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ABSTRACT  

TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch circa 2018. It will measure 
atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO 
measures from Mexico City to the Canadian tar sands, and from the Atlantic to the Pacific, hourly and at high spatial 
resolution (~2 km N/S×4.5 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that 
includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to 
capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint 
resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission 
inventories, monitors population exposure, and enables effective emission-control strategies. 

TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the 
spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO 
thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral 
observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality 
predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality 
products that will be made widely, publicly available. TEMPO will launch at a prime time to be the North American 
component of the global geostationary constellation of pollution monitoring together with European Sentinel-4 and 
Korean GEMS.  

Keywords: Urban and regional atmospheric pollution, tropospheric composition and chemistry, tropospheric transport, 
atmospheric aerosols 

1. INTRODUCTION  

TEMPO will be delivered in 2017 for integration onto a NASA-selected GEO host spacecraft for launch as early as 
2018. TEMPO and its Asian (GEMS) and European (Sentinel-4) constellation partners make the first tropospheric trace 
gas measurements from GEO, building on the heritage of six spectrometers flown in low-earth-orbit (LEO). These LEO 
instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required 
for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running 
in operational environments. This makes TEMPO an innovative use of a well-proven technique, able to produce a 
revolutionary data set. 

TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National 
Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next 
Decade and Beyond. GEO-CAPE is not planned for implementation this decade. However, instruments from Europe 
(Sentinel 4) and Asia (GEMS) will form parts of a global GEO constellation for pollution monitoring later this decade, 
with a major focus on intercontinental pollution transport. TEMPO will launch at a prime time to be a component of this 
constellation. 



 
 

 
 

 

2. THE TEMPO SCIENCE MISSION 

2.1 Executive Summary 

TEMPO’s measurements from geostationary orbit (GEO) of tropospheric ozone, aerosols, their precursors, and clouds 
create a revolutionary dataset that provides understanding and improves prediction of air quality (AQ) and climate 
forcing, satisfying many of the atmospheric requirements of the NRC Decadal Survey mission GEO-CAPE. TEMPO 
measures pollution over North America, from Mexico City to the Canadian tar sands, and from the Atlantic to the Pacific 
(Greater North America, GNA), hourly and at high spatial resolution. 

TEMPO’s tropospheric trace gas, aerosol, and cloud measurements have the temporal and spatial sampling and precision 
to resolve diurnal cycle emissions, chemistry, and radiative forcings, monitor pollution at urban scales, and provide for 
monitoring the inflow and outflow of pollution over GNA. TEMPO will launch at a prime time to be the U.S. component 
of a global GEO constellation for pollution monitoring. TEMPO’s innovative measurements from GEO are built on the 
heritage of five spectrometers flown in low Earth orbit (LEO),1-23 which make the proposed measurements at the 
TEMPO-required precisions using algorithms developed for them by TEMPO Science Team members and running 
operationaly.24,25 The LEO measurements lack the ground-breaking time resolution TEMPO offers. As described by 
Fishman et al.,4 TEMPO observes the tropospheric ozone (O3) cycle to understand the oxidizing capacity of the 
atmosphere and the distribution and evolution of air pollution. Tropospheric nitrogen dioxide (NO2), derived from 
visible spectra,8,26-30 is essential to this. With current LEO observations, there are large gaps in our knowledge of the 
diurnal cycle of emissions, photochemistry, and dynamical transport coupling air quality and climate. Time-resolved 
measurements during the day-lit period of photochemical conversion and the resultant diurnal cycle are most notably 
lacking. TEMPO measures the ultraviolet and visible (UV-Vis) spectra to retrieve tropospheric O3, NO2, sulfur dioxide 
(SO2), formaldehyde (H2CO), glyoxal (C2H2O2), aerosols, cloud parameters, and the UVB surface irradiance and 
erythemal dose (UVB).31-38 TEMPO measurements directly relate to four of the six EPA criteria air pollutants (O3, 
particulate matter, nitrogen oxides, and SO2). 

