
 Open access Book Chapter DOI:10.1007/978-3-642-12133-3_20

TROUTE: a reconfigurability-aware FPGA router — Source link

Karel Bruneel, Dirk Stroobandt

Institutions: Ghent University

Published on: 17 Mar 2010 - Applied Reconfigurable Computing

Topics: FPGA prototype, Reconfigurable computing, Reconfigurability, Logic block and Router

Related papers:

 A minimum communication cost algorithm for dynamically reconfigurable computing system

 An Efficient Inter-FPGA Routing Exploration Environment for Multi-FPGA Systems

 A connection router for the dynamic reconfiguration of FPGAs

 Automatically mapping applications to a self-reconfiguring platform

 Minimization of the reconfiguration latency for the mapping of applications on FPGA-based systems

Share this paper:

View more about this paper here: https://typeset.io/papers/troute-a-reconfigurability-aware-fpga-router-
501cs27yn0

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-12133-3_20
https://typeset.io/papers/troute-a-reconfigurability-aware-fpga-router-501cs27yn0
https://typeset.io/authors/karel-bruneel-2tx9fdzrpl
https://typeset.io/authors/dirk-stroobandt-4l97tzmmom
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/conferences/applied-reconfigurable-computing-2e5qsq7j
https://typeset.io/topics/fpga-prototype-ft34h3xa
https://typeset.io/topics/reconfigurable-computing-k3k3p7je
https://typeset.io/topics/reconfigurability-35rtbo7d
https://typeset.io/topics/logic-block-2nm4qdah
https://typeset.io/topics/router-1hgbi2sd
https://typeset.io/papers/a-minimum-communication-cost-algorithm-for-dynamically-4pc9axygcf
https://typeset.io/papers/an-efficient-inter-fpga-routing-exploration-environment-for-49kwvqugtn
https://typeset.io/papers/a-connection-router-for-the-dynamic-reconfiguration-of-fpgas-u5efukirq3
https://typeset.io/papers/automatically-mapping-applications-to-a-self-reconfiguring-4rczymwzv9
https://typeset.io/papers/minimization-of-the-reconfiguration-latency-for-the-mapping-13pqk1kwud
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/troute-a-reconfigurability-aware-fpga-router-501cs27yn0
https://twitter.com/intent/tweet?text=TROUTE:%20a%20reconfigurability-aware%20FPGA%20router&url=https://typeset.io/papers/troute-a-reconfigurability-aware-fpga-router-501cs27yn0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/troute-a-reconfigurability-aware-fpga-router-501cs27yn0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/troute-a-reconfigurability-aware-fpga-router-501cs27yn0
https://typeset.io/papers/troute-a-reconfigurability-aware-fpga-router-501cs27yn0

TROUTE:

A Reconfigurability-aware FPGA Router

Karel Bruneel and Dirk Stroobandt

Hardware and Embedded Systems Group, ELIS Dept., Ghent University,
Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
{karel.bruneel;dirk.stroobandt}@UGent.be

Abstract. Since FPGAs are inherently reconfigurable, making FPGA
designs generic does not reduce chip cost, as is the case for ASICs. How-
ever, designing and mapping lots of specialized FPGA designs introduces
an extra EDA cost. We describe a two staged fully automatic FPGA tool
flow that efficiently maps a generic HDL design to multiple specialized
FPGA configurations. The mapping is fast enough to be executed on-
line in dynamically reconfigurable systems. In this paper we focus on
troute, the routing algorithm used in our tool flow. We used troute

to implement reconfigurable Multistage Interconnection Networks and
show huge improvements in area, speed and mapping time compared to
conventional non-reconfigurable implementations.

1 Introduction

FPGA design differs significantly from ASIC design in the generality of the de-
sign solution. Indeed, ASIC designers need to amortize the NRE (non-recurring
engineering) cost over a large volume of chip instances. This can be done by mak-
ing the design more generic, so that it meets the needs of as many customers
as possible. Besides the regular input data, a generic design takes Parameter
Data as input, specifying how the regular input data should be processed. The
configuration data can differ for each customer or group of customers and can
even change over time. Naturally, more generic ASIC designs will be larger and
possibly have somewhat lower performance, but the gains of selling more chip
instances will in many cases outweigh these disadvantages.

