874 \cdot 5^3} + {\color{red}23 \cdot 5^3} \over {\color{blue}2^3}}) \cdot q + ({\color{blue}2537651 \cdot 5^3} + {\color{red}23 \cdot 5^3} \over {\color{blue}3^3}}) \cdot q^2 + ...$$

Is enumerative geometry result on X: number of lines, conics, cubics,... (number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for g=0,1 in case of degree n+1 hypersurfaces in \mathbb{P}^n (Klemm-Pandharipande '07, Zinger '07)

Questions:

• Mirror theorems for other Calabi-Yau varieties and $g \ge 2$?

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

 $\mathbb{A}_0 = \mathbb{B}_0$ for quintic hypersurface in \mathbb{P}^4 .

$$\Rightarrow \mathbb{A}_0(q) = \frac{23 \cdot 5^3}{3} + \left(4874 \cdot 5^3 + \frac{23 \cdot 5^3}{2^3}\right) \cdot q + \left(2537651 \cdot 5^3 + \frac{23 \cdot 5^3}{3^3}\right) \cdot q^2 + \dots$$

Is enumerative geometry result on X: number of lines, conics, cubics,... (number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for g=0,1 in case of degree n+1 hypersurfaces in \mathbb{P}^n (Klemm-Pandharipande '07, Zinger '07)

Questions:

- Mirror theorems for other Calabi-Yau varieties and $g \ge 2$?
- Geometric understanding of mirror theorem beyond combinatorics?

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

 $\mathbb{A}_0 = \mathbb{B}_0$ for quintic hypersurface in \mathbb{P}^4 .

$$\Rightarrow \mathbb{A}_0(q) = {\color{red}23 \cdot 5^3} + ({\color{blue}4874 \cdot 5^3} + {\color{red}23 \cdot 5^3} \over {\color{blue}2^3}}) \cdot q + ({\color{blue}2537651 \cdot 5^3} + {\color{blue}23 \cdot 5^3} \over {\color{blue}3^3}}) \cdot q^2 + ...$$

Is enumerative geometry result on X: number of lines, conics, cubics,... (number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for g=0,1 in case of degree n+1 hypersurfaces in \mathbb{P}^n (Klemm-Pandharipande '07, Zinger '07)

Questions:

- Mirror theorems for other Calabi-Yau varieties and $g \ge 2$?
- Geometric understanding of mirror theorem beyond combinatorics?
- What are the B-model integrals?

Start with easiest Calabi-Yau: elliptic curve *E* (e.g. smooth plane cubic).

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).

Definition (Hurwitz numbers)

 $N_{d,g} = \frac{1}{|\operatorname{Aut}(f)|}$ -weighted number of degree d covers $f: C \to E$, where C is smooth of genus g and f has 2g-2 simple ramifications points.

according to Riemann-Hurwitz formula $2g(C)-2=d\cdot(2g(E)-2)+\sum_{P\in C}(e(P)-1)$

Start with easiest Calabi-Yau: elliptic curve *E* (e.g. smooth plane cubic).

Definition (Hurwitz numbers)

 $N_{d,g} = \frac{1}{|\operatorname{Aut}(f)|}$ -weighted number of degree d covers $f: C \to E$, where C is smooth of genus g and f has 2g-2 simple ramifications points.

according to Riemann-Hurwitz formula
$$2g(C)-2=d\cdot(2g(E)-2)+\sum_{P\in C}(e(P)-1)$$

 $N_{d,0} = 0$, so have to look at $g \ge 1$ invariants!

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).

Definition (Hurwitz numbers)

 $N_{d,g}=rac{1}{|\operatorname{Aut}(f)|}$ -weighted number of degree d covers $f:C\to E$, where C is smooth of genus g and f has 2g-2 simple ramifications points.

according to Riemann-Hurwitz formula
$$2g(C)-2=d\cdot(2g(E)-2)+\sum_{P\in C}(e(P)-1)$$

 $N_{d,0} = 0$, so have to look at $g \ge 1$ invariants!

Hurwitz numbers are the Gromov-Witten invariants in A-model:

Theorem (special case of Okounkov-Pandharipande '06)

$$N_{g,d} = \int_{[\overline{M}_{g,2g-2}(E,d)]} \psi_1 \operatorname{ev}_1^*(x_1) \cdot ... \cdot \psi_{2g-2} \operatorname{ev}_{2g-2}^*(p_{2g-2})$$

with Psi-classes
$$\psi_i = \mathsf{ch}_{top}\left(\Omega^1_{C,\mathsf{x}_i} \mapsto (C,\mathsf{x}_1,...,\mathsf{x}_{2g-2},f)\right)$$
.

