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Despite intense investigation, the mechanisms of the different forms of trigeminal neuropathic pain remain substantially uniden-

tified. The transient receptor potential ankyrin 1 channel (encoded by TRPA1) has been reported to contribute to allodynia or

hyperalgesia in some neuropathic pain models, including those produced by sciatic nerve constriction. However, the role of TRPA1

and the processes that cause trigeminal pain-like behaviours from nerve insult are poorly understood. The role of TRPA1,

monocytes and macrophages, and oxidative stress in pain-like behaviour evoked by the constriction of the infraorbital nerve in

mice were explored. C57BL/6 and wild-type (Trpa1 + / + ) mice that underwent constriction of the infraorbital nerve exhibited

prolonged (20 days) non-evoked nociceptive behaviour and mechanical, cold and chemical hypersensitivity in comparison to sham-

operated mice (P50.05–P50.001). Both genetic deletion of Trpa1 (Trpa1�/�) and pharmacological blockade (HC-030031 and

A-967079) abrogated pain-like behaviours (both P50.001), which were abated by the antioxidant, a-lipoic acid, and the nico-

tinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin (both P50.001). Nociception and hypersensitivity evoked by

constriction of the infraorbital nerve was associated with intra- and perineural monocytic and macrophagic invasion and increased

levels of oxidative stress by-products (hydrogen peroxide and 4-hydroxynonenal). Attenuation of monocyte/macrophage increase

by systemic treatment with an antibody against the monocyte chemoattractant chemokine (C-C motif) ligand 2 (CCL2) or the

macrophage-depleting agent, clodronate (both P50.05), was associated with reduced hydrogen peroxide and 4-hydroxynonenal

perineural levels and pain-like behaviours (all P5 0.01), which were abated by perineural administration of HC-030031, a-lipoic

acid or the anti-CCL2 antibody (all P5 0.001). The present findings propose that, in the constriction of the infraorbital nerve

model of trigeminal neuropathic pain, pain-like behaviours are entirely mediated by the TRPA1 channel, targeted by increased

oxidative stress by-products released from monocytes and macrophages clumping at the site of nerve injury.
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Abbreviations: 4-HNE = 4-hydroxynonenal; AITC = allyl isothiocyanate; A-967079 = (1E,3E)-1-(4-Fluorophenyl)-2-methyl-1-
penten-3-one oxime; CION = constriction of the infraorbital nerve; HC-030031 = (2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-
7H-purin-7-yl)-N-(4-isopropylphenyl) acetamide); LCL = liposome-encapsulated clodronate

Introduction
Trigeminal neuropathic pain arises in a variety of orofacial

painful conditions (Zakrzewska, 2013), which include typ-

ical (type 1) trigeminal neuralgia, characterized by excruci-

ating and sudden pain generated by subthreshold mechanical

stimuli or cold exposure, and atypical (type 2) trigeminal

neuralgia, associated with background pain of lower inten-

sity between sharp painful poussées (Zakrzewska and

Linskey, 2014). Insult of the nerve trunk caused by degen-

eration or mechanical compression produced by various

aetiologies (immunological, metabolic, viral, vascular, can-

cerous, traumatic or surgical) is the most plausible cause

of trigeminal neuropathic pain (Zakrzewska, 2013). Patient

treatment is far from satisfactory for many reasons, includ-

ing uncertainty regarding the underlying mechanisms that

cause trigeminal neuropathic pain from the original injury

(Zakrzewska, 2013; Zhang et al., 2013; Zakrzewska and

Linskey, 2014).

Emerging evidence points to the transient receptor poten-

tial ankyrin 1 (TRPA1) channel as a major pain transducer

(Andrade et al., 2012; Nassini et al., 2014). TRPA1, co-ex-

pressed with the transient receptor potential vanilloid 1

(TRPV1) channel by a subpopulation of peptidergic somato-

sensory neurons, is activated by plant-derived compounds,

such as cinnamaldehyde, allyl isothiocyanate (AITC) and al-

licin (Nilius et al., 2007). Additionally, an unprecedented

series of reactive oxygen, nitrogen or carbonyl species,

including hydrogen peroxide, peroxynitrite, 4-hydroxynone-

nal (4-HNE) and acrolein, have been identified as selective

TRPA1 agonists (Bautista et al., 2006; Trevisani et al., 2007;