FPGAs, on the other hand, are fully reconfigurable and therefore can be
reused for any function of similar size and complexity. It is thus not useful to
make an FPGA design as generic as possible because this will not make the
chip any cheaper. On the contrary, you may need to switch to a more expensive
FPGA to meet the area and performance cost of the generality. However, making
lots of specialized designs now introduces an extra EDA cost as each specialized
design must be designed separately and mapped to the FPGA. This is no longer
feasible when we wish to switch between different designs at run time, in contrast
to the generic ASIC solution.

Let us for example take the case of a communication network where each
node has its own 128-bit encryption key. A generic ASIC design would store

the encryption key in an internal register. Each node can then be configured
for a specific key by writing that register. In an FPGA we could use the same
technique, but we could also save area and boost performance of the nodes by
generating specialized FPGA bitstreams for each node. However, there are 2128

possible keys, making it infeasible to run the FPGA tool chain for each possible
key. Also specializing the new configuration at run time for each key that is
selected, is infeasible due to the amount of time it takes to synthesize such a
new configuration.

To solve this problem we propose a two stage tool flow that drastically de-
creases the cost of generating a specialized FPGA configuration. The first stage
of the tool flow takes a Parameterizable HDL Design as input and generates a
Parameterizable FPGA Configuration. A parameterizable HDL design has two
types of inputs: regular inputs and parameter inputs. The latter will not be in-
puts to the final design, but will be bounded to a constant value in the second
stage (thus distinguishing between the various specialized configurations). In our
encryption example, the key will be a parameter input. A parameterizable config-
uration is a set of Boolean functions that generates FPGA configurations given
a parameter value. The second stage, generates specialized configurations by
evaluating the parameterizable configuration for a parameter value. This can be
repeated for multiple parameter values. One can easily see that for large numbers
of parameter values the average cost per configuration is approximately the cost
of running the second stage because the cost of generating the parameterizable
configuration is amortized over all specialized configurations.

In [2, 3] we have shown that it is possible to build a two staged tool flow of
which the evaluation of the parameterizable configuration runs 5 orders of mag-
nitude faster than a conventional FPGA tool flow without sacrificing too much
area and performance compared to a fully specialized FPGA design. In this tool
flow only the LUT truth table bits of the configuration are expressed as Boolean
functions of the parameters, whereas the routing is fixed for all configurations.
In this paper, we present a tool flow that also expresses the routing configuration
bits as a function of the parameter inputs. In the experiments section we show
that this can result in a better area utilization and performance. Expressing
the routing bits as Boolean functions of the parameters requires changes in all
stages of the conventional FPGA tool flow (technology mapping, placement and
routing). In this paper, we only discuss the changes in the router in detail. The
other steps will be addressed only briefly.

2 Staged Mapping Tool Flow

Fig. 1 gives an overview of our mapping tool flow. The tool flow uses a compiler
technique called staged compilation, or staged mapping, as we call it in the case of
FPGA mapping. In our staged mapping flow the final result, a Specialized FPGA
configuration, is generated in two steps or stages: the Generic Stage and the
Specialization Stage. In contrast to conventional mapping the design specification
is not entirely introduced at the start of the mapping process but a part of this

design specification is introduced at each stage. A Parameterizable HDL Design
is introduced to the generic stage and the parameter values are introduced to the
specialization stage. Each stage processes the result of the previous stage and the
extra specification part to form a new intermediate result that will be introduced
to the next stage. The generic stage produces a parameterizable configuration
and the specialization stage combines this with the parameter values to produce
the specialized configuration.

Parameter. 

HDL design 
Synthesis 

Technology 

Mapping 
Placement 

Rou<ng 

(TROUTE) 

Parameter. 

Configura<on 

Evaluate 

Tuning func. 

Specialized 

Configura<on 

Parameter 

Values 

Generic  

Stage 

Specializa<on 

Stage 

Fig. 1. Overview of our staged mapping tool flow.

A parameterizable configuration is a function that takes parameter values as
arguments and produces a specialized configuration1. We represent a parameter-
izable configuration as a vector of Boolean functions whose elements are associ-
ated with the bits in the FPGA’s configuration memory. The Boolean functions
are called Tuning Functions. They are of closed form and have a single output.