How to understand all $N_{g,d}$? Pass to **tropical geometry**:

How to understand all $N_{g,d}$? Pass to **tropical geometry**:

How to understand all $N_{g,d}$? Pass to **tropical geometry**:

For $X = \mathbb{P}^2$ (building block of C-Y) and g = 0:

• tropical mirror theorem (Gross '10)

How to understand all $N_{g,d}$? Pass to **tropical geometry**:

For $X = \mathbb{P}^2$ (building block of C-Y) and g = 0:

- tropical mirror theorem (Gross '10)
- partial correspondence theorem (Markwig-Rau '09)

ullet Correspondence theorem for all g and d.

- ullet Correspondence theorem for all g and d.
- Tropical mirror theorem for all g as corollary to

- ullet Correspondence theorem for all g and d.
- Tropical mirror theorem for all g as corollary to
- refined tropical mirror theorem for each trivalent connected graph of genus g and branch type.

- Correspondence theorem for all g and d.
- Tropical mirror theorem for all g as corollary to
- refined tropical mirror theorem for each trivalent connected graph of genus g and branch type.

Why?

Geometric insight into Feynman integrals.

- Correspondence theorem for all g and d.
- ullet Tropical mirror theorem for all g as corollary to
- refined tropical mirror theorem for each trivalent connected graph of genus g and branch type.

Why?

- Geometric insight into Feynman integrals.
- Computationally accessible.

- Correspondence theorem for all g and d.
- Tropical mirror theorem for all g as corollary to
- refined tropical mirror theorem for each trivalent connected graph of genus g and branch type.

Why?

- Geometric insight into Feynman integrals.
- Computationally accessible.
- Can be generalized.

- ullet Correspondence theorem for all g and d.
- \bullet Tropical mirror theorem for all g as corollary to
- refined tropical mirror theorem for each trivalent connected graph of genus g and branch type.

Why?

- Geometric insight into Feynman integrals.
- Computationally accessible.
- Can be generalized.
- Implications in number theory: refined generating functions are quasi-modular.

Definition

A **Feynman graph** is a 3-valent, connected graph Γ of genus g.

Definition

A **Feynman graph** is a 3-valent, connected graph Γ of genus g.

By
$$g(\Gamma)=1-|\mathrm{vert}(\Gamma)|+|\mathrm{edges}(\Gamma)|$$
 and $3\,|\mathrm{vert}(\Gamma)|=2\,|\mathrm{edges}(\Gamma)|$
$$|\mathrm{vert}(\Gamma)|=2g-2\qquad |\mathrm{edges}(\Gamma)|=3g-3$$

Definition

A **Feynman graph** is a 3-valent, connected graph Γ of genus g.

By
$$g(\Gamma)=1-|\mathrm{vert}(\Gamma)|+|\mathrm{edges}(\Gamma)|$$
 and $3\,|\mathrm{vert}(\Gamma)|=2\,|\mathrm{edges}(\Gamma)|$
$$|\mathrm{vert}(\Gamma)|=2g-2\qquad |\mathrm{edges}(\Gamma)|=3g-3$$

Fix labeling z_i for vertices and q_i for edges.

Definition

A **Feynman graph** is a 3-valent, connected graph Γ of genus g.

By
$$g(\Gamma)=1-|\mathrm{vert}(\Gamma)|+|\mathrm{edges}(\Gamma)|$$
 and $3\,|\mathrm{vert}(\Gamma)|=2\,|\mathrm{edges}(\Gamma)|$
$$|\mathrm{vert}(\Gamma)|=2g-2\qquad|\mathrm{edges}(\Gamma)|=3g-3$$

Fix labeling z_i for vertices and q_i for edges.

Example

Feynman integrals (B-side)

Definition (Propagator)

$$P(z,q) = -rac{1}{4\pi^2}\wp(z,q) - rac{1}{12}E_2(q) \qquad ext{for } z \in E = \mathbb{C}/\Lambda$$

Feynman integrals (B-side)

Definition (Propagator)

$$P(z,q) = -rac{1}{4\pi^2}\wp(z,q) - rac{1}{12}E_2(q)$$
 for $z \in E = \mathbb{C}/\Lambda$

with Weierstraß- \wp -function $\wp=\frac{1}{z^2}+...$ and the Eisenstein series

$$E_2 = 1 - 24 \sum_{d=1}^{\infty} \sigma_1(d) q^{2d} = 1 - 24 q^2 - 72 q^4 - \dots$$
 $\sigma_1(d) = \sum_{m|d} m$

