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Proteins are capable of sensing the redox status of cells. Cysteine residues, which react
with oxidants, reductants, and electrophiles, have been increasingly recognized as the
mediators of this redox sensitivity. Cation channels encoded by the transient receptor
potential (trp) gene superfamily are characterized by a wide variety of activation triggers
that act from outside and inside the cell. Recent studies have revealed that a class of TRP
channels is sensitive to changes in redox status and is notably susceptible to modifica-
tions of cysteine residues, such as oxidation, electrophilic reaction, and S-nitrosylation of
sulfhydryls. In this review, we focus on TRP channels, which directly sense redox status,
and discuss the biological significance of cysteine modifications and the consequences of
this chemical reaction for physiological responses.
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INTRODUCTION
The cellular signals initiated by reactive electrophilic species, such
as reactive oxygen species (ROS), reactive nitrogen species (RNS),
and reactive carbonyl species (RCS) are delivered through redox
chemistry. This primarily involves the post-translational modifica-
tion of specific amino acid residues, especially cysteine sulfhydryls,
on signaling proteins (Satoh and Lipton, 2006). According to the
classical view, the reaction of cysteine sulfhydryl groups maintains
protein structure through disulfide bond formation and regulates
catalytic centers through metal binding (Lipton et al., 2002). How-
ever, the paradigms for function of cysteine sulfhydryl reactions
have been extended by the discovery of S-nitrosylation in biolog-
ical systems. The transfer of a nitric oxide (NO) group to a key
cysteine sulfhydryl represents a new model of cysteine sulfhydryls
acting as sensors of redox status to regulate protein functions.

The physiological significance of NO in signal transduction was
established by the demonstration that NO generated by endothe-
lial cells relaxes vascular smooth muscle through the activation
of guanylate cyclase and cyclic GMP-dependent kinase (Murad,
1986). The extensive range of NO-based signaling was illustrated
by the discovery of NO synthases (NOSs) with well-conserved
phylogenetics and pervasive tissue distributions (Murad, 2006).
In addition to the well-characterized binding of NO to the heme
iron of guanylate cyclase, S-nitrosylation was suggested to be an
alternative physiological NO-based protein modification (Stamler
et al., 1992a,b) and this theory has been proven by the identi-
fication of more than a hundred substrates for S-nitrosylation
(Stamler et al., 2001). Important examples include S-nitrosylation

of the NR2A subunit of N -methyl-d-aspartate (NMDA) receptors
(Lipton et al., 2002), ryanodine receptors (RyR; (Eu et al., 2000),
matrix metalloproteinases (MMPs; Gu et al., 2002), GAPDH (Hara
et al., 2005), and protein-disulfide isomerase (PDI; Uehara et al.,
2006). There is a growing awareness of S-nitrosylation as a post-
translational protein modification regulated with precise temporal
and spatial characteristics (Stamler et al.,2001; Barouch et al.,2002;
Gow et al.,2002; Boehning and Snyder,2003). These characteristics
confer specificity to NO-derived effects, allowing S-nitrosylation
to function as a prototype of mechanisms that convey redox-based
cellular signals (Stamler et al., 2001).

Analogous to NO, other electrophiles can activate or inhibit
specific signal transduction pathways by reacting with cysteine
sulfhydryls and thus causing modification of protein struc-
ture. ROS can directly oxidize cysteine sulfhydryls in vitro and
in vivo (Berlett and Stadtman, 1997). For example, H2O2 oxidizes
sulfhydryl groups to sulfenic acid, which is rather unstable and
reactive and rapidly forms stable intra- or intermolecular disulfide
bonds if other adjacent sulfhydryl groups are present (Claiborne
et al., 1999). Post-translational modifications include the addition
of RCS on proteins, generically termed as “protein carbonyla-
tion,” with the most reactive and common form of these carbonyl
groups being aldehydes. α,β-Unsaturated aldehydes, including 15-
deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), 4-hydroxy-(2E)-non-
enal (4-HNE), and acrolein are reactive aldehydes generated from
polyunsaturated fatty acid oxidation. Because of the presence
of electron-withdrawing functional groups, the double bond of
these compounds serves as a site for Michael addition with the
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sulfur atom of cysteine. Through the modification of key cys-
teine sulfhydryls, these electrophiles can mediate various biological
actions including functional regulation of the IκB kinase (IKK) β

subunit, the nuclear factor (NF)-κB p65 subunit (Rossi et al., 2000;
Straus et al., 2000), kelch-like ECH-associated protein (Keap1;
Eggler et al., 2005), thioredoxin (Shibata et al., 2003), and peroxi-
some proliferator activated receptor (PPAR)γ (Shiraki et al., 2005).
Thus, highly conserved redox reactions of cysteine sulfhydryls can
be elementary molecular processes in the same way as phosphory-
lation reactions of threonine, serine, and tyrosine residues are in
cell signaling.