The steps needed in the generic stage are similar to those used in conventional
FPGA mapping: synthesis, technology mapping, place and route. In Section 3
we will explain these algorithms in more detail. It is important to note here that
these algorithms are computationally hard and thus need a large run-time. The
specialization stage generates a regular FPGA configuration by evaluation of
the parameterizable configuration. This involves evaluating a set of closed form
Boolean functions. Hence, the run-time of the second stage is linear in the size
of the parameterizable configurations. The specialization stage will thus run a
lot faster than the generic stage [2]. Therefore, the staged mapping tool flow is
more efficient in generating specialized configurations than a conventional tool
flow. This is because our staged flow can reuse the parameterizable configuration
for each parameter value. The effort spend in the generic stage thus is divide
over all invocations of the specialization stage. For large sets of parameter values
the average mapping effort is approximately the effort pent in the specialization
stage.

1 The concept of parameterizable configurations can easily be extended to parameter-
izable partial configurations, which are functions that produce partial configurations
when given the parameter values as argument.

3 Overview of the generic stage

The problem faced by the generic stage of our tool flow is to produce a parameter-
izable configuration given a parameterizable HDL description while optimizing
some cost function. For the sake of clarity, we concentrate on minimizing the
area used by the parameterizable configuration, but the techniques can be ex-
tended for other optimization criteria such as speed or a combination of area
and speed. Without loss of generality, we will also assume a very simple island
style target architecture with 4-input LUTs and wires of length 1.

Since both the input and output of the tool flow are parameterizable the
internal data structures need to be able to express parameterizability and the
algorithms that transform the data structures need to preserve the parameteriz-
ability. Similar to conventional FPGA mapping we divide the mapping problem
into four subproblems: synthesis, technology mapping, placement and routing.
In what follows we give an overview of these algorithms and the data structures
used in our tool flow.

3.1 Synthesis

The synthesis step converts the parameterizable HDL description into a gate-
level circuit. As we described in Section 2, a parameterizable HDL description
distinguishes regular inputs from parameter inputs so, this distinction has to be
preserved in the gate-level circuits. This can easily be done by allowing both
types of inputs in the gate-level circuit data structure. The synthesis tool simply
has to pass the information about the inputs.

3.2 Technology mapping

During technology mapping the gate-level circuit produced by the synthesis step
is mapped on the resources available in the target FPGA architecture while
trying to optimize the area of the implementation.

The result of a conventional technology mapper is a mapped circuit contain-
ing two types of functional blocks: LUTs and nets. A LUT can be implemented
by a physical LUT on the FPGA and a net can be implemented by a subset of
the routing switches in the configurable interconnect.

Because the bits in the parameterizable configuration are Boolean functions
of the parameter inputs, both the truth table bits as well as the routing bits can
change. First, a LUT with a truth table that is function of the parameters is
called a Tunable LUT (TLUT) [2]. It’s easy to see that a TLUT is a generalization
of a regular LUT. Second, the way physical LUTs are connected can change
depending on the parameters. We thus need functional blocks that reflect the
parameterizability of interconnections. We call these blocks Tunable Connections
(TCONs). A circuit containing TLUTs (instead of regular LUTs) and TCONs
(instead of nets) is called a Tunable Circuit.

A TCON has any number of input ports I = {i0, i1, . . . , iL−1} and any
number of output ports O = {o0, o1, . . . , oM−1}. Every TCON is associated to

a connection function fcon that shows how the output ports are connected to
the input ports given a parameter value2

P = (p0, p1, . . . , pN−1) ∈ {0, 1}N , see
equation (1). Just like a TLUT is a generalization of a regular LUT, it’s easy to
see that a TCON is a generalization of a net.

fcon : O × {0, 1}N → I

(o,P) 7→ i
(1)

In what follows we will use a TCON with the functionality of a four-way
switch, as example. This TCON has two inputs {i0, i1} and two outputs {o0, o1}.
The 1-bit parameter p controls how the inputs are connected to the outputs.
When p = 0, o0 is connected to i0 and o1 is connected to i1. When p = 1, o0 is
connected to i1 and o1 is connected to i0.

In this paper, we focus on the routing step of the tool flow. Therefore we
assume the tunable circuit is given. More information on mapping to TLUTs can
be found in [2, 3]. To our knowledge there are no technology mappers available
that can map to a combination of TLUTs and TCONs.

3.3 Placement

During placement, each of the TLUTs in the tunable circuit is associated to
(placed on) one of the physical LUTs of the FPGA while optimizing for a certain
property, e.g. the routability of the placement.