Feynman integrals (B-side)

Definition (Propagator)

$$P(z,q) = -rac{1}{4\pi^2}\wp(z,q) - rac{1}{12}E_2(q) \qquad ext{for } z \in E = \mathbb{C}/\Lambda$$

with Weierstraß- \wp -function $\wp=rac{1}{z^2}+...$ and the Eisenstein series

$$E_2 = 1 - 24 \sum_{d=1}^{\infty} \sigma_1(d) q^{2d} = 1 - 24 q^2 - 72 q^4 - \dots$$
 $\sigma_1(d) = \sum_{m|d} m$

Definition (Feynman integral)

For ordering $\Omega \in \mathcal{S}_{2g-2}$ of integration paths on E

$$I_{\Gamma,\Omega} = \int_{\gamma_{2g-2}} \dots \int_{\gamma_1} \left(\prod_{e \in \mathsf{edges}(\Gamma)} P_k(z_e^+ - z_e^-, q) \right) dz_{\Omega(1)} \dots dz_{\Omega(2g-2)}$$

Mirror symmetry for elliptic curves

Example

For

we have to integrate

$$P(z_1-z_2,q)^2 \cdot P(z_1-z_3,q) \cdot P(z_2-z_4,q) \cdot P(z_3-z_4,q)^2$$

Mirror symmetry for elliptic curves

Example

For

we have to integrate

$$P(z_1-z_2,q)^2 \cdot P(z_1-z_3,q) \cdot P(z_2-z_4,q) \cdot P(z_3-z_4,q)^2$$

Theorem (Dijkgraaf '96)

For g>1

$$\sum_{d} \mathit{N}_{\mathit{g},d} \ \mathit{q}^{2d} = \sum_{\mathit{g}(\Gamma) = \mathit{g}} \frac{1}{|\mathrm{Aut}(\Gamma)|} \sum_{\Omega} \mathit{I}_{\Gamma,\Omega}(\mathit{q})$$

Definition (Tropical Hurwitz number)

 $N_{d,g}^{trop} = \text{weighted number of tropical covers } \pi: C \to E \text{ where}$

Definition (Tropical Hurwitz number)

 $N_{d,g}^{trop} =$ weighted number of tropical covers $\pi: C \to E$ where

• π has degree d,

Definition (Tropical Hurwitz number)

 $N_{d,g}^{trop} = ext{weighted number of tropical covers } \pi: C o E ext{ where}$

- π has degree d,
- C is a tropical curve (metric 3-valent graph) of genus g,

Definition (Tropical Hurwitz number)

 $N_{d,g}^{trop} = \text{weighted number of tropical covers } \pi: C \to E \text{ where}$

- π has degree d,
- C is a tropical curve (metric 3-valent graph) of genus g,
- has 2g-2 simple ramifications (3-valent vertices) at fixed points $p_1, ..., p_{2g-2} \in E$,

Definition (Tropical Hurwitz number)

 $N_{d,g}^{trop} = \text{weighted number of tropical covers } \pi: C \to E \text{ where}$

- π has degree d,
- C is a tropical curve (metric 3-valent graph) of genus g,
- has 2g-2 simple ramifications (3-valent vertices) at fixed points $p_1, ..., p_{2g-2} \in E$,

with multiplicity
$$\operatorname{mult}(\pi) = \frac{1}{|\operatorname{Aut}(\pi)|} \cdot \prod_{e \in \operatorname{edges}(C)} w(e)$$

Definition (Tropical Hurwitz number)

 $N_{d,g}^{trop} = \text{weighted number of tropical covers } \pi: C \to E \text{ where}$

- π has degree d,
- C is a tropical curve (metric 3-valent graph) of genus g,
- has 2g-2 simple ramifications (3-valent vertices) at fixed points $p_1, ..., p_{2g-2} \in E$,

with multiplicity
$$\operatorname{mult}(\pi) = \frac{1}{|\operatorname{Aut}(\pi)|} \cdot \prod_{e \in \operatorname{edges}(C)} w(e)$$

Tropical covers are balanced w.r.t. weights w(e):

Correspondence Theorem

As a direct generalization of (Cavalieri-Johnson-Markwig '10) and (Bertrand-Brugallé-Mikhalkin '11) obtain correspondence theorem:

Correspondence Theorem

As a direct generalization of (Cavalieri-Johnson-Markwig '10) and (Bertrand-Brugallé-Mikhalkin '11) obtain correspondence theorem:

Theorem (BBBM '13)

 $N_{d,g} = N_{d,g}^{\text{trop}}$ by correspondence of tropical and algebraic covers.