Andersson et al., 2008; Sawada et al., 2008; Taylor-Clark

et al., 2009). Channel silencing and pharmacological antag-

onism reduced chemical, thermal (cold) and mechanical

hypersensitivity in different models of neuropathic pain in

peripheral nerves, including streptozotocin-induced diabetic

neuropathy (Wei et al., 2009), chemotherapeutic peripheral

neuropathy (Nassini et al., 2011; Materazzi et al., 2012;

Trevisan et al., 2013) and sciatic nerve ligation (Obata

et al., 2005; Katsura et al., 2006; Caspani et al., 2009).

However, there is no information regarding the role of

TRPA1 in the various pain-like behaviours produced by

nerve injury in models of trigeminal neuropathic pain.

The aim of the present study was to identify the role of

TRPA1 in a mouse model of trigeminal neuropathic pain

produced by the constriction of the infraorbital nerve (Luiz

et al., 2010) and to explore the molecular and cellular path-

ways that, from the initial nerve injury, result in channel

engagement. The monocyte chemoattractant protein 1

(MCP-1), also known as chemoattractant chemokine (C-C

motif) ligand 2 (CCL2), by binding to the chemotactic cyto-

kine receptor 2 (CCR2), promotes monocyte transendothe-

lial migration to the site of nerve injury (Siebert et al., 2000).

In various paradigms of peripheral nerve injury, CCL2 in-

hibition and CCR2 genetic ablation abrogate mechanical

allodynia (Abbadie et al., 2003; Melgarejo et al., 2009). In

addition, antioxidants have been reported to attenuate

neural hypersensitivity in various models of neuropathic

pain, such as sciatic chronic constriction injury (Khalil et

al., 1999) and spinal nerve ligation (Kim et al., 2004).

Thus, the contribution of monocyte/macrophage infiltration

and the ensuing oxidative stress in TRPA1-mediated pain-

like behaviours was investigated in the constriction of the

infraorbital nerve model. Results propose that CCL2-driven

monocyte/macrophage accumulation within the injured

nerve and the neighbouring tissue generates oxidative burst

that, by TRPA1 targeting, promotes and maintains constric-

tion of the infraorbital nerve-evoked pain-like behaviours.

Materials and methods

Animals and drugs

In vivo experiments and tissue collection were carried out ac-
cording to the European Union guidelines for animal care pro-
cedures and the Italian legislation (DLgs 26/2014) application
of the EU Directive 2010/63/EU. Studies were conducted under
the University of Florence research permit #204/2012-B.
C57BL/6 mice (male, 20–25 g, age 5 weeks, Harlan
Laboratories), littermate wild-type (Trpa1 + / + ) and TRPA1-
deficient (Trpa1�/�) mice (25–30 g, age 5–8 weeks), generated
by heterozygotes on a C57BL/6 background (B6; 129P-
Trpa1tm1Kykw/J; Jackson Laboratories; Kwan et al.,
2006) were used. Animals were housed in a temperature-
and humidity-controlled vivarium (12 h dark/light cycle, free
access to food and water, 10 animals per cage). Behavioural
experiments were performed after 1 h of animal acclimation in
a quiet, temperature-controlled room (20–22 �C) between 9
a.m. and 5 p.m. with a randomized order by an operator
blinded to genotype and drug treatments. Animals were eutha-
nized with a high dose of sodium pentobarbital (200mg/kg
intraperitoneally). HC-030031 [2-(1,3-dimethyl-2,6-dioxo-
1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl) aceta-
mide] was synthesized as previously described (Andre et al.,
2008). If not otherwise indicated, reagents, including A-
967079 [(1E,3E)-1-(4-fluorophenyl)-2-methyl-1-penten-3-one
oxime] were obtained from Sigma-Aldrich.