2.2 Scientific Goals and Objectives 

2.2.1 TEMPO Goals and Objectives and Relevance to Community Goals 

TEMPO scientific goals and objectives are strongly focused to provide data for answering key AQ and climate-related 
questions. The science questions discussed in this section flow from the NASA 2010 Science Plan39 and the 2007 
National Research Council (NRC) Decadal Survey.40 TEMPO addresses two of the NASA Science Focus Areas for 
Earth Science:39 

1) TEMPO provides measurements of atmospheric composition, directly including AQ, improves the ability to 
forecast AQ, and creates a dataset for examining the societal impacts of AQ. 

2) TEMPO measurements address climate forcing by measuring pollution pathways, particularly the details of 
tropospheric O3 and aerosol production, transport, and relation to sources. 

2.2.2 TEMPO Science Questions 

The TEMPO science questions are drawn in large part from work done by the GEO-CAPE Atmospheric and Oceanic 
Science Working Groups (ASWG and OSWG)41 with TEMPO Science Team Members as part of the ASWG. 

Science Question 1: What are the temporal and spatial variations of emissions of gases and aerosols important for AQ 
and climate? 

Providing information on both natural and anthropogenic emissions of aerosols, and of O3 and aerosol precursors is a 
major objective of TEMPO. From the NRC: “Based on networks of surface sites, the current system for observation of 
AQ is patently inadequate to monitor population exposure and to relate pollutant concentrations to their sources or 
transport. Continuous observation from a geostationary platform will provide the necessary data for improving AQ 
forecasts through assimilation of chemical data, monitoring pollutant emissions and accidental releases, and 
understanding pollution transport on regional to intercontinental scales.”40 



 
 

 
 

Monitoring and predicting AQ requires high spatial and temporal resolution measurements of at least a minimal set of 
tropospheric gases and aerosol properties: O3, NO2 (the standard proxy for odd-nitrogen, NOx, pollution),8 H2CO (the 
standard proxy for volatile organic carbon (VOC) pollution),17 C2H2O2 (a secondary proxy for VOCs),2 tropospheric 
SO2,16 and aerosol optical depth (AOD) and single scattering albedo (SSA).32,33 Climate assessments and AQ 
management are limited by uncertainties in traditional “bottom-up” emission inventories based on application of 
emission factors to activity rates. Inverse modeling of satellite observations provides “top-down” constraints on 
emissions inventories of NOx,8,9 VOCs,20 aerosols,42 and SO2.43 For example, Ozone Monitoring Instrument (OMI) NO2 
observations are used to examine the interannual variation in soil NOx emissions over the central U.S.44 and to 
understand NOx sources in Houston.45 NO2 observations from SCIAMACHY provide timely updates to bottom-up 
emission inventories.12 NO2, the photolytic source of tropospheric O3, varies rapidly in polluted regions, requiring hourly 
measurements for quantification, as demonstrated for Houston by Fishman et al.4 OMI H2CO measurements reveal that 
at sufficiently high resolution anthropogenic VOC signals can be discerned in addition to biogenic sources.22  

The value of TEMPO: Hourly measurements at spatial resolution much improved over current LEO sensors and at the 
precisions already achieved by those sensors, provide much needed insight into the spatial and temporal distributions of 
criteria pollutant emissions. 

Quantitative understanding of NO2 source attribution and plume dynamics requires spatial sampling of 4-12 km, 
depending on source type.46 To adequately distinguish enhanced/polluted events from background scenes, tropospheric 
NO2 precision of 1×1015 molecules cm-2 is required for hourly measurements at high spatial resolution (product 
resolution of 4×4 km2 baseline and 8×8 km2 threshold, GEO-CAPE STM.)41 Screening of cloudy observations is also 
improved with high spatial resolution and hourly sampling.47 The other TEMPO gas measurements have similar 
temporal and spatial requirements to isolate emission sources and distinguish polluted areas and chemical sources of 
aerosols, and to follow diurnal development from photochemical processes including heterogeneous processes forming 
aerosols from their precursors. Sensitivity to lower tropospheric and surface O3 is enhanced over that obtained by UV 
measurements alone7 by combining the UV-Vis (Hartley-Huggins and Chappuis band) measurements.48 

Science Question 2: How do physical, chemical, and dynamical processes determine tropospheric composition and AQ 
over scales ranging from urban to continental, diurnally to seasonally? 

