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Abstract. In this paper we investigate tropical secant varieties of ordinary linear spaces.
These correspond to the log-limit sets of ordinary toric varieties; we show that their inter-
esting parts are combinatorially isomorphic to a certain natural subcomplex of the complex
of regular subdivisions of a corresponding point set, and we display the range of behavior
of this object. We also use this characterization to reformulate the question of determining
Barvinok rank into a question regarding regular subdivisions of products of simplices.

1. Introduction

The tropical semiring is given by the real numbers R, together with the operations of
tropical addition ⊕ given by a ⊕ b = min(a, b) and tropical multiplication ⊗ given by
a ⊗ b = a + b. As in ordinary geometry, we consider the tropical semimodule Rd+1,
as well as the corresponding tropical projective space TPd = Rd+1/(1, . . . , 1) given by
modding out by tropical scalar multiplication. There has been a recent spate of work in
tropical geometry, as well as the use of tropical geometry to solve problems arising in
ordinary geometry. In particular, theories of tropical convexity [4], tropical polytopes [5],
tropical linear spaces [8], tropical linear algebra [3], tropical geometry [7], and tropical
algebraic geometry [6] have all been burgeoning.

In this paper, we consider the kth tropical secant variety of an ordinary linear subspace
L in tropical projective space TPd , defined by

Sk(L) := {v1 ⊕ v2 ⊕ · · · ⊕ vk+1 | xi ∈ L}.
In other words, Sk(L) consists of points which are the coordinatewise minima of k + 1
points in L . By working in tropical projective space, which is more natural for the
applications described below, we assume that L ⊂ Rd+1 contains the vector (1, . . . , 1);
then all tropical secant varieties of L do also, and we mod out by this vector to work
in TPd .
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These tropical secant varieties correspond to the log-limits of ordinary toric varieties.
To be precise, the image of an ordinary toric variety in the variables x1, . . . , xn under
the logarithm map is a linear space in the variables log x1, . . . , log xn; the dimension of
the linear space is the same as the dimension of the toric variety. For xi and yi large, we
have log(xi + yi ) ∼ max(log xi + log yi ), and so the log-limit of the ordinary secant
variety corresponds to the tropical secant variety (the max-plus and min-plus semirings
are isomorphic).

Another application of tropical secant varieties of linear subspaces is to the Barvinok
subcomplex. A matrix of size d × n has Barvinok rank at most k if it is expressible as
the tropical sum of k tropically rank-one matrices, where a tropically rank-one matrix M
is one satisfying mi j + mkl = mil + mjk for all i, j, k, l [3]. These tropically rank-one
matrices form an ordinary linear subspace, and the matrices of Barvinok rank at most k
comprise the kth secant variety of this linear subspace. A consequence of our work is
that the interesting component of this space is a subcomplex of the secondary polytope
of the product of simplices�d−1 ×�n−1; we also use our results to provide an intuitive
algorithm for determining Barvinok rank.

Our aim is to develop a general theory of these tropical secant varieties of ordinary
linear spaces. In Section 2 we present and prove our main theorem, which states that the
interesting parts of tropical secant varieties of a linear space, which we call tropical secant
complexes, are certain natural subcomplexes of the complex of regular subdivisions of a
corresponding point configuration. In Section 3 we use this representation to prove that
the kth secant variety of any generic line in d-space is equal to the cone from a line over the
complex of lower faces of the cyclic polytope C(2k, d−1). In Section 4 we compute the
first secant variety of a diverse set of two-dimensional examples, including an example
where the corresponding complex is not pure and one where it is not contractible. In
Section 5 we apply our theory to the case of d× n matrices of Barvinok rank k, showing
that these complexes are certain subcomplexes of the secondary polytope of�d−1×�n−1.
A corollary of this is that the complex of matrices of Barvinok rank two is pure.

2. Tropical Secant Complexes

In this section we prove the following main theorem allowing us to express tropical
secant varieties of linear spaces as subcomplexes of the fan of regular subdivisions of an
associated point configuration.