Studies of transient receptor potential (trp) proteins (TRP),
which form a variety of Ca2+-permeable cation channels, have
significantly extended our knowledge of the molecular basis of
sensory biology. TRP homologs are grouped into six subfamilies
[canonical (C), vanilloid (V), melastatin (M), polycystic kidney
disease (P), mucolipin (ML), and ankyrin (A)] by the homology
of their protein sequences (Clapham, 2003; Voets et al., 2005).
Because of their distinct activation mechanisms and biophysical
properties, TRP channels are highly suited to function in sensory
receptor cells, either as molecular sensors for environmental or
endogenous stimuli or as modulators of signal transduction cas-
cades downstream of metabotropic receptors. In fact, TRP chan-
nels play crucial roles in many types of senses, including touch,
taste, and smell in mammals (Clapham, 2003; Voets et al., 2005).
Recently, it has been demonstrated that a group of TRP channels
are cell sensors for changes in redox status (Hara et al., 2002; Aarts
et al., 2003; Yoshida et al., 2006; Xu et al., 2008). The TRPM2
channel, the first identified ROS-sensitive TRP channel, is acti-
vated indirectly by H2O2 through the production of nicotinamide
adenine dinucleotide and its metabolites, ADP-ribose (ADPR)
and cyclic ADPR (Hara et al., 2002; Perraud et al., 2005). Accu-
mulated evidence indicates that TRPM2 mediates several cellular
responses, including the H2O2-activated Ca2+ influx that medi-
ates cell death (Hara et al., 2002) and, in pancreatic β-cells, the
Ca2+ or cation influx that drives insulin secretion (Togashi et al.,
2006; Uchida et al., 2011). Recently, through studies using Trpm2
knockout (KO) mice, we have demonstrated that H2O2-activated
Ca2+ influx through TRPM2 induces chemokine production in
monocytes, which aggravates inflammatory neutrophil infiltration
(Yamamoto et al., 2008). In addition to TRPM2, certain members
of the TRPC and TRPV subfamily, including TRPC5 and TRPV1,
are activated directly by NO, oxidants, and other chemical agents
through modification of cysteine free sulfhydryl groups (Yoshida
et al., 2006). TRPC5 is also activated by reducing substances such
as thioredoxin (Xu et al., 2008). More recently, TRPA1 channel
activation has been shown to occur following oxidative cysteine
modification by pungent compounds and inflammatory media-
tors (Hinman et al., 2006; Macpherson et al., 2007; Takahashi et al.,
2008). Thus, TRP channels are targets of cysteine modification.

In this review, we focus on the three types of TRPs: TRPC5,
TRPV1, and TRPA1 to extend our understanding of the biolog-
ical significance of cysteine modifications by oxidants and elec-
trophiles, and the physiological consequences of these chemical
reactions in signal transduction pathway and in sensory neuronal
responses.

TRPC5
TRPC5 was cloned from the mouse brain and functionally identi-
fied as a receptor-activated Ca2+-permeable cation channel linked
to phospholipase C (PLC; Okada et al., 1998; Philipp et al., 1998).
Although it is still controversial whether depletion of Ca2+ stores
can activate TRPC5, a number of proteins and factors have been
shown to act as direct triggers and modulators of TRPC5 chan-
nel activation. For example, binding of intracellular Ca2+ and
calmodulin (CaM) have been implicated in TRPC5 activation
and modulation (Ordaz et al., 2005; Shimizu et al., 2006; Blair
et al., 2009; Gross et al., 2009), while membrane polyphospho-
inositides, such as phosphatidylinositol 4,5-bisphosphate (PIP2),
exert both stimulatory and inhibitory effects in regulating TRPC5
channel activity (Trebak et al., 2009). TRPC4 and TRPC1, the
closest structural homologs of TRPC5, interact with the TRPC5
protein (Lockwich et al., 2000; Tang et al., 2000; Yuan et al., 2003;
Obukhov and Nowycky, 2004; Goel et al., 2005; Schindl et al.,
2008; Miehe et al., 2010). As TRPC1 interacts with both TRPC5
and caveolin-1 (Lockwich et al., 2000; Strübing et al., 2001), it is
likely that TRPC5 forms protein complexes with caveolin-1 (the
importance of which will discussed below). An array of these pro-
teins and factors can cooperatively control the function of TRPC5
channelsomes.