Constriction of the infraorbital nerve

Constriction of the infraorbital nerve (CION) was performed
in C57BL/6, Trpa1+ / + or Trpa1�/�mice as previously
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described (Vos et al., 1994; Luiz et al., 2010). Briefly, mice

were anesthetized with an intraperitoneal injection of a mix-
ture of ketamine (90mg/kg) and xylazine (3mg/kg) and an

incision was made in the left upper lip skin lateral to the

nose, and the rostral end of the infraorbital nerve was
exposed. Then, two loosely constrictive ligatures (#6/0 silk

suture) were placed around the infraorbital nerve with a dis-
tance of 2mm. In the sham procedure, the left infraorbital

nerve was exposed but not ligated. To verify whether an in-
flammatory component, due to a foreign body, contributes to

immune cell accumulation and mechanical and cold hypersen-

sitivity, a silk thread was inserted close to the infraorbital
nerve without any ligature. Neomycin sulphate and sulfathia-

zole (powder, 0.05 and 9.95 g, respectively; Boehringer
Ingelheim) were applied to the wound and the incision was

sutured. Mice were monitored, adequately rehydrated, and
maintained in a controlled temperature (37 �C) until fully re-

covered from anaesthesia.

Experimental design

C57BL/6 (n = 370) and Trpa1 + / + (n = 48) or Trpa1�/� (n = 48)
mice were randomly allocated for CION or sham surgery. Ten

days after surgery, some C57BL/6 mice (n = 128) were ran-
domly allocated to treatment with intragastric (n = 8), intraper-

itoneal (n = 8) or subcutaneous (n = 16), into the left upper lip,

ipsilateral to the surgery (n = 8), or the right upper lip, contra-
lateral to the surgery (n = 8), administration of the TRPA1

selective antagonists, HC-030031 (300mg/kg or 100 mg/10
ml/site, respectively, n = 24), or A-967079 (100mg/kg, intraper-

itoneal, n = 8) or the antioxidant compound, �-lipoic acid
(100mg/kg or 10 mg/10 ml/site, n = 24), or apocynin [(inhibitor

of NADPH oxidase, NOX) 100mg/kg or 1 mg/10 ml/site,

n = 24], or indomethacin [30mg/kg, intraperitoneally n = 8,
intragastrically n = 8 or subcutaneously n = 16 (eight for each

lip side)] or intraperitoneal (n = 8) vehicles (1% of dimethyl
sulphoxide in isotonic saline, NaCl 0.9%, respectively).

Nociceptive responses were assessed 0.5, 1, 2 and 3 h after
drug administration. Doses and schedules of drug administra-

tion were based on previous data (McNamara et al., 2007; Eid

et al., 2008; Trevisan et al., 2013). In another group of
C57BL/6 mice (n = 16), HC-030031 (300mg/kg, intragastric

n = 8) or its vehicle (n = 16) were administered 30min before
and (four times after at 90min intervals) after CION or sham

procedures.
To deplete the monocyte/macrophage population transiently

(Old et al., 2014), a different group of C57BL/6 mice, including
CION- (n = 64) and sham- (n = 48) operated animals, were trea-

ted either systemically (40 mg/200 ml, intraperitoneal: CION
n = 8, sham n = 8) or locally (4 mg/10 ml/site, subcutaneous:

CION n = 16, sham n = 8) with an antibody directed to the

CCL2 chemokine (R&D System) or its vehicle (IgG2B Isotype
Control, R&D System; one injection/day starting from Day 8

after surgery until Day 10, intraperitoneally or subcutaneously
into the left upper lip, ipsilateral to the surgery, or the right

upper lip, contralateral to the surgery) for the two routes of
administration (intraperitoneal: CION n = 8, sham n = 8; sub-

cutaneous: CION n = 16, sham n = 8). Two additional groups

of C57BL/6 mice randomly received liposome-encapsulated clo-
dronate [LCL (ClodronateLiposomes); 5mg/ml, intraperitoneal:

CION n = 8, sham n = 8], or its vehicle [liposome-encapsulated

phosphate buffer saline (ClodronateLiposomes); CION n = 8,

sham n = 8] at Day 7 and 10 after surgery (Fig. 1A).

Assessment of pain-like behaviours

In C57BL/6 and Trpa1 + / + or Trpa1�/�mice, non-evoked noci-

ceptive behaviour, mechanical allodynia and cold hypersensi-

tivity were assessed before surgery (baseline) and 3, 7, 10, 15

and 20 days after surgery. In C57BL/6 mice treated with HC-

030031, �-lipoic acid, apocynin or their vehicles and in

Trpa1 + / + or Trpa1�/�, non-evoked nociceptive behaviour,

mechanical allodynia and cold hypersensitivity were assessed

before surgery (baseline) and at Day 10 after surgery. In

C57BL/6 mice treated with CCL2 antibody or LCL, pain-like

behaviours were assessed before surgery and at Day 7 (LCL)

or Day 8 (CCL2 antibody) and Day 10 after surgery. In

C57BL/6 mice, chemical hyperalgesia was measured before

surgery and at Day 10 after surgery.