Minimal spatial requirements to follow processes are determined by both the urban scale (several km2) and the scales of 
dispersion and plume dynamics46 vs. photochemical transformation. From the ASWG, an appropriate minimal scale for 
baseline measurements is 4 km×4 km for gases and aerosols. 

The value of TEMPO: The TEMPO spatial resolution to meet baseline requirements, at 8×4.5 km2, is an order of 
magnitude improvement in area over current LEO sensors. However, TEMPO retrievals will be done at native spatial 
resolution of 2×4.5 km2 for most of the products except for ozone profile product, which is normally limited by data 
quantity and algorithm throughput to the baseline spatial resolution. The maximum scale is the entire GNA field of 
regard (FOR), allowing for studies of pollution inflow and outflow. 

Diurnal processes are resolved by measuring O3, NO2, and aerosols hourly (ASWG4) and the SO2 and VOC proxy 
concentrations several times per day (ASWG). Observations over a year allow examination of seasonal influences of 
pollution. Combined UV-Vis measurements improve knowledge of O3 in the lowermost troposphere.48,49 

Science Question 3: How do episodic events, such as wild fires, dust outbreaks, and volcanic eruptions, affect 
atmospheric composition and AQ? 

Significant quantities of gases, aerosols, and volcanic ash are input to the atmosphere by events including wildfires, 
volcanic eruptions, and industrial catastrophes with considerable alteration of atmospheric composition and large 
impacts on AQ and potentially to climate.50  

The value of TEMPO: TEMPO nominally measures at high native spatial resolution, which can be used to enable 
analysis of these special enhanced pollution episodes. Such data will facilitate the characterization of trace gases and 
aerosol loading during wild fire events that have a distinct diurnal cycle in not only smoke emission, but also smoke 
injection when coupled with boundary layer processes.51 TEMPO can be commanded to measure part of the FOR at a 
higher temporal frequency, but reduced longitudinal coverage if required for such events. 

Science Question 4: How does air pollution drive climate forcing and how does climate change affect AQ on a 
continental scale? 



 
 

 
 

AQ species, especially O3, aerosols and their precursors are short-lived climate radiative forcers. According to the 
Intergovernmental Panel on Climate Change they, may exert more forcing on climate change in the next 20 years than 
increased carbon dioxide (CO2).52  

Climate effects on AQ include increased production of tropospheric O3 and particulate matter, including black carbon, 
dust and secondary organic aerosols. Increased O3 can occur due to temperature effects on both O3 chemistry and 
increased emissions of precursors.53 Increased particulates come from more forest fires, dust storms, and VOC emission 
increases from heat stress on vegetation.54 

The value of TEMPO: TEMPO retrieved products can be used to compute instantaneous radiative forcing for various 
types of AQ conditions, as has been demonstrated with OMI,55,56 but here with increased spatiotemporal sampling. 
TEMPO AQ data also facilitate quantification of climate change influence on AQ. 

Science Question 5: How can observations from space improve AQ forecasts and assessments for societal benefit? 

The GEO-CAPE AQ objective is “to satisfy basic research and operational needs related to AQ assessment and 
forecasting to support air-program management and public health; emission of precursors of O3 and aerosol, including 
human and natural sources; pollutant transport into, across, and out of North, Central, and South America.”40 

ASWG objectives flowing from this include: 1) Using measurements to improve modeling of atmospheric processes; 2) 
Improving AQ forecasts by providing data with sufficient temporal and spatial resolution to improve data assimilation; 
3) Enhancing the overall AQ observing system by combining data from satellites and ground-based locations; 4) 
Providing measurements for monitoring hazards, e.g., volcanoes, dust storms, fires, pollution episodes and UV exposure. 

