
TrOWL: Tractable OWL 2 Reasoning

Infrastructure

Edward Thomas, Jeff Z. Pan, and Yuan Ren

Department of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, UK

Abstract. The Semantic Web movement has led to the publication of
thousands of ontologies online. These ontologies present and mediate in-
formation and knowledge on the Semantic Web. Tools exist to reason over
these ontologies and to answer queries over them, but there are no large
scale infrastructures for storing, reasoning, and querying ontologies on a
scale that would be useful for a large enterprise or research institution.
We present the TrOWL infrastructure for transforming, reasoning, and
querying OWL2 ontologies which uses novel techniques such as Quality
Guaranteed Approximations and Forgetting to achieve this goal.

1 Introduction

Ontologies play a key role in the Semantic Web [3], where the W3C recommenda-
tion OWL [9] and its successor OWL2 [6] have become the de facto standards for
publishing and sharing ontologies online. Increasingly these ontologies are being
used by a variety of organisations, covering the definitions of a very wide range
of subjects. While the number and variety of ontologies increases, the question
of how to use these ontologies at an organisational level remains unresolved.

The reason why this is not a trivial problem is that OWL-DL language has a
worst-case computational complexity of NExpTime, and 2NExpTime for OWL2-
DL. This means that increasingly large ontologies may, in the worst case, require
exponentially increasing computing resources to reason. Because of this, OWL2
also includes a number of tractable profiles which have combined complexity of
PTIME-complete or better; however, these profiles all greatly restrict the expres-
sive power of the language. As tool support for these profiles is still limited, it is
also very easy for an ontology developer to accidentally exceed the complexity
of their target profile by using a construct which is beyond the capability of that
language fragment.

The approach of TrOWL is to offer support for all the expressive power of
OWL2-DL, while maintaining tractability, by using language transformations.
In particular, we utilise a Semantic Approximation [7] to transform OWL2-DL
ontologies into OWL2-QL for conjunctive query answering, and a syntactic ap-
proximation from OWL2 to OWL2-EL for TBox reasoning. In addition, TrOWL
contains a profile checker to detect which profile an ontology may already fit
into, and it has support for heavyweight reasoning using a plug-in reasoner such
as Fact++, Pellet, Hermit, or Racer.

L. Aroyo et al. (Eds.): ESWC 2010, Part II, LNCS 6089, pp. 431–435, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



432 E. Thomas, J.Z. Pan, and Y. Ren

2 Applications

The TrOWL reasoner was developed to support work on the MOST project1 as
well as provide reasoning support for large ontology-based knowledge bases.

Validating Process Refinements. During software development, processes
are modelled in the standard language, Business Process Modelling Notation
(BPMN); these process models are then refined to produce progressively more
detailed models. Several metrics exist to validate these refinements as being
consistent with the earlier models, but no tools are available which can validate
these refinements automatically across multiple refinements on large models.
Our approach has been to translate this process model into an ontology and
use ontology reasoning services to validate the model. With this approach, we
can validate that the refinements are valid, or highlight the processes which are
causing the problem.

The process refinement case study generates ontologies with general con-
cept inclusions (GCIs) of particular patterns. At the time of developing REL,
mainstream reasoners such as Pellet and FaCT++ failed to efficiently provide
complete classification results on the generated ontologies. Via the syntactic ap-
proximation of TrOWL, the GCIs in these ontologies can be efficiently resolved
and the reasoning results can be proved complete.

Software Engineering Guidance Ontology. The physical device configura-
tion case study uses ontologies to validate the consistency of the configuration
of a network device. These devices are configured with several cards, and this
configuration must be validated against a model which describes correct config-
urations.

The case study generates ontologies describing the configuration of network
devices. These ontologies can sometimes be inconsistent, reflecting an invalid
configuration of a physical device. To understand how this is manifested in the
physical device and provide guidance on how it may be resolved, it is necessary
to find justifications for the inconsistency, and isolate each axiom set which may
be causing the inconsistency. Traditional tableaux reasoners usually terminate
when an inconsistency is detected, making it difficult obtain all justifications. In
this case, TrOWL can provide a more efficient and reliable service when used as
a reasoning backend.