Non-evoked nociceptive behaviour

As previously reported, constriction of the infraorbital nerve

induces non-evoked, continuous or recurring pain in the cuta-

neous region innervated by the damaged nerve—a behavioural

response indicative of neuropathic pain (Vos et al., 1994; Xu

et al., 2008). To assess changes in spontaneous facial rubbing,

C57BL/6, Trpa1 + / + or Trpa1�/�mice were placed individually

in clear plexiglass boxes (7 � 9 � 11 cm) on elevated wire

mesh platforms (Xu et al., 2008). After 1 h of adaptation,

the time spent rubbing (time that forelimbs touched ears or

facial region) was recorded for 30min.

Mechanical allodynia

The mechanical threshold was measured in C57BL/6, Trpa1 + /

+ or Trpa1�/�mice using the up-and-down paradigm (Chaplan

et al., 1994). Animals were placed individually in a restrained

apparatus designed for the evaluation of mechanical thresholds

(Krzyzanowska et al., 2011). Mice were habituated to room

temperature for at least 1 h before the test. Then, a series of

seven Von Frey hairs in logarithmic increments of force (0.008,

0.02, 0.04, 0.07, 0.16, 0.4 and 0.6 g) was used to stimulate the

infraorbital nerve region, i.e. near the centre of the vibrissal

pad on the hairy skin of the left upper lip (ipsilateral to the

surgery side). The response was considered positive when the

mouse strongly withdrew its head. The stimulation initiated

with the 0.16 g filament. The von Frey hairs were applied

with sufficient force to cause slight buckling, and held for

�2–4 s. Absence of response after 5 s led to use of the filament

with increased weight, whereas a positive response led to use

of a weaker (lighter) filament. Six measurements were collected

for each mouse or until four consecutive positive or negative

responses occurred. The 50% mechanical withdrawal thresh-

old (expressed in g) response was calculated from these scores

(Dixon, 1980; Chaplan et al., 1994). Basal values were re-

corded before the CION or sham procedure. Mechanical allo-

dynia was considered as a decrease in the mechanical threshold

in comparison to basal (intra-animal) or sham animal (inter-

animal) values.
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Cold hypersensitivity

Cold hypersensitivity was assessed by measuring the acute

nocifensive response to the acetone-evoked evaporative cooling

in C57BL/6, Trpa1 + / + or Trpa1�/�mice (Constandil et al.,

2012; Materazzi et al., 2012). Briefly, mice were placed indi-

vidually in clear plexiglass boxes (7 � 9 � 11 cm) on elevated

wire mesh platforms and habituated for at least 1 h before the

test. Acetone (15 ml) was gently applied to the left vibrissal pad

skin surface (ipsilateral to the surgery side), and the time spent

grooming the region over a 60-s period was measured.

Acetone was applied three times at 10–15min intervals, and

the average nociceptive (grooming) time was calculated. Cold

allodynia was considered as an increase in the nociceptive time

observed after exposure to acetone when compared with basal

(intra-animal) or sham-operated animal (inter-animal) values.

Figure 1 Constriction of the infraorbital nerve induces non-evoked nociceptive behaviour, mechanical allodynia and cold

hypersensitivity, through TRPA1 activation in mice. (A) Scheme of the experimental procedure and timeline. C57BL/6, Trpa1+ /+ or Trpa1�/�

mice underwent constriction of the infraorbital nerve or sham surgery on Day 1. At Day 10 mice received intragastric (i.g.) or subcutaneous (s.c.)

