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ABSTRACT

Motivation: The ability to accurately read the order of nucleotides in

DNA and RNA is fundamental for modern biology. Errors in next-

generation sequencing can lead to many artifacts, from erroneous

genome assemblies to mistaken inferences about RNA editing.

Uneven coverage in datasets also contributes to false corrections.

Result: We introduce Trowel, a massively parallelized and highly

efficient error correction module for Illumina read data. Trowel both

corrects erroneous base calls and boosts base qualities based on the

k-mer spectrum. With high-quality k-mers and relevant base informa-

tion, Trowel achieves high accuracy for different short read sequen-

cing applications.The latency in the data path has been significantly

reduced because of efficient data access and data structures. In per-

formance evaluations, Trowel was highly competitive with other tools

regardless of coverage, genome size read length and fragment size.

Availability and implementation: Trowel is written in C++ and is

provided under the General Public License v3.0 (GPLv3). It is available

at http://trowel-ec.sourceforge.net.

Contact: euncheon.lim@tue.mpg.de or weigel@tue.mpg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on October 24, 2013; revised on July 8, 2014; accepted on

July 23, 2014

1 INTRODUCTION

Reads produced by current next-generation sequencing technol-

ogies typically suffer from relatively high base error rates. To
improve downstream analyses, it is desirable to correct sequen-

cing errors directly after base calling. The most widely applied

error correction methods rely on k-mer spectrum-based algo-
rithms, following the spectral alignment (SA) approach

(Pevzner et al., 2001). A k-mer occurring more often than a
given threshold is called solid (or ‘trusted’) and a less frequent

k-mer is named weak. The goal of the SA approach is to maxi-
mize the number of solid calls. Quake (Kelley et al., 2010), a

widely used error correction module, applies a mixed model of
the distributions of solid and weak calls incorporating quality

values. It identifies the set of corrections that maximizes the
number of k-mers using a maximum likelihood approach.

Another k-mer–based method, Musket (Liu et al., 2013), uses

two-stage corrections with similarity to Trowel’s two methods.

Musket corrects bases depending on frequencies of k-mers and

does not use base qualities. Coral (Salmela and Schr €oder, 2011)

collects similar reads into groups and performs multiple align-

ments on them. It can correct indels by using the Needleman–

Wunsch algorithm. Owing to the alignment complexity,

this method is not favorable for large datasets. Yet, another

approach is to build a suffix array or trie. For example,

Hybrid SHREC (Salmela, 2010) can correct indels by detecting

and replacing low-weight nodes. The weight of a node indicates

the number of cohort edges in a suffix trie. Here, we introduce a

new k-mer–based error correction module, Trowel, suitable for

Illumina datasets. The key difference to other tools is that

instead of relying on the uniformity of sequencing coverage,

which fluctuates stochastically or inherently, Trowel trusts

in sequences with continuously high-quality values. We demon-

strate the accuracy and efficiency of Trowel with several

datasets and compare it with other available read correction

tools.

2 METHOD

Unlike other methods, Trowel solely relies on quality values to identify

solids. Trowel selects a quality threshold, q^, such that all k-mer bases

with a quality of q^ or higher represent at least 8% (empirical) of the

entire dataset. These solids are called bricks, i.e. consecutive stretches of

high-quality bases (�q^) and are stored in the brick index as keys. We

sequentially make use of two brick indices with different k-mer compos-

itions. To each key, the first index associates high-quality bases enclosed

by two bricks. The Double Bricks & Gap (DBG) algorithm exploits an

asymmetric k1-gap-k2 structure, where gap is a single base, k= k1+k2.

This k-mer structure has advantages over symmetrical or single k-mer

patterns at repeat element boundaries (Supplementary Fig. S7). The qual-

ity of a gap is boosted to the maximum quality value when the index

relevant to gap-enclosing bricks contains the gap with high quality. The

gap is corrected to another base when it is uniquely associated with a

different high-quality base (Supplementary Fig. S6). Initially, the

high-quality regions in the raw reads are usually fragmented

(Supplementary Fig. S4), and hence, only a limited number of trusted

k-mers can be used. Owing to the quality boosting (Supplementary Fig.

S5), the brick index is iteratively expanded, leading to better sensitivity.