TRPC5 is potently regulated by cysteine modifications and
is activated by NO via cysteine S-nitrosylation (Yoshida et al.,
2006). By performing labeling and functional assays with cysteine
mutants,we showed that cysteine residues accessible from the cyto-
plasm, namely Cys553 and nearby Cys558 on the N-terminal side
of the putative pore-forming region between the fifth and sixth
transmembrane domains, are essential for mouse TRPC5 activa-
tion in response to NO (Figure 1). The corresponding cysteine
sites of TRPC1, TRPC4, TRPV1, TRPV3, and TRPV4 are poten-
tial targets of nitrosylation that leads to channel activation (see
also below for nitrosylation of TRPV1; Figure 2). NO-activated
TRPC5 channels were significantly but not entirely suppressed by
ascorbate, which reduces S-nitrosothiols to thiols but not disul-
fides. However, DTT, which reduces both S-nitrosothiols and
disulfides to thiols, fully suppressed NO-activated TRPC5 channel
activity. Thus, both nitrosylation and disulfide bond formation
are very likely to be involved in NO-induced TRPC5 activation.
In an S-nitrosylation assay (Jaffrey et al., 2001), S-nitrosylation
was abolished by the mutation of Cys553 of TRPC5, whereas
it was unaffected by mutation of Cys558. As proposed for the
acid–base catalysis of hemoglobin nitrosylation in proteins with
high NO sensitivity, basic and acidic amino acids surrounding S-
nitrosylated cysteines enhance the nucleophilicity of the sulfhydryl
and therefore the S-nitrosylation of this group (Hess et al., 2005).
Indeed, in TRPC5, charged residues flanking Cys553 and Cys558
may confer modification susceptibility to NO. Our data may sug-
gest that the TRPC5 channel is opened via the S-nitrosylation
of Cys553 and a subsequent nucleophilic attack of nitrosylated
Cys553 by the free sulfhydryl group of Cys558 to form a disul-
fide bond that stabilizes the open state (Figure 1). However, the
NO sensitivity of TRPC5 channels has been disputed by several
groups (Xu et al., 2008; Wong et al., 2010). It is possible that
NO sensitivity of TRPC5 is dependent on culturing conditions,
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FIGURE 1 | Model for activation ofTRPC5 by NO. Possible
protein conformation changes and chemical reactions during
activation of TRPC5 by NO. NO modify the free sulfhydryl group
of Cys553 accessible from the cytoplasmic side to open the

activation gate. The modified Cys553 can be further attacked
nucleophilically by the free sulfhydryl group of Cys558 to form an
intramolecular disulfide bond, which may stabilize the channel in
activation states.

FIGURE 2 | Conserved cysteine residues on the N-terminal side of

putative pore-forming regions inTRPs. Alignment of various TRPs with
the Cys553/Cys558-containing TRPC5 sequence.

application systems of drugs, cell density during measurements,
or other experimental conditions, which may affect the modifi-
cation state of TRPC5 proteins, levels of antioxidants, or other
molecular and cellular states.

High extracellular concentrations of thioredoxin are apparent
in rheumatoid arthritis, an inflammatory joint disease that dis-
ables millions of people worldwide (Burke-Gaffney et al., 2005;
Smolen et al., 2007). TRPC5 is expressed in secretory fibroblast-
like synoviocytes from patients with rheumatoid arthritis. TRPC5
is also activated by the reducing agent, DTT, and by extracellu-
lar reduced thioredoxin, which both cleave a disulfide bridge in
the predicted extracellular loop adjacent to the ion-selectivity fil-
ter of TRPC5 (Xu et al., 2008). Blockade of thioredoxin-activated
TRPC5 enhances secretory activity and prevents the suppression of

secretion, suggesting that TRPC5 has a protective role against the
progression of rheumatoid arthritis. Thus, the cysteine residues of
TRPC5 that are important for the actions of NO and oxidants are
also functional targets for reducing agents.