HC-030031, A-967079, indomethacin, apocynin or �-lipoic acid. In another group of C57BL/6 mice, HC-030031 was administered (i.g.) 30min before

and shortly (four times at 90-min intervals) after the CION- or sham- procedures. Additional mice were treated with an antibody directed to the

CCL2 chemokine (CCL2 antibody) or its vehicle (IgG2B) at Days 8, 9 and 10, or LCL or its vehicle (liposome-encapsulated PBS) at Days 7 and 10. On

Day 10, in all animals, pain-like behaviours (non-evoked nociceptive behaviour, mechanical allodynia, cold hypersensitivity, chemical hyperalgesia and

heat hyperalgesia) were assessed and tissues were collected for in vitro assays. (B) In C57BL/6 mice, constriction of the infraorbital nerve induces non-

evoked nociceptive behaviour, mechanical allodynia, cold and heat hypersensitivity starting at Day 3 and persisting at Day 20 post surgery. (C) The

non-evoked nociceptive behaviour, mechanical allodynia and cold hypersensitivity induced by CION surgery in Trpa1+ / + mice are completely absent

in Trpa1�/�mice. The heat hypersensitivity was similar in both Trpa1+ / + and Trpa1�/�CION-operated mice. Sham-operated animals do not show any

hypersensitivity when compared to basal values. �P5 0.05, ��P5 0.01 and ���P5 0.001 versus sham, student’s t test; ���P5 0.001 and ��P5 0.01

versus sham Trpa1+ /+ and sham/vehicle, one-way ANOVA and Bonferroni post hoc test; ###P5 0.001 versus CION Trpa1+ / + ; one-way ANOVA and

Bonferroni post hoc test. BL = baseline assessment before surgery.

1364 | BRAIN 2016: 139; 1361–1377 G. Trevisan et al.
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Chemical hyperalgesia

Basal nociceptive behaviour was assessed by measuring spon-
taneous nociceptive responses induced by subcutaneous (10 ml)
injection into the left upper lip (ipsilateral to the surgery side)
of increasing doses of allyl isothiocyanate (AITC, 0.1–30 nmol/
site) or vehicle (dimethyl sulphoxide 3%), hydrogen peroxide
(0.01–1 mmol/site) or vehicle (isotonic saline), capsaicin (0.01–
1 nmol/site) or vehicle (ethanol 1%) or concentrations of hypo-
tonic saline (0.63%–0% NaCl/site) in non-operated C57BL/6
mice, in order to identify the minimal suprathreshold dose.
Each animal was tested with one dose of each substance.
The identified suprathreshold doses of AITC (1 nmol/site),
hydrogen peroxide (0.1 mmol/site), capsaicin (0.01 nmol/site)
or hypotonic saline (0.45% NaCl/site) were tested in infraor-
bital nerve- or sham-operated mice on Day 10 after surgery.
Animals were placed individually in chambers (transparent
glass cylinders of 20 cm in diameter) and adapted for 20min
before algogen or vehicle injection. Each animal was tested
with one suprathreshold dose of each substance or vehicle,
according to a random allocation. Immediately after the injec-
tion, mice were placed inside a plexiglass box and time spent
in ipsilateral facial rubbing was recorded for 5min.

Rotarod test

Locomotor function, coordination and sedation of animals
were tested by using a rotarod apparatus (UgoBasile). The
test was performed as previously described (Trevisan et al.,
2012). Briefly, 24 h before the experiments, the animals were
trained on the rotarod apparatus, programmed at 8 rpm, until
they remained without falling for 60 s. The day of the experi-
ment, the latent period (s) to the first fall and the number of
falls were recorded. Cut-off time was 240 s. The results of the
rotarod test (not shown) indicated that the various pharmaco-
logical interventions did not affect the forced locomotion of
animals.

Thermal heat hyperalgesia

Thermal heat hyperalgesia of the orofacial area was measured
in C57BL/6, Trpa1+ / + or Trpa1�/�mice with a radiant heat
(50 � 1 �C) placed on the surface of the vibrissal pad. The
latent period before head withdrawal or vigorous flicking of
the snout was recorded. A 20 s cut-off time was used to pre-
vent tissue damage. Reductions in the response latency to heat
stimulation were considered to be indicative of thermal hyper-
algesia (Luiz et al., 2010).