Theorem 2.1. Let L ⊂ TPn−1 be the (ordinary) linear subspace of dimension d gen-
erated by the d rows of the associated matrix ML . Let VL = {v1, . . . , vn} be the n-point
configuration inRd given by the columns of ML . Then a vector x = (x1, . . . , xn) is in the
kth tropical secant variety of L if and only if the upper envelope of the polytope formed
by the height vector x has k + 1 facets whose union contains each point of VL .

Proof. Let the rows of ML , the generators of L , be denoted by L1, . . . , Ld , and let the
corresponding coordinates of VL be z1, . . . , zd . A point x is in the kth secant variety of L
if and only if there exist points y1, . . . , yk+1 in L⊕(1, . . . , 1)R such that xi = minj (y

j
i ).

Consider any point y j ∈ L . This is some linear combination of the rows of L , plus a
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constant: y j = a +∑d
i=1 ci Li . The corresponding height function on the points vi is

given simply by f j = a +∑
ci zi ; in other words, the heights given by y j to VL are

given by the value of some affine functional on Rd at those points.
Therefore, a point x is in the kth secant variety if there exist k+1 affine functionals on

R
d whose pointwise minima at the points of VL give the coordinates of x . Now, consider

the regular subdivision of VL given by the upper envelope of the height vector x as in the
statement of the theorem. If these k + 1 affine functionals exist, then each one defines
an upper face of this polytope, since for each functional f j and each point vi we have
xi ≤ f j (vi ) (since xi is the coordinatewise minimum of the f j . Furthermore, for each
vi , xi is equal to some f j (vi ), and so vi is in the face defined by f j . Therefore, these
faces together contain each point of VL , and thus so do a set of k + 1 facets containing
them.

Conversely, suppose that the height vector x induces a regular subdivision with k+ 1
upper facets F1, . . . , Fk+1 such that each vi is contained in one of them. Each facet Fj is
contained in some hyperplane Hj in the lifted Rd with height vectors, and as before this
hyperplane corresponds to an affine functional on Rd . If this functional is a +∑

ci zi ,
then define the point y j via y j = a+∑d

i=1 ci Li . We claim that y1⊕· · ·⊕ yk+1 = x . We
need to check that they agree in each coordinate, which is the same thing as saying that
the height vector x is the coordinatewise minimum of the height vectors y j . However,
since Fj is an upper facet for each j , for each i we have xi ≤ y j

i , and since xi is contained
in one of the facets, equality is achieved for some j . Therefore, x is in the kth secant
variety of L as desired.

It is worth noting here that we picked an arbitrary basis for L . However, picking a
different basis yields an affinely isomorphic point configuration, so as must be the case
we can pick any basis to fill out the matrix ML .

Since each regular subdivision corresponds to a polyhedral cone of height vectors,
Theorem 2.1 gives us a decomposition of the tropical secant variety.

Corollary 2.2. The kth tropical secant variety of a linear subspace L is a cone from L
over a polytopal complex, which we call the kth tropical secant complex of L . The faces
of this polytopal complex correspond to regular subdivisions of L in which there exist
k+ 1 facets containing all of the points, with a face F containing a face G if the regular
subdivision associated to F refines the one associated to G.

Proof. First, consider the case of a regular subdivision not using all of the vertices of the
point configuration. In order for a height vector to be valid under Theorem 2.1, the lift of
any unused point x must lie on the lifted face whose interior contains x , and in particular
the height of x is uniquely specified by the vertices of the point configuration, with the
space of height vectors inducing that regular subdivision being affinely isomorphic to
the space of height vectors on the used vertices inducing the regular subdivision on that
point subconfiguration.

This space is clearly a polyhedral cone, with inequalities on the heights given by
the set of upper facets; in other words, the inequalities are given by picking a vertex,
picking an upper facet, and noting that the point’s height must be less than that of the
corresponding facet-defining hyperplane. Setting one of these inequalities to an equality
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corresponds to the case where a point off a facet is moved onto the facet, which has the
effect of coarsening the regular subdivision, so these cones fit together as stated in the
corollary. The original cone is in the kth secant variety if and only if the corresponding
regular subdivision has k + 1 facets whose union is all of the points; this property
is preserved under coarsening, so every face of any cone in the kth secant variety is
also in the kth secant variety. Therefore, the kth secant variety is a valid polyhedral
complex.