Previous reports have provided important information with
respect to the TRPC5 “channelsome,” a molecular assembly cen-
tered upon a channel, in endothelial cells. Firstly, as mentioned
above, TRPC1 has been described to form heterotetrameric chan-
nels with TRPC5 (Strübing et al., 2001) and a protein complex with
caveolin-1 in caveolae/lipid raft domains (Lockwich et al., 2000;
Bergdahl et al., 2003), which regulate plasma membrane trafficking
of TRPC1 (Brazer et al., 2003). It is therefore possible that TRPC5
forms indirect protein complexes with caveolin-1 via TRPC1. In
fact, we have found an interaction of TRPC5 with caveolin-1 and
eNOS by co-immunoprecipitation experiments as well as by co-
localization of TRPC5 with caveolin-1 (Mori et al., unpublished
data). Secondly, among numerous caveolin-associated proteins
linked to signaling cascades (Couet et al., 1997; García-Cardeña
et al., 1997; Sato et al., 2004; Quest et al., 2008), three isoforms
of NOS, such as eNOS, have been identified (Kone et al., 2003).
The inhibitory association of caveolin is disrupted by the bind-
ing of Ca2+–CaM to eNOS, leading to eNOS activation (Ju et al.,
1997; Michel et al., 1997a,b; Rizzo et al., 1998; Bernatchez et al.,
2005). Thirdly, eNOS is known to be activated by different kinases,
including Akt, protein kinase A, and protein kinase C (García-
Cardeña et al., 1996; Fulton et al., 1999; Michell et al., 2001; Boo
and Jo, 2003; Heijnen et al., 2004). Based on these papers and our
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own data, we can propose a plausible model to describe the role
of the TRPC5 channelsome in regulating receptor-activated NO
production in vascular endothelial cells (Figure 3). In this model,
TRPC5 proteins form complexes with vasodilator receptors, G-
proteins, PLCβs, and eNOS, and these complexes are anchored in
caveolae by the scaffolding protein, caveolin-1. Upon vasodilator
receptor stimulation, TRPC5 is activated by the PLCβ cascade to
induce Ca2+ influx, which elevates the intracellular Ca2+ concen-
tration ([Ca2+]i) and forms Ca2+–CaM. This releases eNOS from
the inhibitory control of caveolin-1 and leads to an initial NO
production, which activates uncomplexed TRPC5 channels. Ca2+
influx via NO-activated TRPC5 channels then induces secondary
activation of eNOS to amplify the production of NO, resulting in
a positive feedback cycle of receptor-activated Ca2+ and NO sig-
naling. This model has been neatly summarized by Stamler and
colleagues in a short review (Foster et al., 2006) based on our data
(Yoshida et al., 2006).

Our immunolocalization studies have revealed that TRPC5 is
distributed on both the apical and basal membrane in the endothe-
lial cell layer of vascular tissue (Mori, unpublished data). Given
that vasodilator receptors are distributed at the apical luminal sur-
face of the endothelial cell layer, an initial burst of NO produced
there may diffuse across the cytoplasm and activate TRPC5 located
at the basolateral membrane. This could lead to an efficient prop-
agation of Ca2+ signals directed toward the basal membrane. This
feedback mechanism might further contribute to global [Ca2+]i

elevation/oscillation and full activation of eNOS at the Golgi

FIGURE 3 | Proposed model forTRPC5-mediated feedback cycle of

receptor-activated Ca2+ and NO signaling in caveolae of endothelial

cells. Stimulation of GPCRs (such as the ATP-activated P2Y receptor)
induces Ca2+ influx and activation of eNOS as a consequence of binding of
Ca2+–CaM and release of eNOS from caveolin-1. TRPC5 undergoes
eNOS-dependent S-nitrosylation after GPCR stimulation, resulting in
amplified Ca2+ entry and secondary activation of eNOS to amplify
production of NO. GPCR: G protein-coupled receptor.

(Fulton et al., 2002) of endothelial cells, leading to synchroniza-
tion of neighboring smooth muscle cells during relaxation of
vascular tissues. This idea is substantiated by the fact that genetic
disruption of TRPC4 (the closest relative of TRPC5), which we
demonstrated to be colocalized with TRPC5 in the endothelial
cell membrane (Yoshida et al., 2006), impairs agonist-dependent
vasorelaxation (Freichel et al., 2001). Interestingly, the importance
of TRPC5 has been demonstrated in neurite extension (Greka
et al., 2003). As NO signals are reported to regulate neurite exten-
sion (Zhang et al., 2005), the feedback mechanism might also
be important in growth cone morphology. TRPC5 channelsomes
might also be involved in the activation of eNOS by shear stress
(Fulton et al., 1999; Boo et al., 2002), which is purported to pro-
ceed through a Ca2+-independent mechanism because membrane
stretch has been reported to activate TRPC5 independently of PLC
function (Gomis et al., 2008). Even where initiation of NO produc-
tion is evoked independently of Ca2+, the secondary amplification
phase might be mediated by Ca2+ influx via NO-activated TRPC5
channels. Thus, the positive feedback regulation of Ca2+ signals by
NO-activated TRP channels can be involved in diverse biological
systems.