Correspondence Theorem

As a direct generalization of (Cavalieri-Johnson-Markwig '10) and (Bertrand-Brugallé-Mikhalkin '11) obtain correspondence theorem:

Theorem (BBBM '13)

 $N_{d,g} = N_{d,g}^{\text{trop}}$ by correspondence of tropical and algebraic covers.

$$N_{3,3}^{trop}=?$$

$$N_{3,3}^{trop} = ?$$

Two trivalent, connected combinatorial types (non-metric graphs)

of genus g = 3 with

- 2g 2 = 4 vertices
- 3g 3 = 6 edges
- no bridges

$$N_{3,3}^{trop} = ?$$

Two trivalent, connected combinatorial types (non-metric graphs)

of genus g = 3 with

- 2g 2 = 4 vertices
- 3g 3 = 6 edges
- no bridges (weight 0 edges would be contracted):

$$N_{3,3}^{trop} =$$

$$N_{3,3}^{trop} =$$

$$mult(\pi) = 2^2 \cdot 3^2 = 36$$

$$N_{3,3}^{trop} =$$

$$mult(\pi) = 2^2 \cdot 3^2 = 36$$

$$\operatorname{mult}(\pi) = 2^2 \cdot 3^2 = {\color{red}36} \quad \operatorname{mult}(\pi) = {\color{red}\frac{1}{2}} \cdot 2^2 \cdot 3 = {\color{red}6}$$

$$N_{3,3}^{trop} =$$

$$mult(\pi) = 2^2 \cdot 3^2 = 36$$

$$\mathsf{mult}(\pi) = 2^2 \cdot 3^2 = \textcolor{red}{\mathbf{36}} \quad \mathsf{mult}(\pi) = \frac{1}{2} \cdot 2^2 \cdot 3 = \textcolor{red}{\mathbf{6}} \quad \mathsf{mult}(\pi) = 2^2 \cdot 3 = \textcolor{red}{\mathbf{12}}$$

$$\mathsf{mult}(\pi) = 2^2 \cdot 3 = 12$$

$$N_{3,3}^{trop} =$$

$$mult(\pi) = 2^2 \cdot 3^2 = 36$$

$$\mathsf{mult}(\pi) = 2^2 \cdot 3^2 = \textcolor{red}{\mathbf{36}} \quad \mathsf{mult}(\pi) = \frac{1}{2} \cdot 2^2 \cdot 3 = \textcolor{red}{\mathbf{6}} \quad \mathsf{mult}(\pi) = 2^2 \cdot 3 = \textcolor{red}{\mathbf{12}}$$

$$\mathsf{mult}(\pi) = 2^2 \cdot 3 = 1$$

$$N_{3,3}^{trop} =$$

$$mult(\pi) = 2^2 \cdot 3^2 = 36$$

$$\mathsf{mult}(\pi) = 2^2 \cdot 3^2 = \textcolor{red}{\mathbf{36}} \quad \mathsf{mult}(\pi) = \frac{1}{2} \cdot 2^2 \cdot 3 = \textcolor{red}{\mathbf{6}} \quad \mathsf{mult}(\pi) = 2^2 \cdot 3 = \textcolor{red}{\mathbf{12}}$$

$$\mathsf{mult}(\pi) = 2^2 \cdot 3 = 12$$

 $mult(\pi) = 2^2 = 4$

$$N_{3.3}^{trop} = 112 + 48 = 160$$

$$mult(\pi) = 2^2 \cdot 3^2 = 36$$

$$\mathsf{mult}(\pi) = 2^2 \cdot 3^2 = \textcolor{red}{\mathbf{36}} \quad \mathsf{mult}(\pi) = \frac{1}{2} \cdot 2^2 \cdot 3 = \textcolor{red}{\mathbf{6}} \quad \mathsf{mult}(\pi) = 2^2 \cdot 3 = \textcolor{red}{\mathbf{12}}$$

$$\mathsf{mult}(\pi) = 2^2 \cdot 3 = 1$$

 $mult(\pi) = \frac{1}{2} \cdot 2 \cdot 2 = \frac{2}{2}$

 $mult(\pi) = 2^2 = 4$

Fix a base point $p_0 \in E$.

Let Γ be a Feynman graph, $\underline{a}=(a_1,...,a_{3g-3})\in \mathbb{N}^{3g-3}$, and $\Omega\in\mathcal{S}_{2g-2}$.

Definition

 $N_{a,\Gamma,\Omega}^{trop}=$ weighted number of labeled tropical covers $\pi:C o E$ such that

Fix a base point $p_0 \in E$.