To check that it is a cone from L over a polytopal complex, we need first to check
for each cone that if x ∈ L , then x is a cone point. However, as before, the height
vector of x ∈ L is simply an affine functional on the space containing the configu-
ration VL . Taking a nontrivial linear combination of x with any height vector y sim-
ply performs an affine transformation on the heights, which does not change the in-
duced regular subdivision and thus does not change the cone of the height vector as
desired.

The other step in checking that each cone is a cone from L of a polytope is to check
that the only lineality in each cone is in fact L . Indeed, consider any vector y /∈ L .
Because y is not in L , it is not an affine function on the configuration VL , so y does
not induce the trivial subdivision. It immediately follows that y and−y induce different
subdivisions, indeed subdivisions with no common refinement. However, given any
x in the cone, for large enough c, x + cy refines y and x − cy refines −y, so it is
impossible that these two are the same regular subdivision, and hence they cannot both
be in the original cone. Therefore, y cannot be in the lineality space of the cone as
desired.

In the convex case, this gives us something very akin to the secondary polytope. Given
a polytope P , the secondary polytope [9] is a polytope whose face poset is the poset
of regular subdivisions, ordered by refinement, so that the vertices of P are the regular
triangulations. If VL is in convex position, and k is large, all regular subdivisions satisfy
the condition of Corollary 2.2. The condition for face inclusion is dual to the inclusion
in the secondary polytope, so the kth secant variety is a cone from L over the dual of
the secondary polytope. In particular, it will be all of Rn in this case. Indeed, this is an
if and only if.

Corollary 2.3. The∞th secant variety of a linear subspace L is all ofRn if and only if
the corresponding point configuration VL ⊂ Rd is in convex position, i.e., if every point
of VL is a vertex of conv(VL).

Proof. A point x is in the∞th secant variety if and only if its height vector corresponds
to a lift of VL where the union of all of the upper facets contains all of the lifted points. If
VL is in convex position, every height vector will have this property, since every point will
be in some upper facet. If not, then some point can be written as an affine combination
of the other points, vi =

∑
j �=i cjvj with

∑
cj = 1. Then if xi <

∑
j �=i cj xj , the lifted

point vi will not be in the upper envelope of the convex hull of all of the lifted points,
and so it will be in no upper facet. Therefore, any x satisfying this condition will not be
in the∞th secant variety of L .
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We can easily compute the dimension of the kth tropical secant variety in the case
where the linear subspace is generic in the sense that the point configuration VL is in
general position, i.e. has no d + 1 points lying in an affine subspace of dimension d − 1.

Proposition 2.4. Suppose that the d-dimensional linear subspace L is generic. Then
the kth secant variety of L is a complex of dimension min((k + 1)(d + 1)− 1, n).

Proof. By Corollary 2.2, the faces of the kth tropical secant variety of x correspond
to regular subdivisions of the (n + 1)-point configuration VL in Rd in which there exist
k+1 facets whose union contains all of the points. The condition of the theorem implies
that VL consists of n + 1 distinct points. Since the tropical secant variety is a subset of
TP

n , it obviously must have dimension at most n.
First, suppose that (k+1)(d+1)−1 ≤ n. Pick a generic linear functional; this orders

the points in VL in some order, v1, . . . , vn+1. Then by examining the values of this linear
functional at these points, it is evident that the d-polytopes formed by the convex hulls
of the sets