TRPV1
TRPV1 is the most extensively studied and best characterized
among TRP family members. TRPV1 has been implicated in a wide
variety of cellular and physiological processes, including detection
of noxious physical and chemical stimuli, making it a promising
target for the development of analgesic drugs with ultra-specificity
for the origin of the pain.

TRPV1 is a non-selective cation channel that is activated by
noxious stimuli such as heat (>43˚C; Caterina et al., 1997),
acidic pH (Tominaga et al., 1998), and environmental irritants
and endogenous algesic substances including capsaicin (Cate-
rina et al., 1997), camphor (Xu et al., 2005), allyl isothiocyanate
(AITC) from mustard oil and wasabi (Everaerts et al., 2011), 12-
hydroperoxyeicosatetraenoic acid (12-HPETE; Hwang et al., 2000;
Shin et al., 2002), bradykinin (Premkumar and Ahern, 2000),
and anandamide (Zygmunt et al., 1999). Although expression of
TRPV1 was originally reported to be restricted to primary afferent
nociceptors of the dorsal root ganglia (DRG), trigeminal ganglia,
and nodose ganglia (Szallasi et al., 1995; Caterina et al., 1997;
Helliwell et al., 1998; Tominaga et al., 1998; Ward et al., 2003;
Brierley et al., 2005; Christianson et al., 2006), recent studies have
argued for a much wider distribution, both in the central nervous
system and in non-neuronal tissues (Mezey et al., 2000; Roberts
et al., 2004; Tóth et al., 2005; Cristino et al., 2006; Steenland
et al., 2006; Cavanaugh et al., 2011). Analysis of TRPV1-deficient
mice confirmed the specificity and activation kinetics of various
receptor-specific stimuli (Caterina et al., 2000; Davis et al., 2000).
TRPV1 is a useful model for studying the biochemical regulation
of the multimodal sensitivity of cells to stimuli. For example, the
sensitivity of TRPV1 to capsaicin and noxious heat can be greatly
enhanced by mild acidosis (Chuang et al., 2001; Ji et al., 2002;
Amadesi et al., 2004, 2006; Sugiuar et al., 2004) and inflamma-
tory agents that activate PLC signaling pathways (Premkumar and
Ahern, 2000; Tominaga et al., 2001). Such integration of different
signaling pathways allows TRPV1 to detect subthreshold stimuli,
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and provides a mechanism through which tissue injury produces
thermal hypersensitivity (Julius and Basbaum, 2001).

Cysteine modifications also mediate the TRPV1-activating
actions of several regulatory factors (Yoshida et al., 2006). The
alignment of amino acid sequences surrounding Cys553 and
Cys558 of TRPC5 with counterpart sequences shows cysteines
conserved on the N-terminal side of the putative pore-forming
region, which is located between the fifth and sixth transmem-
brane domains in TRPV1. Indeed, TRPV1 channels are activated
by NO by itself, while a TRPV1 mutant with substitutions at these
conserved cysteines gives significantly suppressed responses to NO.
NO also enhances the sensitivity of TRPV1 to H+ and heat, sug-
gesting that nitrosylation-induced Ca2+ entry through TRPV1 is
involved in heat or pain sensation. Sensitizing effects of oxidizing
agents such as diamide and chloramine-T support the existence of
these counterpart cysteines in TRPV1 (Susankova et al., 2006).

TRPV1 also shows sensitivity to pungent compounds from
onion and garlic, such as allicin (Macpherson et al., 2005), through
covalent modification of a single cysteine residue located in the N-
terminal region (Salazar et al., 2008). TRPV1 activation by allicin
is of physiological significance, because TRPV1 mediates part of
the response to this compound in isolated DRG neurons and in an
in vivo model. Recently, C-terminal cytoplasmic cysteine residues
that sensitize TRPV1 activation upon oxidative challenge have
been identified (Chuang and Lin, 2009). Robust oxidative mod-
ulation recovers the agonist sensitivity of receptors desensitized
by prolonged exposure to capsaicin. Moreover, oxidative modula-
tion operates synergistically with kinases and proton modulation.
Considering that tissue damage and inflammation produce ROS,
sensitization of TRPV1 under oxidative challenge is likely to play a
role in nociceptor pain sensation during inflammation, infection,
and tissue injury.