Many FPGA placers use simulated annealing to place the mapped circuit.
The cost function of a routability-driven placer is an estimate of the total number
of wires the router will need to route the design given the current placement. This
is calculated as the sum of the estimated number of wires used by the individual
nets [1]. This same scheme is used to build a placer for tunable circuits. The only
difference lies in the way we estimate the number of wires used by the router
to route a TCON. In this paper we concentrate on the routing algorithm and
therefore we assume the placement as given.

3.4 Routing

Conventional routers calculate the Boolean values that need to be stored in
the configuration bits of the configurable interconnection network so that the
physical LUTs are connected as is specified by the nets in the mapped circuit.

Our router is more complicated as it needs to calculate Boolean functions for
the configuration bits. On one hand the parameterizable configuration evaluates
to a specialized configuration given a parameter value and on the other hand a
tunable circuit simplifies to a regular LUT circuit for that same parameter value.
Our router will thus calculate Boolean functions for the routing bits so that for
any parameter value the specialized configuration implements the connections
specified by the regular LUT circuit.

In Section 4 we give a detailed description of an algorithm, called troute

that solves this problem.

2 Without loss of generality, we combine all parameters into one parameter vector P .

4 TROUTE

In this section we describe the algorithm troute. Given a placed tunable circuit,
it produces Boolean functions for the routing bits of the target FPGA so that
the physical LUTs are connected as is specified by the TCONs of the tunable
circuit. troute is based on the widely used pathfinder algorithm [1, 7].

4.1 The Resource Graph

Both pathfinder and troute uses a directed graph, called the Resource Graph,
to represent the routing architecture of an FPGA. Because this graph can be
constructed for many routing architectures, the algorithms are very flexible.

The resource graph is a directed graph C = (V,E), where the vertices V

represent the routing resources (the wires and the ports of the logic blocks). A
directed edge (t, h) represents the possibility of routing a signal from resource t

(the tail of the edge) to resource h (the head of the edge), by setting a switch.
There are two types of port vertices: sources and sinks. Sources represent output
ports of logic blocks while sinks represent input ports of logic blocks.

We can construct a resource graph as follows. Create a vertex vr for each
routing resource r (wire or port) of the target FPGA. For each unidirectional
switch that, when closed, forces the logic value of resources i on resource o,
create a directed edge (vi, vo), and for each bidirectional switch that connects
resource r to resource s, create two directed edges (r, s) and (s, r). There are
many extensions possible to this model [5] (beyond the scope of this paper).

Fig. 2 depicts the resource graph of a simple 2 × 2 island style FPGA with
only length 1 wires and bidirectional switches. The wires are represented by solid
black lines, the sinks and sources by small squares. The sinks are filled and the
sources are not. For the sake of clarity we have not drawn all edges. The thin
lines each represent two edges, one for each sense.

4.2 TCONs, patterns and nets

A TCON simplifies to a set of nets for a specific parameter value. We call this set
of nets a Connection Pattern of the TCON. Each connection pattern describes
one way to connect the output ports to the input ports of a TCON. A TCON
can thus be represented as a set of connection patterns and a connection pattern
as a set of nets.

When the placement of the LUTs is known the source vertex and the sink
vertices associated to respectively the input port and output ports of the nets
in the mapped circuit are known. Each net ν in the LUT circuit can thus be
associated with an ordered pair (soν , SIν) containing a source vertex soν and a
set of sinks vertices SIν . Note that due to the definition of a TCON (Section 3.2),
the sink set of the nets in any pattern are disjoint.

A routing tree RTν for net ν is a rooted tree embedded in the resource graph
C that has the source vertex as root and the sink vertices as its leaves. It does
not contain any other source or sink vertices. This routing tree contains paths

i 

o
0 

o
1 

o
2 

o
3 

Fig. 2. (a) Resource graph for a simple 2× 2 island style FPGA. Wires are solid black
lines; Edges are thin lines; Sources are open boxes; And sinks are filled boxes. (b)
Routing tree of a net (i, {o0, o1, o2, o3}) .

from the source vertex to each sink vertex of the net ν. Fig. 2 shows the routing
tree of a net (i, {o0, o1, o2, o3}). Once the routing tree RTν of a net is found,
setting the FPGA’s routing bits so all connections represented by the net ν are
realized is easy. We just have to set the configuration bits so that the switches
associated to the edges in RTν are closed, and the switches associated to the
edges that only end or start in RTν are open.