The sparseness of surface measurements limits the ability to provide nationwide AQ index (AQI) maps and forecasts,50 
so that 36 million Americans (~40% of the CONUS) do not receive current AQ information, despite the Environmental 
Protection Agency’s (EPA) establishment of the AIRNow program57 that provides real-time and forecasted AQ 
information to alert the public to AQ health effects. 

The value of TEMPO: TEMPO high spatiotemporal resolution measurements will be incorporated into the AIRNow 
Satellite Data Processor system for improved coverage of four of the five AQI maps and forecasts (O3, SO2, NO2 and 
PM2.5). This will be done in coordination with TEMPO Co-I J. Szykman. In addition, near-real-time (NRT) maps of O3, 
NO2, SO2, AOD and UVB will be directly available from TEMPO, with web and smart phone display applications. 

The improved spatiotemporal resolution of the TEMPO measurements is ideally suited for constraining regional AQ 
prediction systems employing global chemical data assimilation systems developed to utilize LEO trace gas data.58-62 
These prediction systems will benefit significantly from TEMPO’s multiple observations of a given region each day at a 
horizontal resolution that is commensurate with regional AQ prediction. Additionally, TEMPO UV-Vis measurements of 
tropospheric O3

7,48 can substantially improve the analysis and assimilation of surface O3 concentrations, reducing errors 
by 50%.49 

TEMPO’s high spatiotemporal resolution allows a more detailed assessment of emission inventories, e.g. urban scale 
and large power plant NO2 emissions and mobile emissions that show significant spatial and temporal variations due to 
urban transit patterns, than is possible with LEO observations.44,63,64 

TEMPO observations benefit epidemiologic studies of AQ and UV exposure health effects. High density observations 
provide statistics to resolve air pollution related health effects, e.g. increased heart failure and cardiopulmonary 
symptoms produced by increased exposure to smoke.65 

TEMPO research will use operational hourly derived aerosol properties to improve estimates of surface PM2.5 by 
adapting an existing near-UV algorithm.33,66 In addition, TEMPO and GOES-R data can be combined as is currently 
done with MISR- and ATSR-2-type aerosol retrievals.67-69 Further advances are possible with TEMPO owing to 
potential retrievable information on aerosol size distributions.70,71 

Science Question 6: How does intercontinental transport affect AQ? 

The international Committee on Earth Observation Satellites (CEOS) coordinates civil space-borne Earth observations.72 
CEOS recommends development of an international constellation of geostationary pollution monitors. This includes the 
European Sentinel-4, on Meteosat Third Generation, the Korean GEMS on MP-GEOSAT, and GEO-CAPE. A Canadian 
program of two satellites (PHEOS, on PCW) flying in highly elliptical orbits is also envisaged to measure high northern 
latitudes. All non-U.S. instruments are planned (Sentinel-4 and GEMS) or proposed (PHEOS) to launch in the 



 
 

 
 

2017/2018 time frame. GEO-CAPE will not launch until more than a decade from now, leaving the constellation without 
a U.S. component. TEMPO fills this gap, providing for improved coverage of the northern hemisphere to better elucidate 
intercontinental transport of pollution. 

The value of TEMPO: TEMPO can resolve O3 sources spatially and temporally. This helps to distinguish transport 
sources arriving within the FOR from stratosphere-troposphere exchange7,73. Aerosol and trace gas data at high temporal 
resolution from TEMPO can also be used to constrain model boundary and initial conditions74 through assimilation 
techniques. This improves forecasts of aerosol and gas transport75. Aerosol associated with fire emissions, such as 
transport of Central American/Canadian smoke to the U.S., has distinct diurnal variations76 and can significantly degrade 
U.S. AQ. Long range pollution transport from East Asia and dust transport from East Asia and Africa also impacts U.S. 
AQ. 