Linked Open Data. We have also investigated using TrOWL for linked open
data repositories. We used the RDF-DL reasoning component in the Billion
Triple Challenge in ISWC 2009. We managed to successfully load and reason
over the billion triple RDF data set, with full RDFS reasoning over class and
property subsumption. The benefit of using TrOWL for linked open data is that
it supports reasoning in all profiles of OWL, as well as using RDF-DL reason-
ing over RDFS data. Since conjunctive query answering is always reduced to
OWL-QL query answering, this allows queries to be run over large heteroge-
neous ontologies with its characteristic AC0 data complexity.
1 http://www.most-project.eu



TrOWL: Tractable OWL 2 Reasoning Infrastructure 433

3 Technology

TrOWL is based around two primary technologies. Language transformations,
and lightweight reasoners. The most important of these are outlined briefly here.

3.1 Language Transformations

TrOWL is the common interface to a number of reasoners. Quill provides reason-
ing services over RDF-DL and OWL-QL; REL provides reasoning over OWL-EL;
and TrOWL can support full DL reasoning using a plug-in reasoner such as Pellet
or Fact++. These reasoners and the languages which they support are optimised
for certain applications, for example, OWL-QL has excellent ABox query answer-
ing performance but it lacks many constructors present in the more expressive
flavours of OWL2.

The transformation from OWL2 to OWL-QL is based around Semantic Ap-
proximation from OWL-DL to DL-Lite which is described in [7]. Semantic Ap-
proximation uses a heavyweight reasoner to guarantee that every axiom in the
approximated ontology is valid with respect to the source ontology. Because the
semantics of OWL-QL are a subset of, and are hence compatible with, the direct
semantics OWL2, this means that for all reasoning results against the approx-
imated ontology are sound. In fact, it has been shown in that for conjunctive
query answering, which is the strength of the QL language, results against the
semantic approximation are also complete for a very large class of queries (those
with no non-distinguished variables, or with non-distinguished variables in leaf
nodes of the query).

The transformation from OWL2 to OWL-EL is based on the soundness pre-
serving approximate reasoning approach presented in [8]. This is achieved by
representing non-OWL-EL concept expressions with fresh named concepts, and
maintaining non-OWL EL information, such as complementary relations, in sep-
arate data structures. In the reasoning stage, additional completion rules are
plugged into the inference engine to restore the semantics of these information.
The approximation is syntactic-based and can be performed in linear time. The
additional completion rules retain the tractability of OWL2-EL. Thus the over-
all complexity for OWL2-DL ontologies can be reduced to PTime. Although
known to be incomplete, our evaluation shows that, REL can classify existing
benchmarks very efficiently with high recall (over 95%) [8].

Other transformation techniques used in TrOWL include forgetting [5,11,10].

3.2 Lightweight Reasoners

Quill. The Quill reasoner has been implemented in Java using a novel and
unique database schema for storing normalised representations of OWL2-QL
ontologies. This allows us to rewrite any conjunctive query into a single, simple,
SQL query over the underlying database, using the database itself to perform
the transitive completion of class and property subsumption with an innovative



434 E. Thomas, J.Z. Pan, and Y. Ren

exploitation of the way database indices work. To support this we have devel-
oped new algorithms to replace those proposed in [4]. for query rewriting, and
ontology normalisation. Initial testing across large knowledge bases with deep
concept hierarchies, such as the DBPedia dataset and the Yago ontology, shows
a significant performance improvement over other DL-Lite query engines. Using
the standard query rewriting algorithm PerfectRef over a deep class or property
hierarchy can result in a set of hundreds or thousands of conjunctive queries,
where our method will only ever result in a single query. Quill supports all rea-
soning tasks for OWL2-QL, including consistency and satisfiability checking, and
query answering, and by using an OWL-DL reasoner it can perform semantic
approximation of more expressive ontologies.