TRPA1
TRPA1 is the only member of the TRPA sub-branch of the TRP
gene superfamily in mammals, characterized by a large number
(17) of amino-terminal ankyrin repeats (Gaudet, 2008). Although
TRPA1 was first cloned from a fibroblast cell line (Jaquemar et al.,
1999), expression of TRPA1 is largely restricted to a subset of noci-
ceptive C-fiber nerves, including somatosensory and vagal nerves
(Story et al., 2003; Bandell et al., 2004; Jordt et al., 2004). In sen-
sory neurons, TRPA1 was initially identified as a cold-sensitive
ion channel in a small subset of cells (Story et al., 2003). Phar-
macological experiments have revealed that TRPA1 is the sensory
neuronal receptor for pungent compounds such as AITC (Bandell
et al., 2004; Jordt et al., 2004), cinnamaldehyde from cinnamon
(Bandell et al., 2004), and allicin from onion and garlic (Macpher-
son et al., 2005). These compounds are potentially susceptible to
nucleophilic attack by the sulfhydryl groups of cysteine residues
(Bautista et al., 2005; Macpherson et al., 2005). Similar to capsaicin,
mustard oil activates sensory neurons, causing acute pain, ther-
mal and mechanical hyperalgesia, and neurogenic inflammation
(Jancsó et al., 1967; Bautista et al., 2006). TRPA1 is also activated
by receptor stimulation (Bandell et al., 2004; Dai et al., 2007; Wang
et al., 2008; Schmidt et al., 2009), cannabinoids (Jordt et al., 2004),
caffeine (Nagatomo and Kubo, 2008), nicotine (Talavera et al.,
2009), and heavy metals including zinc, cadmium, and copper (Hu

et al., 2009; Gu and Lin, 2010). Recent reports have demonstrated
that the biophysical and pharmacological properties of TRPA1
expressed in trigeminal and vagal neurons have intriguing paral-
lels with those of the proposed reactive airway irritant receptor
(Bessac and Jordt, 2008; Taylor-Clark and Undem, 2011).

Different approaches have provided strong support for the
proposal that the activation mechanism of TRPA1 by AITC
and cinnamaldehyde is dependent on covalent cysteine mod-
ifications (Figure 4; Table 1). Systematic mutation of candi-
date acceptor sites identified three neighboring cysteines within
the cytoplasmic N-terminus on human TRPA1 (Cys621, Cys641,
and Cys665) whose simultaneous mutation negates the channel-
activating effects of several cysteine-modifying reagents (Hinman
et al., 2006). Mass spectrometry independently implicated three
cysteines in mouse TRPA1 (Cys415, Cys422, and Cys622), which

FIGURE 4 | Structural model forTRPA1 protein. Four identical TRPA1
subunits are believed to be combined in the formation a functional channel.
Each subunit spanning the plasma membrane six times (transmembrane
domains S1–S6) has a long cytoplasmic N-terminal domain. Ovals indicate
ankyrin repeats, while filled circles indicate cysteine residues identified as
crucial sites for covalent modification of TRPA1 (Hinman et al., 2006;
Macpherson et al., 2007; Trevisani et al., 2007; Bessac et al., 2008; Maher
et al., 2008; Takahashi et al., 2008; Taylor-Clark et al., 2009).

Table 1 |Targeted cysteine residues in humanTRPA1.

Agonist Targeted cysteine(s) Reference

H2O2 Cys621, Cys641, Cys665 Bessac et al. (2008)

Cys421, Cys641, Cys665 Takahashi et al. (2008)

Hypochlorite Cys621, Cys641, Cys665 Bessac et al. (2008)

NO Cys421, Cys641, Cys665 Takahashi et al. (2008)

Nitrooleic acid Cys621, Cys641, Cys665 Taylor-Clark et al. (2009)

15d-PGJ2 Cys621, Cys641, Cys665 Maher et al. (2008)

Cys421, Cys621 Takahashi et al. (2008)

4-HNE Cys621, Cys641, Cys665 Trevisani et al. (2007)

AITC Cys621, Cys641, Cys665 Hinman et al. (2006)

*Cys415, *Cys422, *Cys622 Macpherson et al. (2007)

Cinnamaldehyde *Cys415, *Cys422, *Cys622 Macpherson et al. (2007)