2.3 Baseline Data Products 

TEMPO will measure as standard baseline data products the quantities listed in Table 1 for Greater North America. 
H2CO, SO2, and C2H2O2 meet precision requirements up to 50° solar zenith angle (SZA). All other products meet 
precision requirements up to 70° SZA. The spatial and temporal resolutions and SZA constraints are for meeting the 
requirements only. Operational retrievals will be done hourly at native spatial resolution (~2×4.5 km2) during the day-lit 
period except for ozone profile retrievals at spatial resolution of ~8×4.5 km2. 

     Table 1. TEMPO Baseline Products 

Species/Products Typical 
Value1 

Required 
Precision1 

Expected Precision2 
Worst1 Nominal1 

O3 
Profile 

0-2 km (ppbv) 40 10 9.15 9.00 
FT (ppbv)3 50 10 5.03 4.95 

SOC3 8×103 5% 0.81% 0.76% 
Total O3 9×103 3% 1.54% 1.47% 

NO2
* 6 1.00 0.65 0.45 

H2CO* (3/day) 10 10.0 2.30 1.95 
SO2

*
 (3/day) 10 10.0 8.54 5.70 

C2H2O2
* (3/day) 0.2 0.40 0.23 0.17 

AOD 0.1 - 1 0.05 0.041 0.034 
AAOD 0 - 0.05 0.03 0.025 0.020 

Aerosol Index (AI) -1 - +5 0.2 0.16 0.13 
Cloud Fraction 0 - 1 0.05 0.015 0.011 

Cloud Top Pressure (hPa) 200 - 900 100 85.0 60.0 
Spatial resolution: 8×4.5 km2 at the center of the FOR. Time resolution : Hourly unless noted. 
1Units are 1015 molecules cm-2 for gases and unitless for aerosols and clouds unless specified. 
2Expected precision is viewing condition dependent. Results are for worst and nominal cases. 
3FT = free troposphere, 2km – tropopause; SOC = stratospheric O3 column. 
*= background value. Pollution is higher, and in starred constituents, the precision is applied 
to polluted cases. 
Threshold products are at 8×9 km2, at 80 minute time resolution. 

 

2.4 Secondary Data Products  

Secondary products (non-baseline, but proven, and provided on a best effort basis) are surface UV-B, bromine oxide 
(BrO), H2O, and volcanic SO2 (column amount and plume altitude). Research products developed by the Science Team 
include improved AOD, absorbing aerosol index (AAI), and aerosol absorption optical depth (AAOD) all having 
reduced cloud contamination using a larger number of native pixels for cloud clearing, aerosol size, and aerosol plume 
altitude. Diurnal out-going shortwave radiation and cloud forcing is now being tested and implemented for OMI (J. 
Joiner private comm., 2012). Additional cloud/aerosol products are possible using the O2-O2 collision complex and/or 
the O2 B band. Nighttime “city lights” products (similar to visible-earth.nasa.gov), which represent anthropogenic 
activities at the same spatial resolution as air quality products, will be produced twice per day (late evening and early 



 
 

 
 

morning) in NRT as a research product. Meeting TEMPO measurement requirements for NO2 (visible) implies the 
sensitivity for city lights products over the CONUS within a 2-hour period at 2×4.5 km2 to 1.1×10-8 W cm-2 sr-1 µm-1. 

3. MISSION IMPLEMENTATION 

TEMPO is a dispersive grating spectrometer that measures solar back scattered light in the UV-Vis spectral range to 
measure trace gases, aerosols, and clouds. The TEMPO instrument draws from low Earth orbit instrument subassembly 
heritage and adapts them to geostationary GEO operations. A scan mirror steps the spectrometer slit across the FOR 
from East to West. A three-mirror telescope images the scene onto the slit of an Offner-type spectrometer. Spectra are 
imaged onto two 2K×1K CCD focal plane arrays. One array measures 2K ground pixels from 290-490 nm and the other 
from 540-740 nm. The instrument’s thermal and structural design ensures stability over full temperature range incurred 
in the GEO orbit. Instrument control electronics provide all the functionality to operate the instrument, manage data, and 
interface to the host spacecraft. Figure 1 shows the range of expected Earth radiance spectra to be measured by TEMPO 
(TEMPO measurements for longer than 740 nm are not planned), expressed as albedos. They are derived from ESA 
GOME-1 measurements1,77 and cover the extremes of conditions measured over the Earth (they also serve as a useful 
guide to the astronomical detection of Earthlike extrasolar planets). 