Let Γ be a Feynman graph, $\underline{a}=(a_1,...,a_{3g-3})\in\mathbb{N}^{3g-3}$, and $\Omega\in\mathcal{S}_{2g-2}$.

Definition

 $\mathit{N}^{trop}_{a,\Gamma,\Omega}=$ weighted number of labeled tropical covers $\pi:\mathit{C} o \mathit{E}$ such that

• a_k is number of points in $\pi^{-1}(p_0) \cap q_k$

Fix a base point $p_0 \in E$. Let Γ be a Feynman graph, $\underline{a} = (a_1, ..., a_{3g-3}) \in \mathbb{N}^{3g-3}$, and $\Omega \in S_{2g-2}$.

Definition

 $\textit{N}_{a,\Gamma,\Omega}^{trop}=$ weighted number of labeled tropical covers $\pi:\textit{C}
ightarrow \textit{E}$ such that

- a_k is number of points in $\pi^{-1}(p_0) \cap q_k$
- π has 2g-2 simple ramifications (3-valent vertices) at fixed points $p_1, ..., p_{2g-2} \in E$,
- C is a tropical curve of combinatorial type Γ ,

Fix a base point $p_0 \in E$. Let Γ be a Feynman graph, $\underline{a} = (a_1, ..., a_{3g-3}) \in \mathbb{N}^{3g-3}$, and $\Omega \in S_{2g-2}$.

Definition

 $N_{a,\Gamma,\Omega}^{trop}=$ weighted number of labeled tropical covers $\pi:\mathcal{C}
ightarrow\mathcal{E}$ such that

- a_k is number of points in $\pi^{-1}(p_0) \cap q_k$
- π has 2g-2 simple ramifications (3-valent vertices) at fixed points $p_1,...,p_{2g-2}\in E$,
- ullet C is a tropical curve of combinatorial type Γ ,
- $\pi(x_{\Omega(i)}) = p_i$

Fix a base point $p_0 \in E$.

Let Γ be a Feynman graph, $\underline{a}=(a_1,...,a_{3g-3})\in \mathbb{N}^{3g-3}$, and $\Omega\in \mathcal{S}_{2g-2}$.

Definition

 $N_{a,\Gamma,\Omega}^{trop}=$ weighted number of labeled tropical covers $\pi:\mathcal{C}
ightarrow\mathcal{E}$ such that

- a_k is number of points in $\pi^{-1}(p_0) \cap q_k$
- π has 2g-2 simple ramifications (3-valent vertices) at fixed points $p_1, ..., p_{2g-2} \in E$,
- C is a tropical curve of combinatorial type Γ ,
- $\pi(x_{\Omega(i)}) = p_i$

counted with multiplicity

$$\underline{\underline{a}} = (0, 1, 1, 0, 1, 0) \quad \Gamma = q_2 \qquad q_3 \qquad q_4 \qquad q_5 \qquad q_6$$

$$N_{a,\Gamma,\Omega}^{trop} =$$
 4 + 12 = 16

 $3q_6$

$$\underline{\textbf{a}} = (0,1,1,0,1,0) \quad \Gamma = \textbf{q}_2 \qquad \begin{array}{c} x_1 & x_3 \\ \hline \textbf{q}_3 & \textbf{q}_6 \\ x_2 & x_4 \end{array} \qquad \boldsymbol{Q} = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{array} \right)$$

$$N_{a,\Gamma,\Omega}^{trop} =$$
 4 + 12 = 16

 p_3

 $3q_6$

Refined Feynman integrals

Definition (Refined Feynman integrals)

$$I_{\Gamma,\Omega}(q_1,...,q_{3g-3}) = \int_{\gamma_{2g-2}} ... \int_{\gamma_1} \left(\prod_{k=1}^{3g-3} P_k(z_k^+ - z_k^-,q_k) \right) dz_{\Omega(1)} ... dz_{\Omega(2g-2)}$$

Refined Feynman integrals

Definition (Refined Feynman integrals)

$$I_{\Gamma,\Omega}(q_1,...,q_{3g-3}) = \int_{\gamma_{2g-2}} ... \int_{\gamma_1} \left(\prod_{k=1}^{3g-3} P_k(z_k^+ - z_k^-,q_k) \right) dz_{\Omega(1)} ... dz_{\Omega(2g-2)}$$

Example

For

we have to integrate

$$P(z_1-z_2,q_1) \cdot P(z_1-z_2,q_2) \cdot P(z_1-z_3,q_3) \cdot P(z_2-z_4,q_4) \cdot P(z_3-z_4,q_5) \cdot P(z_3-z_4,q_6)$$

Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM '13)

$$\sum_{a} N_{\underline{a},\Gamma,\Omega}^{trop} \ q^{2\underline{a}} = I_{\Gamma,\Omega}(q_1,...,q_{3g-3})$$

Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM '13)

$$\sum_{\underline{a}} N_{\underline{a},\Gamma,\Omega}^{trop} \ q^{2\underline{a}} = I_{\Gamma,\Omega}(q_1,...,q_{3g-3})$$

Setting $q_i = q$ we get:

Corollary (Tropical mirror theorem)

$$\sum_{d} N_{d,g}^{trop} \ q^{2d} = \sum_{\Gamma} \frac{1}{|\mathsf{Aut}(\Gamma)|} \sum_{\Omega} I_{\Gamma,\Omega}(q)$$

Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM '13)

$$\sum_{a} N_{\underline{a},\Gamma,\Omega}^{trop} \ q^{2\underline{a}} = I_{\Gamma,\Omega}(q_1,...,q_{3g-3})$$

Setting $q_i = q$ we get:

Corollary (Tropical mirror theorem)

$$\sum_{d} N_{d,g}^{trop} \ q^{2d} = \sum_{\Gamma} \frac{1}{|\mathsf{Aut}(\Gamma)|} \sum_{\Omega} I_{\Gamma,\Omega}(q)$$

Together with the correspondence theorem this proves:

Corollary (Mirror symmetry for elliptic curves)

For elliptic curves $\mathbb{A}_g = \mathbb{B}_g$ for all g.

By coordinate change $x_k = \exp(i\pi z_k)$,

By coordinate change $x_k = \exp(i\pi z_k)$, path γ_k becomes circle around 0,

By coordinate change $x_k = \exp(i\pi z_k)$, path γ_k becomes circle around 0, integral becomes residue,

By coordinate change $x_k = \exp(i\pi z_k)$, path γ_k becomes circle around 0, integral becomes residue, difference becomes quotient,

By coordinate change $x_k = \exp(i\pi z_k)$, path γ_k becomes circle around 0, integral becomes residue, difference becomes quotient, derivative of inverse function yields factor $\frac{1}{x_k}$,

By coordinate change $x_k = \exp(i\pi z_k)$, path γ_k becomes circle around 0, integral becomes residue, difference becomes quotient, derivative of inverse function yields factor $\frac{1}{x_k}$, propagator becomes:

Theorem (BBBM '13)

$$P(x,q) = \sum_{w=1}^{\infty} w \, x^{2w} + \sum_{a=1}^{\infty} \sum_{w|a} w (x^{2w} + x^{-2w}) q^{2a}$$

By coordinate change $x_k = \exp(i\pi z_k)$, path γ_k becomes circle around 0, integral becomes residue, difference becomes quotient, derivative of inverse function yields factor $\frac{1}{x_k}$, propagator becomes:

Theorem (BBBM '13)

$$P(x,q) = \sum_{w=1}^{\infty} w \, x^{2w} + \sum_{a=1}^{\infty} \sum_{w|a} w (x^{2w} + x^{-2w}) q^{2a}$$

Define

$$P_a(x, y, q) = \begin{cases} \frac{x^2 y^2}{(x^2 - y^2)^2} & \text{for } a = 0\\ \sum_{w|a} w \frac{x^{4w} + y^{4w}}{(xy)^{2w}} & \text{for } a > 0 \end{cases}$$

By coordinate change $x_k = \exp(i\pi z_k)$, path γ_k becomes circle around 0, integral becomes residue, difference becomes quotient, derivative of inverse function yields factor $\frac{1}{x_k}$, propagator becomes:

Theorem (BBBM '13)

$$P(x,q) = \sum_{w=1}^{\infty} w \, x^{2w} + \sum_{a=1}^{\infty} \sum_{w|a} w (x^{2w} + x^{-2w}) q^{2a}$$

Define

$$P_a(x, y, q) = \begin{cases} \frac{x^2 y^2}{(x^2 - y^2)^2} & \text{for } a = 0\\ \sum_{w|a} w \frac{x^{4w} + y^{4w}}{(xy)^{2w}} & \text{for } a > 0 \end{cases}$$

Corollary

$$N_{\underline{a},\Gamma,\Omega}^{trop} = \mathrm{const}_{\mathsf{X}_{\Omega(2g-2)}} \ldots \mathrm{const}_{\mathsf{X}_{\Omega(1)}} \prod_{k=1}^{3g-3} P_{a_k}(x_k^+,x_k^-,q_k)$$

Example

SINGULAR / Development A Computer Algebra System for Polynomial Computations / version 4 0 < by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013 FB Mathematik der Universitaet, D-67653 Kaiserslautern