*Cys415, *Cys422, and *Cys622 in mouse TRPA1.
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are conserved in the human homolog (as Cys414, Csy421, and
Cys621), as the target site for electrophilic agonists (Macpherson
et al., 2007). Recently, we have shown that a variety of inflamma-
tory mediators [15d-PGJ2, NO, H2O2, and protons (H+)] activate
human TRPA1 in heterologous systems and mouse TRPA1 in
dissociated sensory neurons (Takahashi et al., 2008). This find-
ing suggests that TRPA1 channels are targeted by an array of
inflammatory mediators to elicit inflammatory pain in the ner-
vous system. Functional characterization of site-directed cysteine
mutants of TRPA1 in combination with labeling experiments
using biotinylated 15d-PGJ2 demonstrated that modifications of
cytoplasmic N-terminal Cys421 and Cys621 are responsible for the
activation of TRPA1 by 15d-PGJ2. In TRPA1 responses to other
cysteine-reactive inflammatory mediators, such as NO and H2O2,
the extent of impairment by respective cysteine mutations differed
from those in TRPA1 responses to 15d-PGJ2. This characteristic
can be attributed to a difference in the mechanisms employed
by 15d-PGJ2 and NO/H2O2 to achieve the modification of free
sulfhydryl groups of cysteine residues in TRPA1 proteins: 15d-
PGJ2 modifies sulfhydryl groups through the Michael addition
reaction, while NO and H2O2 modify sulfhydryl groups through
the redox reaction. Interestingly, the Cys421 mutation critically
impaired the TRPA1 response to H+ as well. Cysteine residues such
as Cys421 can be deprotonated by nearby basic residues to form a
thiolate anion in resting states and are protonated by acidic pH in
activated states. This is a likely physiological scenario, considering
that thiolate anions exert nucleophilic attack on 15d-PGJ2, NO,
and H2O2. According to the structural model, Cys421 is spatially
located close to the basic residue His418 on the same side of an
α-helix (Gaudet, 2008). Notably, TRPA1 is activated by external
NH+

4 -induced intracellular alkalization (Fujita et al., 2008) as well
as acidic pH (Takahashi et al., 2008; Wang et al., 2010), suggest-
ing that the pH dependency of TRPA1 activity has an inverted
bell-shape with the minimum around physiological pH of 7.4.
Interestingly, different sets of cysteine residues have been identi-
fied by independent groups (Table 1). This can be attributed to
differences among mechanisms underlying modification of cys-
teine residues as described above for 15d-PGJ2 and NO/H2O2.
In RyR1, which is a redox-sensitive Ca2+ channel, only 12 of the
100 cysteine residues are redox-modified (“hyper-reactive” cys-
teines) and two of the 12 hyper-reactive cysteines are S-nitrosylated
but not S-glutathionylated, whereas for a further two, the reverse
applies (Aracena-Parks et al., 2006). In Keap1, which is a molecular
sensor for intracellular redox changes, different cysteine residues
have been reported to display different preferences for alkylating
reagents (Dinkova-Kostova et al., 2002; Eggler et al., 2005; Hong
et al., 2005). The discrepancy may be due to the differences among
the mutants employed by the groups: Hinman et al. (2006) showed
data only for triple TRPA1 mutant, which carries mutations of
Cys621, Cys641, and Cys665, while others used single mutants.
To fully understand cysteine residues responsible for TRPA1
activation, analyses of its three dimensional structure is essential.

An array of cysteine-reactive electrophiles has been proposed
as TRPA1 activators. These include a variety of RCS such as
acrolein (2-propenal; Bautista et al., 2006), 4-HNE (Trevisani et al.,
2007), 4-oxonon-enal (Taylor-Clark et al., 2008a), and 15d-PGJ2

(Andersson et al., 2008; Maher et al., 2008; Takahashi et al., 2008;

Taylor-Clark et al., 2008b); ROS such as hypochlorite (Bessac
et al., 2008), H2O2 (Andersson et al., 2008; Bessac et al., 2008;
Sawada et al., 2008; Takahashi et al., 2008), and O3 (Taylor-Clark
and Undem, 2010); and RNS such as NO (Sawada et al., 2008;
Takahashi et al., 2008), peroxynitrite (Sawada et al., 2008), and
nitrooleic acid (Taylor-Clark et al., 2009).