{v1, . . . , vd+1}, {vd+2, . . . , v2d+2}, . . . , {v1+(k−1)d , . . . , v1+(k−1)(d+1)−1},
{v1+(k−1)(d+1), . . . , vn}

do not intersect. These are k d-simplices and one facet which is not a simplex (they
have dimension d since the point configuration VL is in general position). Since these
facets do not intersect, there exists a regular subdivision containing all of them. Take a
regular subdivision from this nonempty set which is as fine as possible. We claim that the
corresponding cell of the kth tropical secant variety has dimension (k + 1)(d + 1)− 1.
Indeed, consider a height vector in its relative interior. For each of the k+1 d-polytopes in
our set, we have d+1 degrees of freedom for the heights corresponding to those vertices,
which gives us (k+1)(d+1) degrees of freedom which we can move in without changing
the subdivision. Furthermore, in the relative interior of this cell, wiggling these points
can only refine the rest of the induced subdivision, and since the cell was chosen to be
maximal with respect to refinement, it also leaves the remainder of the subdivision fixed.
Therefore, the cell of height vectors has dimension equal to (k + 1)(d + 1), which upon
projectivization yields a cell of dimension (k + 1)(d + 1)− 1 in the kth tropical secant
variety.

On the other hand, any cell of the kth tropical secant variety corresponds to a regular
subdivision with k + 1 facets whose union is all of VL . Each of these facets is d-
dimensional, and so in order for a height vector to be in this cell, the coordinates of the
height vector which correspond to each facet must lie in a (d + 1)-dimensional space.
Since each coordinate corresponds to at least one facet, we have at most (k + 1)(d + 1)
degrees of freedom in the cell, and so the maximal dimension of any cell in the tropical
secant variety is in fact (k + 1)(d + 1)− 1 as desired.

Finally, suppose (k + 1)(d + 1) − 1 ≥ n. We need to prove that there exists some
cell of dimension n in the kth tropical secant variety of L . As before, we find a linear
functional, which orders the points v1, . . . , vn+1. For our (at most) k + 1 facets, we take
as many (d + 1)’s as possible, until we are left with some remainder less than d + 1; for
the final facet, we take a simplex including this leftover subset and some points from the
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last set of d+1, and as in the first case we find a triangulation including these facets and
as fine as possible given that constraint. Then by the same logic as before, it immediately
follows that we have n degrees of freedom which we can move in without changing the
subdivision in question.

This maximal dimension is what one would expect; given some generic d-dimensional
shape in ordinary space, the kth secant variety consists of the union of all points in k-
planes spanned by k+1 points from the shape. The number of degrees of freedom of this
space should be as follows: for each of the k + 1 points, we have d degrees of freedom,
and we have a final k degrees of freedom for picking the point once the plane is fixed,
for a total of (k + 1)d + k = (k + 1)(d + 1)− 1, just as in the tropical secant case. The
first tropical secant variety is especially nice.

Proposition 2.5. If the d-dimensional linear space L is generic, then the first tropical
secant variety of L is a pure complex.

Proof. By Proposition 2.4, the dimension of the first tropical secant variety of L is
min(2d + 1, n). We need to show that every regular subdivision which contains two
facets whose union contains each point in VL can be refined to one with this many
degrees of freedom. First, suppose 2d + 1 < n. If our two facets do not intersect, then
as in the proof of the previous proposition, we take a regular subdivision containing the
provided one which is as fine as possible. The corresponding cell will then have d + 1
degrees of freedom for each facet for a total of 2d + 1 (after projectivization.)

If the two facets do not intersect, by the previous case, it suffices to show that this
complex can be refined to one with two nonintersecting spanning facets. Suppose they
intersect in an r -face; we will induct on r . Since VL is in general position, this face must
be a simplex with r + 1 points. Since n > 2d + 1, and we have n + r + 1 points with
multiplicity, one of the two facets must have at least d + 2 points. Take one overlap
point out of it; the remaining points form a full-dimensional convex hull. Then we can
refine the previous subdivision by breaking this facet; rigorously, what we are doing is
lowering the height of the shared vertex by an infinitesimal amount and adjusting the
heights of facet F1 so that the lifted points still share a hyperplane. This process has the
effect of taking the shared vertex out of the upper facet-defining hyperplane of F2; the
new, refined subdivision (which may be strictly finer in other places as well) refines the
original one and has two facets whose union is all of VL overlapping in a face of smaller
dimension. By induction, we are finished.

Next, suppose 2d + 1 ≥ n. We need to check that every valid regular subdivision
can be refined to one whose cell has dimension n. If the two spanning facets are both
simplices, then we can refine this regular subdivision to a regular triangulation, whose
cell has n degrees of freedom. If not, then as in the first case we can remove one of
the overlap points from one facet, eventually reducing to the case where both facets are
simplices. This completes the proof of the proposition.