Example

```
SINGULAR / Development
A Computer Algebra System for Polynomial Computations / version 4

by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann

B Mathematik der Universitaet, D-67653 Kaiserslautern
```

> LIB "ellipticcovers.lib";

```
SINGULAR

A Computer Algebra System for Polynomial Computations

by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann

FB Mathematik der Universitaet, D-67653 Kaiserslautern

LIB "ellipticcovers.lib";

graph Gamma = makeGraph(list(1,2,3,4),

list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
```

```
STNGULAR.
                                                                      Development
 A Computer Algebra System for Polynomial Computations
                                                                      version 4
     W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann
                                                                      Dec 2013
 FB Mathematik der Universitaet, D-67653 Kaiserslautern
> LIB "ellipticcovers.lib";
> graph Gamma = makeGraph(list(1,2,3,4),
   list(1ist(1,3), list(1,2), list(1,2), list(2,4), list(3,4), list(3,4)));
> Gamma:
  [[1, 3], [1, 2], [1, 2], [2, 4], [3, 4], [3, 4]]
  Graph with 4 vertices and 6 edges
```

```
STNGULAR.
                                                                      Development
 A Computer Algebra System for Polynomial Computations
                                                                      version 4
     W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann
                                                                      Dec 2013
 FB Mathematik der Universitaet, D-67653 Kaiserslautern
> LIB "ellipticcovers.lib";
> graph Gamma = makeGraph(list(1,2,3,4),
   list(1ist(1,3), list(1,2), list(1,2), list(2,4), list(3,4), list(3,4)));
> Gamma:
  [[1, 3], [1, 2], [1, 2], [2, 4], [3, 4], [3, 4]]
  Graph with 4 vertices and 6 edges
> ring R = (0,x(1..4)),q(1..6),dp;
```

```
STNGULAR.
                                                                      Development
 A Computer Algebra System for Polynomial Computations
                                                                      version 4
     W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann
                                                                      Dec 2013
 FB Mathematik der Universitaet, D-67653 Kaiserslautern
> LIB "ellipticcovers.lib";
> graph Gamma = makeGraph(list(1,2,3,4),
   list(1ist(1,3), list(1,2), list(1,2), list(2,4), list(3,4), list(3,4)));
> Gamma:
  [[1, 3], [1, 2], [1, 2], [2, 4], [3, 4], [3, 4]]
  Graph with 4 vertices and 6 edges
> ring R = (0,x(1..4)),q(1..6),dp;
> gromovWitten (Gamma, list(0,1,1,0,1,0));
  32
```

```
STNGULAR.
                                                                      Development
 A Computer Algebra System for Polynomial Computations
                                                                      version 4
     W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann
                                                                      Dec 2013
 FB Mathematik der Universitaet, D-67653 Kaiserslautern
> LIB "ellipticcovers.lib";
> graph Gamma = makeGraph(list(1,2,3,4),
   list(1ist(1,3), list(1,2), list(1,2), list(2,4), list(3,4), list(3,4)));
> Gamma:
  [[1, 3], [1, 2], [1, 2], [2, 4], [3, 4], [3, 4]]
  Graph with 4 vertices and 6 edges
> ring R = (0,x(1..4)),q(1..6),dp;
> gromovWitten (Gamma, list(0,1,1,0,1,0));
  32
> generatingFunction (Gamma, 2);
  8*q(1)^2+8*q(2)*q(3)+8*q(4)^2+8*q(5)*q(6)
```

Corollary (BBBM '13, generalization of Kaneko-Zagier '95)

For all Feynman graphs Γ of genus g and all orders Ω the function $I_{\Gamma,\Omega}$ is a quasi-modular form $(I_{\Gamma,\Omega}\in\mathbb{Q}[E_2,E_4,E_6])$ of weight 6g-6.

Eisenstein series
$$E_{2k}=1-rac{2k}{B_k}{\sum_{n=1}^{\infty}}\sigma_{k-1}(n)q^{2n}$$
 $\sigma_{k-1}(n)=\sum_{m|n}m^{k-1}$

Corollary (BBBM '13, generalization of Kaneko-Zagier '95)

For all Feynman graphs Γ of genus g and all orders Ω the function $I_{\Gamma,\Omega}$ is a quasi-modular form $(I_{\Gamma,\Omega}\in \mathbb{Q}[E_2,E_4,E_6])$ of weight 6g-6.