Many TRPA1 stimulants activate bronchopulmonary C-fibers
of vagal nerves, which innervate the airways and play a critical
role in the detection of the airway microenvironment (Kubin
et al., 2006). Oxidative stress and associated compounds have been
shown to activate unmyelinated bronchopulmonary C-fibers, ini-
tiating action potentials in these nerves that conduct centrally
to evoke unpleasant sensations such as urge to cough, dyspnea,
and chest-tightness and to stimulate/modulate reflexes such as
cough,bronchoconstriction, respiratory rate,and inspiratory drive
(Bessac and Jordt,2008). In vivo inhalation of H2O2 and hypochlo-
rite given as an aerosol evokes a decrease in respiratory rate and
an increase in end expiratory pause, which was abolished in Trpa1
KO mice (Bessac et al., 2008). In addition, O3 evokes robust action
potential discharges from cinnamaldehyde-sensitive mouse bron-
chopulmonary C-fibers, which were reduced by approximately
80% by the generic TRP channel blocker, ruthenium red (Taylor-
Clark and Undem, 2010). O3 also causes airway nociceptor hyper-
excitability (Ho and Lee, 1998; Taylor-Clark and Undem, 2010),
although it is unclear if this is due to TRPA1 function. Recently, our
systematic evaluation of the oxidation sensitivity of TRP cation
channels using reactive disulfides with different electrophilicity
reveals the capability of TRPA1 to sense O2 in bronchopulmonary
C-fibers (Takahashi et al., 2011).

The role of TRPA1 in airway afferent signaling has been stud-
ied in association with cigaret smoke and inflammation. It is well
established that cigaret smoke contains nicotine and inflammation
induces bradykinin, lipoxygenase products, and cyclooxygenase
products, all of which can modulate airway nociceptor function
independent of oxidative stress (Carr et al., 2003; Kwong and Lee,
2005; Lee et al., 2007; Taylor-Clark et al., 2008c; Talavera et al.,
2009). However, both cigaret smoke (Andrè et al., 2008, 2009; Lin
et al., 2010) and inflammation (Joseph et al., 2008; Kuhad and
Chopra, 2009; Kamboj et al., 2010) also have the potential to mod-
ulate afferent excitability downstream of ROS production. Another
important role for TRPA1 has been suggested from a mouse
model of allergic asthma (Caceres et al., 2009). Allergen-induced
eosinophilia, mucin production, and airway hyper-reactivity were
reduced by a TRPA1 inhibitor, HC-030031 in wild-type mice by 35,
90, and 90%, respectively. These markers of allergen-induced air-
way inflammation were reduced in Trpa1 KO mice. Because TRPA1
is exquisitely sensitive to oxidants, further analyses are necessary
to determine whether TRPA1 activation induced by smoke and
inflammation is independent of ROS.

CONCLUSIONS
Transient receptor potential channels can respond to multi-
ple activation triggers and therefore serve as polymodal signal
detectors. An important aspect of this multimodal activation of
TRP channels is its role in signal integration and amplification.
When a TRP channel participates in a specific signaling cas-
cade and is activated by downstream or upstream constituents
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(molecules/proteins/enzymes), in addition to the primary acti-
vation trigger immediately upstream, the TRP channel equips the
cascade with positive feedback or feed-forward loops. This mecha-
nism, which is capable of ensuring the fidelity of cellular responses
and minimizing variation in their magnitude, may synchronize the
responses of neighboring cells that comprise functional domains
within tissues. For example, in vascular endothelial cells upon
vasodilator receptor stimulation, Ca2+ influx via NO-activated
TRPC5 channels can amplify production of NO by eNOS, result-
ing in the enhancement of NO production in nearby endothelial
cells and NO-dependent relaxation of smooth muscle cells. The
intercellular amplification of NO production eventually leads to
vasodilation synchronized at the vascular tissue level.

The studies summarized above clearly indicate that multiple
inflammatory signals conveyed by oxidants, lipid products, and
protons converge at TRPV1 and TRPA1 to increase the excitability
of sensory and vagal neurons during inflammation. Thus, TRPV1
and TRPA1 are sensors that translate oxidant and electrophilic
stimuli into electrical signals in sensory and vagal neurons. How-
ever, the role(s) of TRPV1 and TRPA1 Ca2+ permeability in
controlling Ca2+ signaling pathways is still elusive in neurons.
How cellular signals amplified by activation of redox-sensitive TRP
channels are terminated is also unclear. Our study of TRP channels
is now extending from functional description of single molecules
to analysis and integration of molecular systems controlled by TRP
channels.
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