Analog to the routing tree of a net, a routing graph RGτ of a TCON τ

is a subgraph embedded in the resource graph C. By controlling the switches
associated to the edges in RGτ it should be possible to realize all connections
specified by the TCON. Therefore, RGτ should contain a routing tree RTπ,ν for
each net ν of each connection pattern π. Since the nets in a pattern coincide,
their routing trees have to be disjoint. Nets that are part of different patterns,
however, don’t coincide. Their routing trees can therefore overlap. We define the
routing graph RGπ of a pattern π as the union the routing trees RTπ,ν .

Routing a tunable circuit thus simplifies to finding a set of disjoint routing
graphs, one for each of the TCONs in the tunable circuit.

4.3 Tuning functions

Every connection pattern π can be associated to a Boolean function of the pa-
rameters, called the Pattern Condition fπ

cond(P). This pattern condition is true
for all parameter values that simplify the TCON to pattern π. Note that a TCON
can simplify to the same pattern for several parameter values. Since every net is
part of one pattern, a net is also associated to a pattern condition.

Once the routing tree RTπ,ν for each of the nets in the TCON routing graph
RGτ is found, the condition for a switch to close is given by the logical OR of all
pattern conditions of those nets whose routing trees contain an edge associated
to the switch. The tuning function for the configuration bit that controls the
switch is equal to this condition or its inverse if the control of the switch is
active high or active low respectively.

i
0 

o
0 

o
1 

i
1 

i
0 

o
0 

o
1 

i
1 

p
0

p
0

1

1

1

1

1

1

1

1

1

1

1

1

fcond
π 0 (P) = p

0 fcond

π1 (P) = p
0

p
0

p
0

p
0

p
0

p
0

p
0

Fig. 3. Routing of the two connection patterns of a 4-way switch, their pattern condi-
tions and the tuning functions.

A possible routing of our 4-way switch example is shown in Fig. 3. The figure
on the left shows the routing trees of the two nets in pattern π0 with condition
fπ0

cond(P) = p0 and the figure on the right shows the routing trees of the two nets
in pattern π1 with condition fπ1

cond(P) = p0. The routing graph of the TCON is
the union of the routing trees. The edges that are crucial to the routing of the
TCON are annotated with their tuning function (Fig. 3) assuming the switches
are controlled active high.

4.4 The algorithm

The only problem left is finding a set of disjoint routing graphs, one for each of
the TCONs in the tunable circuit.

First, we describe a heuristic subroutine that searches a minimum cost rout-
ing graph for a given TCON. Each vertex v in the resource graph has an associ-
ated cost cv. The cost of a routing graph is the sum of the costs of its vertices.
Second, we explain how to use this subroutine to find a set of disjoint routing
graphs given a set of TCONs.

while shared resources exist :
for each tcon τ do:

τ .ripUpRouting()
RGτ = routeTcon(τ)
for each vertex v in RGτ :

v.updateSharingCost()
for each vertex v in C do

v.updateHistoryCost()

Fig. 4. Main loop (Negotiated Conges-
tion) of the troute algorithm.

function routeTcon(tcon τ)
RGτ = null graph
for each pattern π in tcon τ :

RGπ = null graph
for each net ν in pattern π:

RTν = routeNet(net)
for each vertex v in RTν :

v.inPattern = true
v.inTcon = true

RGπ = RGπ ∪ RTν

for each vertex v in RGπ:
v.inPattern = false

RGτ = RGτ ∪ RGπ

for each vertex v in RGτ :
v.inTcon = false

return RGτ

Fig. 5. Pseudo code for the TCON
router.

The TCON router We will route a TCON by calculating a routing tree for
each of the nets in the TCON. The union of all these routing trees is the routing
graph of the TCON. We know that nets in a routing pattern coincide and thus
have to be disjoint. However, two nets that are part of different patterns, never
coincide and can thus share routing resources. We use this last property to
minimize the routing cost of a TCON by maximizing the overlap among patterns.

The pseudo code of our proposed heuristic algorithm is shown in Fig. 5. The
algorithm contains two nested for loops. The outer loop loops over all patterns of
the TCON. The inner loop loops over all nets in the current pattern and routes
them using a net router. A net router is a heuristic that searches a minimum
cost routing tree for a given net. We use the net router described in [7].