However, the second tropical secant variety (or complex) is not pure even for points in
general position, and the first tropical secant variety is not pure if we do not assume that
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the points are in general position. We give examples of these deviant cases, as well as an
example of a nongeneric linear subspace where the dimension is wrong, in Section 4.

3. The One-Dimensional Case

In this section we apply the results of Section 2 to the one-dimensional case, i.e., when
L is a line in TPn . This corresponds to the case of a (projective) toric curve in n-space.
In this case we can completely compute the kth tropical secant complex.

Theorem 3.1. Let L be a line in TPn , generated by (r1, . . . , rn+1). Then the kth secant
complex of L consists of the set of lower faces of the cyclic polytope C(2k, d − 2) (i.e.,
d−2 points in dimension 2k), where d is the number of distinct elements of {r1, . . . , rn+1}.

Proof. The corresponding point configuration VL is n+1 points on the real line, located
at r1, . . . , rn+1; we are looking for the space of height vectors (x0, . . . , xn) such that the
points {(r1, x1), . . . , (rn+1, xn+1)} have k facets in their upper envelope which together
contain all the points. To begin with, if any ri and rj are identical, then the corresponding
xi and xj must also be, as otherwise whichever is lower will have that point not in the
upper envelope at all. This reduces us to the case where the ri are distinct. We also
assume that r0 < r1 < · · · < rn .

A height vector (x0, . . . , xn) is completely determined by the value of x0 and the
slopes si = (xi+1 − xi )/(ri+1 − ri ) for 1 ≤ i ≤ n. The condition that all of the points
be in the upper envelope reduces to the constraint si ≤ si−1 for 1 ≤ i ≤ n − 1. When
si = si−1, the points (ri−1, xi−1), (ri , xi ), and (ri+1, xi+1) are all in the same facet of the
corresponding regular triangulation. We represent the n slopes by points, putting a bar
between two points if the corresponding slopes differ; see Fig. 1 for the corresponding
illustration.

It is plain to see that the vertices of the complex provided by Corollary 2.2 (for any
k), which are the coarsest nontrivial regular subdivisions, correspond to patterns with
just one bar, of which there are n − 1.

Therefore, to compute the complex of the kth secant variety, it suffices to compute
the finest regular subdivisions with k + 1 facets whose union is all of the points. The

Fig. 1. Construction of bar patterns from height vectors of a one-dimensional point configuration.
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n+ 1 lifted points are represented by the n+ 1 spaces in between the dots (counting the
beginning and the end), and the facets of a lifted configuration are given by the closed
intervals between adjacent bars.

Suppose we have a bar pattern which is part of the kth secant variety. The k+1 facets
given by Theorem 2.1 clearly must contain the interval from the first space to the first
bar. If the space following the first bar is not filled by a bar, then in order for the union of
these facets to contain this space, we must also take the facet consisting of the interval
from the first bar to the second bar. If this is the case, then we can insert a bar in the
space following the first bar, and take the shortened facet from the new bar to the old
second bar along with the other k original facets; we have just demonstrated that this
augmented bar pattern still has the property.

Therefore, any bar pattern which corresponds to a facet of the tropical secant complex
must have its first two bars adjacent. By identical reasoning, it in fact follows that the
bars must come in adjacent pairs; the facets we take consist of every other interval,
including the first and last. Counting carefully, we conclude that there must be k pairs
of consecutive bars or 2k bars in all.

So, the condition to be a facet of the tropical secant complex is that the included
points must come in consecutive pairs. This is precisely the same as Gale’s evenness
condition [9] for being a facet of the cyclic polytope C(2k, n − 1), except that our con-
dition has the added stipulation that the initial and final segments of bars must have even
length. This stipulation is easily seen to correspond exactly to the statement that the
facet in question is a lower one, and so the kth tropical secant complex is (combinato-
rially) isomorphic to the complex of lower faces of the cyclic polytope C(2k, n − 1) as
desired.