 

 

 

 

 

 

 

 

 

 

     Figure 1. Earth albedo (reflectance) spectra derived from the ESA GOME-1 instrument for the range of conditions to be monitored 
     by TEMPO. 
 

TEMPO is managed by NASA LaRC (Wendy Pennington, Instrument Project Manager, and Alan Little, Mission Project 
Manager). The instrument is being built by Ball Aerospace & Technologies Corp. The Science Team includes members 
from NASA LaRC and GSFC, the EPA, NOAA, NCAR, Harvard U., U. California at Berkeley, U. Alabama in 
Huntsville, U. Nebraska, St. Louis U., and U. Maryland (Baltimore County and College Park), Carr Aeronautics and RT 
Solutions. International collaborations include Korea, Canada, Mexico, and the European Space Agency. 

3.1 Measurement Characteristics 

The TEMPO Science Team has performed the radiative transfer modeling and retrieval sensitivity studies to determine 
the instrument requirements. The retrieval precisions and degrees of freedom78 for O3 profiles and the trace gas vertical 
column densities (VCDs) are directly calculated using the optimal estimation approach for clear-sky scenarios in the 
CONUS with a minimal surface albedo (0.03). Results for the worst and nominal viewing scenarios are shown in Table 
1. Interferences due to surface albedo, other trace gases, and the Ring effect are fully accounted for.24 Spectroscopic 
errors are not included. They mainly cause systematic errors and can be reduced in the future. Since retrieved O3 profiles 
use a priori information, the precision requirements for O3 in Table 1 include smoothing errors. O3 sensitivity analysis 
indicates that it is necessary to include the visible Chappuis band (550-650 nm) to meet the 0-2 km 10 ppbv precision 
and the GEO-CAPE objective of sensitivity to the lowest 2 km for surface AQ, shown by the averaging kernels (AVGK) 
in Figure 2. The spectral range 290-740 nm is therefore selected to cover the relevant absorption features of O3, other 
trace gases and aerosol features. A spectral resolution of 0.6 nm, sampled at 0.2 nm to avoid spectral undersampling,79,80 
matches the spectral range to the detector. 



 
 

 
 

 

 

 

 

 

 

 

 

     Figure 2. TEMPO UV-Vis observations (a) significantly improve sensitivity to O3 near the surface compared to using UV only (b), 
     as shown by the retrieval averaging kernels. 
 

The TEMPO FOR is sampled from East to West in 1250 scans with 2,000 pixels (N/S) in each scan at a native spatial 
resolution of 2 km N/S×4.5 km E/W over GNA, driven by the requirements of spatiotemporal resolution, coverage, and 
signal to noise ratio (SNR). The native spatial resolution is defined at the center of the domain, 36.5oN, 100oW, assuming 
the preferred orbit longitude of 100oW. The TEMPO ground sampled area (GSA) depends on the particular pixel’s 
viewing angle within the FOR and varies because of the Earth’s curvature. Users routinely re-grid satellite data for data 
assimilation and scientific analysis81,82 to account for these expected variations. The GSA varies by only a factor of <3.0 
over the CONUS for a GEO longitude range of 80°W-115°W, compared to the factor of 10 variation across an OMI 
swath. TEMPO’s GSA allows spatial co-adding of four native pixels to the baseline product resolution, which over the 
CONUS at the preferred GEO longitude will provide a factor of >5 improvement over the best (nadir) resolution of OMI 
and 50 times that of GOME-2. TEMPO has the added benefit of viewing a given location with a consistent GSA. 
Measurements are hourly from 2 AM until 10 PM with longer integration times for twilight and nighttime obtained by 
co-adding temporally. 