REL. The REL reasoner is a java implementation of an OWL-EL reasoner,
in which an optimisation of the EL+ algorithm [2] has been extended with
the completion rules for OWL-EL [1]. This allows REL to provide tractable
TBox reasoning for OWL-EL ontologies and make up the core component of the
soundness-preserving syntactic approximation. By this way, REL can provide
soundness-guaranteed tractable TBox reasoning services for OWL2-DL ontolo-
gies. In additional, REL also consists of an OWL-EL conjunctive query engine
[12], which allows queries over OWL-EL ontologies been answered more effi-
ciently without semantic approximation.

4 Demonstration

Our demonstration of the TrOWL reasoner will focus on two scenarios. The first
part of the demo will show how TrOWL differs from traditional reasoners, and
give a comparison of the performance of TrOWL for different reasoning tasks.
The second part of the demonstration will showcase the case studies from the
MOST project and show how TrOWL is helping to solve these.

The proposed structure of the demonstration is:

– Reasoning Demonstration
• TBox Reasoning
• Query Answering
• Comparison with traditional reasoners

– MOST Project Case Studies
• Validating process refinement
• Physical device configuration
• Requirements modelling using ontologies

– Deploying TrOWL
• As an embedded reasoner
• As a SPARQL endpoint
• As a web service



TrOWL: Tractable OWL 2 Reasoning Infrastructure 435

Acknowledgements

This research has been partially supported by the European Commission and
by the Swiss Federal Office for Education and Science within the 7th Frame-
work Programme project MOST number 216691 (cf. http://most-project.eu).
We would also like to thank Stuart Taylor, Nophadol Jekjantuk and Yuting
Zhao at the University of Aberdeen for their helpful discussion and other con-
tributions.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope. In: Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence, IJCAI 2005 (2005)

2. Baader, F., Lutz, C., Suntisrivaraporn, B.: Is tractable reasoning in extensions of
the description logic el useful in practice? In: Proceedings of the 2005 International
Workshop on Methods for Modalities, M4M 2005 (2005)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284(5), 34–43 (2001)

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The dl-lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

5. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Forgetting in managing rules
and ontologies. In: Proceedings of the IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006), Hongkong, pp. 411–419. IEEE Computer Society,
Los Alamitos (2006)

6. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax (October 2009),
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/

7. Pan, J.Z., Thomas, E.: Approximating OWL-DL Ontologies. In: The Proc. of the
22nd National Conference on Artificial Intelligence (AAAI 2007), pp. 1434–1439
(2007)

8. Ren, Y., Gröner, G., Lemcke, J., Rahmani, T., Friesen, A., Zhao, Y., Pan, J.Z.,
Staab, S.: Validating process refinement with ontologies. In: Proceedings of the
22nd International Workshop on Description Logics, DL 2009 (2009)

9. Smith, M.K., Welty, C., McGuiness, D.L.: (February 2004)
http://www.w3.org/TR/owl-guide/

10. Wang, K., Wang, Z., Topor, R.W., Pan, J.Z., Antoniou, G.: Concept and role for-
getting in ALC ontologies. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 666–681. Springer, Heidelberg (2009)

11. Wang, Z., Wang, K., Topor, R., Pan, J.Z.: Forgetting in DL-Lite. In: Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021,
pp. 245–257. Springer, Heidelberg (2008)

12. Zhao, Y., Pan, J.Z., Ren, Y.: Implementing and evaluating a rule-based approach
to querying regular el+ ontologies. In: Proc. of the International Conference on
Hybrid Intelligent Systems, HIS 2009 (2009)

http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://www.w3.org/TR/owl-guide/

	TrOWL: Tractable OWL 2 Reasoning Infrastructure
	Introduction
	Applications
	Technology
	Language Transformations
	Lightweight Reasoners

	Demonstration
	References