In the one-dimensional case the kth tropical secant complex is the same regardless of
the (generic) linear subspace chosen; this is because the oriented matroid of any n-point
configuration in general position is the same, and so the space of regular triangulations
of these configurations are all combinatorially isomorphic. In the two-dimensional case,
corresponding to toric surfaces, the oriented matroid statement is of course no longer
true, and this leads to a wide variety of behavior of these tropical secant varieties. We
investigate this behavior in the next section.

4. Examples

In the previous section we completely computed the tropical secant complexes of all one-
dimensional linear subspaces. In particular, these kth secant complexes were all pure and
contractible. In this section we compute a variety of examples, in which we show that
these phenomena were purely low-dimensional: even in two dimensions and even for
k = 1, the phylum of tropical secant complexes is diverse, including species which
are not pure and not contractible. We also demonstrate nongeneric examples where the
dimension of the tropical secant variety is not in accordance with Proposition 2.4. Rather
than give the details of all of the computations we present diagrams of the complexes
associated to various configurations (with labeled vertices and facets) as well as pointing
out some relevant aspects.
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Fig. 2. First secant complex of

(
0 0 1 1 2 2
0 3 1 2 0 3

)
.

Our first example is a point configuration in general, nonconvex position: a square
with two points inside it. The corresponding linear subspace is generated by the rows of
the matrix with the points as its columns:(

0 0 1 1 2 2
0 3 1 2 0 3

)
.

This linear subspace, a two-dimensional linear subspace in TP5, exhibits fairly normal
behavior. Its first secant variety is the right dimension (five); indeed, the first secant variety
is equal to the kth secant variety for all k > 1, since every regular subdivision of this
point configuration has two facets whose union is the whole space (one containing the left
three points and one containing the right three points.) This first tropical secant complex
is shown in Fig. 2. Since the points are in general position, it is pure by Proposition 2.5,
and it is also contractible.

Our next example is n points in general convex position, i.e., an n-gon. For n = 6,
the second secant complex is simply the dual of the secondary polytope of the hexagon,
since every regular subdivision contains three facets whose union is all of the points. The
first secant complex, however, is interesting: in particular, it is not contractible. For a
general n-gon, the first secant complex’s vertices will correspond to diagonals; the facets
(it is a two-dimensional complex) correspond to subdivisions given by three diagonals
{(a, b+1), (a, b), (a+1, b)}. For n ≥ 7, this complex forms a Möbius strip. For n = 6,
we show the diagram in Fig. 3; this is the first secant complex of the linear subspace
generated by the rows of (

0 0 1 1 2 2
0 1 0 2 1 2

)
.

It is a subcomplex of the dual of the secondary polytope, which has 14 facets corre-
sponding to the 14 triangulations of a hexagon. Six of these have the property that they
have two facets whose union contains all of the vertices; these are the six facets in this
first secant complex.

It is worth noting that the second secant complex of an n-gon is already not pure. Take
n = 9; then the regular subdivision on the left-hand side of Fig. 4 is a face of dimension
four in the complex not contained in any face of dimension five, while the subdivision
on the right-hand side is a face of dimension five. The spanning facets are shaded.

In our third example the first secant complex is not even pure (Fig. 5). The point
configuration VL consists of two sets of three collinear points intersecting at a common
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Fig. 3. First secant complex of

(
0 0 1 1 2 2
0 1 0 2 1 2

)
.

Fig. 4. Regular subdivisions corresponding to maximal faces of different dimension in the second tropical
secant complex of the linear subspace corresponding to a nonagon.

Fig. 5. First secant complex of

(
0 0 0 1 2 2
0 1 2 0 0 2

)
.
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end point, along with a point in the cone formed by the emanating rays, i.e., the point
configuration corresponding to the linear subspace/matrix

(
0 0 0 1 2 2
0 1 2 0 0 2

)
.