3.2 Measurement Considerations 

The baseline algorithms, all developed by TEMPO Science Team members and applied to OMI and other sensors, have 
well documented performance and error analyses.24,25,31 The retrieval algorithms derive all products using TEMPO 
measurements of solar irradiance and back scattered radiance. The radiance and irradiance required accuracies are 
achieved by standard prelaunch instrument characterization and calibration plus on-orbit radiometric trending. This 
approach has been successfully used by OMI, GOME-1 and -2 and SCIAMACHY.77,83-92 

The trace gas retrievals have minimal sensitivity to absolute radiance values; they exploit relative spectral variations in 
backscatter spectra as correlated with target molecular absorption spectra. Thus, relative variations in the absorption 
cross sections of the target molecules are more important than the absolute values. Laboratory measurements of the cross 
sections are of sufficient accuracy for all target gases and interfering gases.93-103 

Cai et al.104 have shown that the polarization state of reflected sunlight can be calculated using existing retrieval forward 
models to a level sufficient to correct instrument polarization effects that would otherwise adversely affect trace-gas 
retrievals similar to TEMPO. 

3.3 Projected Instrument Performance 

Based upon heritage experience with UV-Vis grating spectrometers, TEMPO instrument performance should 
significantly surpass the requirements for the majority of species. The mapping of this expected instrument performance 
to baseline science products is given in Table 1. 

Retrieval precisions for baseline measurements under worst and nominal viewing scenarios demonstrate that all 
measurement requirements are met. Retrievals of NO2, H2CO, C2H2O2, total, stratospheric, and free tropospheric O3, 
aerosols, and clouds can even meet the precision requirements at 2 km×4.5 km for SZA up to 70°.  



 
 

 
 

3.4 Retrieval Algorithms and Heritage of Default Launch Algorithms 

Retrievals developed for the GOME, GOME 2, OMI, and SCIAMACHY sensors have all proved the measurement 
approach of TEMPO. TEMPO level 0-1, level 1-2, and level 2-3 operational algorithms implemented at launch are 
adapted from current operational algorithms developed by Science Team members at the Smithsonian Astrophysical 
Observatory (SAO) and the NASA Goddard Space Flight Center (GSFC), with some modifications required to interface 
with TEMPO data and additional optimizations for TEMPO data. Improved algorithms, particularly for aerosols and 
clouds will be implemented operationally when they have been fully developed, tested, and validated. 

3.4.1 Minor Trace Gas Retrieval Heritage 

SAO has developed trace gas algorithms for GOME-1, GOME-2, OMI, SCIAMACHY, and OMPS (and performed 
retrievals on all but OMPS), starting in 1985. Fitting algorithms for level 2 NO2, H2CO, C2H2O2, SO2, H2O, and BrO 
products are adapted from the operational OMI BrO/H2CO/chlorine dioxide (OClO) algorithms developed at 
SAO.17,79,105-110 Trace gas slant column densities (SCDs) are derived by directly fitting measured radiances within an 
optimized spectral region through an empirical equation based on the Beer-Lambert law. SAO has initially developed 
much of the physics and methodology for these algorithms such as wavelength and slit calibration,111 undersampling 
correction,79,80-112 Ring effect correction,113 high-resolution solar reference spectrum,114 and improvement in trace gas 
absorption cross sections,101,115,116 which have been widely used in other operational and research algorithms. SCDs are 
then converted to VCDs through air mass factors calculated with the VLIDORT117,118 radiative transfer model and trace 
gas profiles from GEOS-Chem chemical transport model simulation.108,119 In the current OMI BrO algorithm, 
wavelength-dependent air mass factors are multiplied with BrO cross sections to directly derive VCDs in one step; this 
method can be applied to improve the retrievals of other trace gases. Extensive climatologies of wavelength-dependent 
scattering weights have now been developed, making this one-step process an option for TEMPO. The trace gas-fitting 
algorithms are generic and can be applied to the different trace gases. The major changes are algorithm inputs (e.g., 
spectral range, fitting parameters) or interface to read the level 1 data. 