Eisenstein series
$$E_{2k} = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{2n}$$
 $\sigma_{k-1}(n) = \sum_{m|n} m^{k-1}$ $E_4 = 1 + 240q^2 + 2160q^4 + \dots$ $E_6 = 1 - 504q^2 - 16632q^4 - \dots$

For
$$\Gamma = \bigcirc$$
 Singular gives

$$I_{\Gamma} = 32q^4 + 1792q^6 + 25344q^8 + 182272q^{10} + 886656q^{12} + O(q^{14})$$

Corollary (BBBM '13, generalization of Kaneko-Zagier '95)

For all Feynman graphs Γ of genus g and all orders Ω the function $I_{\Gamma,\Omega}$ is a quasi-modular form $(I_{\Gamma,\Omega}\in \mathbb{Q}[E_2,E_4,E_6])$ of weight 6g-6.

Eisenstein series
$$E_{2k} = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{2n}$$
 $\sigma_{k-1}(n) = \sum_{m|n} m^{k-1}$ $E_4 = 1 + 240q^2 + 2160q^4 + \dots$ $E_6 = 1 - 504q^2 - 16632q^4 - \dots$

Example

For
$$\Gamma = \bigcirc$$
 Singular gives

$$I_{\Gamma} = 32q^4 + 1792q^6 + 25344q^8 + 182272q^{10} + 886656q^{12} + O(q^{14})$$

hence, by quasi-modularity,

$$I_{\Gamma} = \frac{16}{1492992} \left(4E_6^2 + 4E_4^3 - 12E_2E_4E_6 - 3E_2^2E_4^2 + 4E_2^3E_6 + 6E_2^4E_4 - 3E_2^6 \right).$$

Corollary (BBBM '13, generalization of Kaneko-Zagier '95)

For all Feynman graphs Γ of genus g and all orders Ω the function $I_{\Gamma,\Omega}$ is a quasi-modular form $(I_{\Gamma,\Omega}\in \mathbb{Q}[E_2,E_4,E_6])$ of weight 6g-6.

Eisenstein series
$$E_{2k} = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{2n}$$
 $\sigma_{k-1}(n) = \sum_{m|n} m^{k-1}$ $E_4 = 1 + 240q^2 + 2160q^4 + \dots$ $E_6 = 1 - 504q^2 - 16632q^4 - \dots$

Example

For $\Gamma = \bigcirc$ Singular gives

$$I_{\Gamma} = 32q^4 + 1792q^6 + 25344q^8 + 182272q^{10} + 886656q^{12} + O(q^{14})$$

hence, by quasi-modularity,

$$I_{\Gamma} = \frac{16}{1492992} \left(4E_6^2 + 4E_4^3 - 12E_2E_4E_6 - 3E_2^2E_4^2 + 4E_2^3E_6 + 6E_2^4E_4 - 3E_2^6 \right).$$

 \Rightarrow Can compute $I_{\Gamma}(q)$ fast up to arbitrary high order.

References

- J. Böhm, K. Bringmann, A. Buchholz, H. Markwig, *Tropical mirror symmetry for elliptic curves*, http://arxiv.org/abs/1309.5893 (2013).
 - J. Böhm, K. Bringmann, A. Buchholz, H. Markwig, ellipticcovers.lib. A Singular 4 library for Gromov-Witten invariants of elliptic curves, SINGULAR distribution.
- A. Givental, *Equivariant Gromov-Witten invariants*, Internat. Math. Res. Notices 13 (1996).
- B. Lian, K. Liu, S. Yau, Mirror principle I, Asian J. Math. 1 (1997).
- A. Gathmann, *Relative Gromov-Witten invariants and the mirror formula*, Math. Ann. 325 (2003).
- A. Okounkov, R. Pandharipande, *Gromov-Witten theory, Hurwitz theory and completed cycles*, Ann. Math. 163 (2006).

References

- R. Dijkgraaf, Mirror symmetry and elliptic curves, in Progr. Math. 129 (1995).
- M. Roth, N. Yui, Mirror symmetry for elliptic curves: the A-model (fermionic) counting, Clay Math. Proc. 12 (2010).
- M. Gross, Mirror symmetry for \mathbb{P}^2 and tropical geometry, Adv. Math. 224 (2010).
- B. Bertrand, E. Brugallé, G. Mikhalkin, *Tropical open Hurwitz numbers*, Rend. Semin. Mat. Univ. Padova 125 (2011).
- R. Cavalieri, P. Johnson, H. Markwig, *Tropical Hurwitz numbers*, J. Algebr. Comb. 32 (2010).
 - M. Kaneko, D. Zagier, *A generalized Jacobi theta function and quasimodular forms*, in Progr. Math. 129 (1995).