This complex consists of two triangles along with four edges, a “diamond ring” graph.
It is topologically equivalent to a circle and is decidedly impure. We can achieve the same
behavior in convex position in one higher dimension by taking a point configuration
consisting of a cube with a point beyond a facet. The subdivision given by two opposite
square pyramids including the extra point and a triangulation elsewhere is then a maximal
face in the complex, but it has lower dimension than another face of the complex, namely
the one consisting of the extra point and three points of the facet nearest it, the square
pyramid formed by the other five points, and simplices to fill out the remainder of the
cube.

In both the second and third examples the property responsible for the impureness is
an oriented matroid one. In the maximal secant complex face of inappropriate dimension,
two facets of the spanning set overlap, and ordinarily (if the points are in general position)
we are able to deal with this by removing a point from one of them, thus refining the
subdivision. However, in the deficient cases the overlap point is an isthmus in the matroids
of both spanning facets, and thus we cannot remove it from either without degenerating
them.

The previous example shows that first secant complexes can be impure, although in
those examples they at least have the right dimension. However, this need not be the
case, as the next example shows. Here, the point configuration VL consists of one point
off a line and five points on a line, corresponding to the linear subspace generated by the
rows of (

0 0 0 0 0 2
0 1 2 3 4 0

)
.

Proposition 2.4 tells us that the first tropical secant variety should have dimension
(k + 1)(d + 1) − 1 = 5. However, it has only dimension four: that is, the first tropical
secant complex is one-dimensional, not two-dimensional. Its vertices correspond to the
coarsest possible nontrivial subdivisions, those with one dividing line segment; there are
no two-faces, which correspond to having three dividing line segments, since the only
regular subdivision with three dividing line segments does not have two facets whose
union is the whole space. The first tropical secant complex, which consists of two line
segments intersecting at a single point, is shown in Fig. 6.

Fig. 6. First secant complex of

(
0 0 0 0 0 2
0 1 2 3 4 0

)
.
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This diversity among tropical secant varieties, even for first secant varieties of two-
dimensional linear subspaces, is just a peek at the inviting theory. These complexes need
not be pure, of the predicted dimension, or contractible. In the next section we shift our
focus to applying the theory to an already existing setup, namely the complex of matrices
of fixed Barvinok rank.

5. Barvinok Rank

The following definition (taken from [3]) is important in combinatorial optimization.

Definition 5.1. A matrix has Barvinok rank k if it can be expressed as the tropical sum
of k matrices of tropical rank one, but not as the tropical sum of k − 1 such matrices. A
matrix M has tropical rank one if we can write Mi j = xi + yj for some xi ’s and yj ’s.

Barvinok et al. [1] showed that for matrices of fixed Barvinok rank k, the traveling
salesman problem can be solved in polynomial time. Thus, an algorithm for finding the
Barvinok rank of a matrix, or a description of the space of matrices of Barvinok rank
k, is important. We have previously considered this problem in papers [3] (with Bernd
Sturmfels and Francisco Santos) and [2].

Using the terminology in this paper, an attractive reformulation of the problem
emerges. It is evident from the definition that a matrix M ∈ Rd×n has Barvinok rank
k if it lies in the (k − 1)st secant variety of L , where L is the space consisting of all
matrices of tropical rank one. This is a linear subspace in dn variables, defined by the
equations Mi j + Mkl = Mil + Mkj . A basis for this linear subspace of TPn×d is given
by the matrices R1, . . . , Rd−1,C1, . . . ,Cn−1, where Ri has 1’s in the i th row and 0’s
everywhere else, and Cj has 1’s in the j th column and 0’s everywhere else. The columns
of the matrix with these rows are all 0-1 vectors with zero or one 1’s among the first d
coordinates, and zero or one 1’s among the last n − 1. This point configuration consists
of the vertices of the product of simplices �d−1 ×�n−1.

Therefore, to determine the Barvinok rank of a matrix M ∈ Rd×n , it suffices to
consider the regular triangulation induced by the corresponding height vector on P =
�d−1×�n−1, i.e., by ω(i, j) = Mi j , where i ∈ [d] and j ∈ [n]. The Barvinok rank will
be the smallest number of facets needed to cover all of the vertices of P . Similarly, the
complexes of Barvinok rank 2, . . . ,min(d, n) are nested subcomplexes of the secondary
polytope of P .
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