Finally, because bases at read ends cannot be accessed by the described

brick index, the second algorithm, Single Brick & Edges (SBE), uses a new

edge-k-edge index to correct edges, where an edge is a single base, or

increase their quality values as in the DBG algorithm. Full details are

explained in Supplementary Data.*To whom correspondence should be addressed.
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3 RESULTS

We performed our evaluations on paired-end Arabidopsis thali-
ana reads (86�) generated in-house and on Illumina datasets
referenced in (Yang et al., 2012) for Escherichia coli (163–

618�), Staphylococcus aureus (691�), Saccharomyces cerevisiae
(319�) and Drosophila melanogaster (6–26�) (Supplementary
Table S1). We assessed runtime and accuracy in several applica-

tions, and summarized all local ranks of each metric in a sum-of-
rank table (Table 1). Trowel was scored consistently as one of the
top two tools and was among the two most accurate tools for
high-coverage datasets (Supplementary Section S4.1). Trowel has

a better performance than the other tools with genome assem-
blies on high-coverage datasets, while on low-coverage datasets,
the alignment-based tool Coral outperformed all other

k-mer–based methods including Trowel. When the coverage is
highly variable, i.e. for transcriptomes, the dataset is particularly
hard to correct because low-coverage sequences cannot be equa-

ted with higher likelihood of errors. In transcriptome mapping
evaluation for a human dataset (Yang et al., 2011), SEECER (Le
at al., 2013) achieved the best performance (Supplementary
Section S2.3). Aside from this specialized tool, Trowel obtained

the best read accuracy, but was slightly worse in base accuracy
than Coral. Only Trowel improved transcriptome quantification;
for the other tools including SEECER, the performance was

worse than the uncorrected cases. For SNP calling evaluations,
Trowel showed the highest concordance with high-coverage
datasets in three of four cases (Supplementary Section S2.4).

Finally, Trowel was the only tool that consistently generated
expected results with simulated datasets for an erroneous-base-
next-to-repeats problem (Supplementary Section S2.5).

Concerning runtime, Trowel outperformed all other tools for
all datasets, being up to 100 times faster (Table 2). Detailed re-
sults are provided in Supplementary Data.

4 CONCLUSION AND DISCUSSION

We have developed a new error correction module for Illumina
short reads, Trowel, which draws its power to correct bases solely

from high-base qualities rather than coverage estimates. High-

base qualities are a requirement for datasets in practice, whereas

equally distributed coverage cannot always be expected depend-

ing on sequencing performance or quantitative datasets, e.g.

transcriptome studies. We assessed different error correction

tools on numerous commonly used applications for read map-

ping, resequencing, genome assembly and gene expression ana-

lyses. Trowel consistently obtained best or second-best accuracy

on all applications, while achieving on average 25 times faster

runtimes than the other tools. Only on genome assemblies from

low-coverage datasets (�10�), an alignment-based method was

superior. In practice, the low-coverage problem is inevitable, and

further improvements for k-mer–based methods are possible.
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Table 2. Runtime of error correction modules (min)

Data Quake Coral Musket SOAPec Trowel

D1 261.1 43.9 4.1 130.5 2.9

D2 377.9 228.9 18.0 194.1 9.9

D3 119.8 36.6 8.8 91.8 3.7

D4 696.3 255.2 21.9 335.6 14.1

D5 262.2 156.0 26.0 186.4 6.4

D6_1 490.6 256.1 33.0 275.7 18.4

D6_2 243.3 105.5 15.7 137.5 8.4

D6_3 460.2 72.8 10.6 141.0 4.2

D6_4 359.9 50.0 8.0 96.9 3.1

D7 1088.2 886.7 145.4 595.6 40.0

Note. The fastest in each row is highlighted in bold (see Supplementary Table S1.

for datasets information).

Table 1. Sum-of-rank of performance metrics
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Uncorrected – – – 6 6 4 – –

Trowel 1 1 2 1 1 2 1 2

Coral 2 4 1 2 4 1 3 6

Musket 3 5 3 4 4 2 2 1

SOAPec 4 3 4 4 3 4 4 4

Quake 5 2 5 2 2 4 5 3

Assembler – – – – – – – 5

Note. The best in each column is highlighted in bold (see Supplementary Table S1.

for datasets information).
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