In order to forbid resources sharing for nets within one pattern and allow
resource sharing for nets in different patterns we manipulate the cost of the
vertices within the TCON router. Therefore, we keep track of two extra flags
for each vertex in the resource graph: inTcon and inPattern. The inTcon flag
marks those resources that are used by already routed patterns of the TCON.
The inPattern flag marks those resources that are used by already routed nets
in the current pattern. These flags are used to calculate the manipulated cost of
a resource c′v, as is shown in equation 2.

c′v =

∞ if inPattern

0 if inTcon ∧ inPattern

cv otherwise
(2)

There are three cases. The first case ensures that a resource that is already
used in the current pattern cannot be used to route an other net in the current

pattern. The second case stimulates resource sharing when a resource is already
in use by the TCON, but not by the current pattern. It does this by making the
cost of these resources equal to zero. The third case is the default case.

Negotiated Congestion The troute algorithm uses a mechanism called ne-
gotiated congestion to calculate a set of disjoint routing graphs for a given tun-
able circuit. The pseudo code of troute is shown in Fig. 4. The algorithm
iteratively rips up and reroutes (routeTcon) each of the TCONs until their rout-
ing graphs are disjoint. Or in other words, there are no shared resources.

In negotiated congestion, the individual routing problems are coupled by
updating the vertex costs cv during the routing process (updateSharingCost and
updateHistoryCost). Our algorithm calculates and updates the vertex cost in
exactly the same way as the routability-driven router described in [1].

5 Experiments and results

The troute algorithm was implemented based on a Java version of the VPR
(Versatile Place and Route) [1] routability-driven router, which we implemented.
We use a simple FPGA architecture3 with logic blocks containing one 4-LUT
and one flip-flop. The wire segments in the interconnection network only span
one logic block. The architecture is specified by three parameters: the number of
logic element columns (cols), the number of logic element rows (rows) and the
number of wires in a routing channel (W).

We validate troute on Multistage Interconnect Networks that are known
as Clos Networks [4]. Our Clos network uses 4× 4 crossbar switches as building
blocks. We use 4×4 switches because these can be efficiently implemented using
four 4-input TLUTs or four TCONs. We compare three network types called:
Conv, Tlut and Tcon each for three sizes 16 × 16 (3 stages), 64 × 64 (5 stages)
and 256 × 256 (7 stages). Conv uses signals to control the crossbar switches
while Tlut and Tcon use reconfiguration. Tlut only uses reconfiguration of LUT
truth tables while Tcon uses both reconfiguration of LUTs and reconfiguration
of routing. In Tlut all the switches are implemented with 4 TLUTs while in Tcon
the switches in the even stages are implemented using TLUTs and the switches
in the odd stages are implemented using TCONs.

We implemented the nine networks and measured: the number of LUTs, the
number of wires, the logic depth, the routing time and the minimum channel
width (Wm). Table 1 shows the results. The table also shows the parameters of
the FPGA architecture. As suggested in [1], we ensure low-stress place and route
by choosing the number of LUTs in the FPGA architecture 20% larger than the
number of LUTs in the circuit and the number of wires per channel 20% larger
than Wm, the minimum channel width.

3 A description of this architecture is provided with the VPR tool suite in
4lut sanitized.arch.

Table 1. Properties of nine multi stage Clos network implementations. The numbers
between brackets are relative compared to the Tcon implementation of the same size.

Impl. Area Speed Routing Architecture
size type LUTs wires logic depth troute[s] Wm cols rows W

Conv 202 (12.63) 2131 (9.19) 5 (5.00) 7.96 (18.51) 6 20 20 7
16 Tlut 48 (3.00) 526 (2.26) 3 (3.00) 1.06 (2.47) 4 10 10 5

Tcon 16 (1.00) 232 (1.00) 1 (1.00) 0.43 (1.00) 5 8 8 6

Conv 1016 (7.94) 13613 (4.56) 9 (4.50) 294.73 (29.21) 6 47 47 7
64 Tlut 320 (2.50) 3511 (1.17) 5 (2.50) 24.71 (2.45) 8 23 23 10

Tcon 128 (1.00) 2987 (1.00) 2 (1.00) 10.09 (1.00) 9 18 18 11

Conv 6760 (8.80) 97994 (5.49) 12 (4.00) 15415.51 (25.09) 9 114 114 11
256 Tlut 1792 (2.33) 25353 (1.42) 7 (2.33) 1234.66 (2.01) 13 53 53 16

Tcon 768 (1.00) 17853 (1.00) 3 (1.00) 614.30 (1.00) 14 39 39 17

The wire utilization of the implementations will be influenced by the place-
ment of the inputs of the network. If the inputs and outputs are placed far apart
more wires will be needed than when they are placed close together. To normal-
ize this influence we connect each input and output to a LUT that is connected
to no other signals. This way the placer is free to place the inputs and outputs
to minimize the number of wire resources. These extra LUTs are not accounted
for in the LUT count of Table 1, because they are not part of the actual Clos
network.