In addition to the algorithm development at SAO, the GSFC team has developed algorithms to retrieve SO2 from 
TOMS120 and OMI data121,122 using up to six wavelengths. Recently, several more advanced SO2 algorithms that 
combine spectral fitting and radiative transfer calculations have been developed to retrieve both SO2 VCDs and plume 
height at both GSFC15,123-125 and SAO.16 The GSFC team has also developed OMI operational tropospheric NO2 
VCDs126,127 using the SCDs derived by the Koninklijk Nederlands Meteorologisch Instituut (KNMI) NO2 fitting 
algorithm.  

3.4.2 O3 Profile and Tropospheric O3 Retrieval Heritage 

The TEMPO O3 profile algorithm will be adapted from the GOME, OMI and GOME-2 algorithms.7,104,116,128-130 The idea 
to derive O3 profile information including tropospheric O3 from the Hartley and Huggins bands in the UV and Chappuis 
bands in the visible was first proposed by and has been successfully implemented by the SAO group.1,48,131 The 
algorithm derives O3 profiles by directly fitting the observed radiances in the Hartley/Huggins bands through on-line 
VLIDORT calculations using the optimal estimation method.132 The GOME-2 retrievals also implement the inclusion of 
the Chappuis bands to enhance the sensitivity to near-surface O3;133 however, the improvement resulting from this 
inclusion over retrievals that are constrained to the UV segment of the spectrum have not been quantified due to 
calibration inconsistencies in three bands in the GOME-2 spectra. The single focal plane approach of TEMPO eliminates 
this error. This algorithm has also been used to derive SO2 VCDs and plume height for OMI.16  

3.4.3 Total O3 Retrieval Heritage 

The level 2 total O3 algorithm will be adapted from operational algorithms developed by Science Team members at 
NASA GSFC. Total O3 column is retrieved with the TOMS V8.5 algorithm,134 which has been used to derive nearly 40 
years of total O3 record from TOMS, SBUV, and OMI data dating back to 1970s. It uses two wavelengths to derive total 
O3: a weakly absorbing wavelength (331.2 nm) to estimate an effective surface reflectivity (or effective cloud fraction), 
and another wavelength (317.5 nm) with stronger O3 absorption to estimate O3. In addition, the O3 profile algorithm in 
3.4.2 also derives total O3 by utilizing more spectral information.7,128 



 
 

 
 

3.4.4 Aerosol Retrieval Heritage 

The TEMPO operational aerosol algorithm will be adapted from the TOMS aerosol and OMAERUV algorithms,32,135-139 
which uses two wavelengths (354 and 388 nm) to retrieve AI, AOD, AAOD, and single aerosol scattering albedo based 
on a predefined set of biomass burning, dust and sulfate aerosol models. 

3.4.5 Cloud Retrieval Heritage 

The level 2 cloud algorithm will be adapted from the OMI Raman cloud algorithm, which derives optical centroid cloud 
pressure and radiative cloud fraction from the amount of filling in of solar Fraunhofer lines caused by rotational Raman 
scattering in the atmosphere.34,35,140-142 The cloud fraction does not represent true geometrical cloud fraction and the 
cloud pressure does not represent the physical cloud-top pressure (especially in the case of multiple cloud layers), but a 
transmittance weighted cloud pressure that we call the Optical Centroid Cloud Pressure (OCCP). However, it better 
represents enhanced trace gas absorption by multiple scattering inside clouds than the physical-top pressure and is thus 
better for trace gas retrievals from UV radiances. 

3.4.6 UVB Retrieval Heritage 

The UVB algorithm will be adapted from the TOMS and OMI operational algorithm. It produces surface UV irradiance, 
erythemal dose rate (UV index), and the erythemal daily dose from level 2 products of O3, aerosols, and clouds.36,143-147 
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