The routing of the Conv and Tlut implementations is done with the VPR
routability-driven router. Their placement is done using the VPR routability-
driven placer with default settings. The routing of the Tcon implementations
is done using troute. The placement is done using an adapted version of the
VPR routability-driven placer, called tplace (beyond the scope of this paper).

The Tcon networks save up to a factor 8.8 in the number of LUTs compared
to the Conv networks and up to a factor of 3 compared to the Tlut networks.
As a measure for the clock speed we used the number of LUTs in the longest
path (logic depth). When using the Tcon implementation, we can reduce the
logic depth with up to a factor of 5 compared to the Conv implementation and
a factor of 3 compared to the Tlut implementation.

The table also shows that up to a factor 5.49 can be saved in the number
of wires compared to the Conv networks and up to a factor 2.26 compared
to the Tlut networks. This last result might be counterintuitive since TCONs
are more complex to route than nets. However, switching from Conv to Tlut
to Tcon decreases the number of nets/TCONs and the number of LUTs. Less
nets/TCONs connecting less LUTs that can be placed closer together thus results
in less wires used. Because the LUTs get placed closer together Wm goes up, but
it stays far from the channel widths used in commercial FPGAs.

Table 1 also shows the routing time needed for each implementation. All
these experiments are done using an Intel Core 2 processor running at 2.13 GHz
with 2 GiB of memory running the Java HotSpotTM 64-Bit Server VM. Using

the Tcon networks we can save a factor of 18.51 up to 29.21 in the routing time
compared to the Conv networks and a factor of 2.01 to 2.47 compared to the Tlut
networks. This gain in routing time is due to the decrease in routing complexity
as is explained in the previous paragraph.

6 Conclusions

In this paper we introduced a two staged FPGA tool flow that enables fast
generation of FPGA configurations. The generic stage maps a parameterizable
HDL design to a parameterizable configuration that expresses both the truth
table bits and the routing bits as Boolean functions of the parameter inputs. We
also provided a detailed description of troute, the routing algorithm used in
the generic stage of our tool flow.

We used troute to implement reconfigurable Multistage Interconnection
Networks similar to the implementations in [6, 8]. Since our design is done at
the abstract level of tunable circuits, while theirs is done at the architectural
level, our method greatly reduces the design effort. We have also shown that
our implementations greatly improve area (LUTs: 8.80×, wires: 5.49×), logic
depth (4×) and even routing time (25.09×) compared to a conventional non-
reconfigurable implementation. These numbers are for a 256×256 Clos network.

References

1. V. Betz, J. Rose, and A. Marquardt, editors. Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, Norwell, MA, USA, 1999.

2. K. Bruneel and D. Stroobandt. Automatic generation of run-time parameteriz-
able configurations. In Proceedings of the International Conference on Field Pro-
grammable Logic and Applications. Kirchhoff Institute for Physics, 2008.

3. K. Bruneel and D. Stroobandt. Reconfigurability-aware structural mapping for
LUT-based FPGAs. In 2008 International Conference on Reconfigurable Computing
and FPGAs (ReConFig). IEEE, 2008.

4. C. Clos. A study of non-blocking switching networks. The Bell System Technical
Journal, XXXII:406–424, 1953.

5. S. Hauck and A. Dehon. Reconfigurable Computing: The Theory and Practice of
FPGA-Based Computation. Morgan Kaufmann, November 2007.

6. P. Lysaght and D. Levi. Of gates and wires. Parallel and Distributed Processing
Symposium, International, 4:132a, 2004.

7. L. McMurchie and C. Ebeling. Pathfinder: A negotiation-based performance-driven
router for FPGAs. In FPGA, pages 111–117, 1995.

8. S. Young, P. Alfke, C. Fewer, S. McMillan, B. Blodget, and D. Levi. A high i/o
reconfigurable crossbar switch. In FCCM ’03: Proceedings of the 11th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines. IEEE Computer
Society, 2003.