Protein extraction and western
immunoblot assay

Infraorbital nerves or trigeminal ganglia were obtained from
C57BL/6 mice at Day 10 after the constriction of the infraor-
bital nerve (n = 12) or sham (n = 12) surgery. Tissue samples
were homogenized in lysis buffer containing (mM): 50 Tris,
150 NaCl, 2 EGTA, 100 NaF, 1Na3VO4, 1% Nonidet P40
(pH 7.5) and complete protease inhibitor cocktail (Roche
Diagnostics). Lysates were centrifuged at 14 000g at 4 �C for
45min. Protein concentration in supernatants was determined
using a DC protein assay (Bio-Rad). Samples with equal

amounts of proteins (30 mg) were then separated by
NuPAGE� 4–12% Bis-Tris gel electrophoresis (Life
Technologies), and the resolved proteins were transferred to
a polyvinylidene difluoride membrane (Merck Millipore).
Membranes were incubated with 5% dry milk in Tris buffer
containing 0.1% Tween 20 (TBST; 20mM Tris at pH 7.5,
150mM NaCl) for 1 h at room temperature, and incubated
with rat polyclonal primary antibody for TRPA1 detection
(1:200, Novus Biologicals), or mouse monoclonal primary
antibody for b-actin (1:6000, Thermo Scientific), at 4 �C over-
night. Membranes were then probed with goat anti-mouse or
donkey anti-rabbit IgG conjugated with horseradish peroxid-
ase (Bethyl Laboratories Inc.) for 50min at room temperature.
Finally, membranes were washed three times with TBST, and
bound antibodies were detected using chemiluminescence re-
agents (ECL, Pierce, Thermo Scientific). Negative controls were
obtained by overnight preadsorption at 4 �C with 1 mg peptide/
1 mg antibody of the immunizing peptide (Novus Biological).
The density of specific bands was measured using an image
processing program (ImageJ 1.32J, National Institutes of
Health, Bethesda, USA) and normalized to b-actin (Trevisan
et al., 2013).

CCL2 enzyme-linked
immunosorbent assay, hydrogen
peroxide level and superoxide
dismutase activity

For the three different assays, left upper lips, containing the
infraorbital nerve and perineural tissue, were obtained from
C57BL/6 mice at Day 10 post CION (n = 6 for each assay)
or sham (n = 6 for each assay) surgery. The CCL2 content in
infraorbital nerve and surrounding tissue was measured by
using a mouse CCL2/monocyte chemoattractant protein 1
Quantikine� enzyme-linked immunosorbent assay kit (R&D
System). Infraorbital nerve samples were homogenized in phos-
phate-buffered saline (PBS) at 4 �C containing a protease in-
hibitor cocktail tablet (Roche Diagnostics). The homogenate
was then centrifuged at 10 000g for 20min at 4 �C, super-
natants were collected and assayed according to the manufac-
turer’s instructions. The concentration of CCL2 was expressed
in pg/mg of total protein content (Bradford, 1976).
Hydrogen peroxide levels in infraorbital nerves were de-

tected by using the phenol red-horseradish peroxidase
method (Nakamura et al., 1998; Trevisan et al., 2013).
Samples were homogenized in 50mM phosphate buffer (pH
7.4) containing 5mM of sodium azide at 4 �C for 60 s, cen-
trifuged at 12 000g for 20min at 4 �C, and the supernatant
was used to determine the hydrogen peroxide content. Levels
of hydrogen peroxide were expressed as mmol on the basis of a
standard curve of horseradish peroxidase-mediated oxidation
of phenol red by hydrogen peroxide, corrected by protein con-
tent (mg) (Bradford, 1976).
The superoxide dismutase activity was assayed using a Nitro

Blue Tetrazolium (NBT)-based assay (Abcam; Oberley and
Spitz, 1984). Briefly, infraorbital nerves were homogenized in
a Tris-HCl buffer (100mM, pH 7.4) containing 0.5%
TritonTM X-100, 5mM beta-mercaptoethanol, 0.1 g/ml phe-
nylmethanesulfonyl fluoride, centrifuged at 14 000g at 4 �C
for 5min and assayed according to the manufacturer’s

TRPA1 mediates trigeminal neuropathic pain BRAIN 2016: 139; 1361–1377 | 1365
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instructions. Results were expressed as the percent inhibition

of the rate of NBT-diformazan formation.

Immunofluorescence assay

For biochemical or histological analyses the ligature region and

the respective proximal and distal areas of the infraorbital

nerve were dissected and the suture silk removed before prep-

aration of tissue homogenates or rotary microtome slicing.

Tissues were obtained from C57BL/6 mice at Day 10 after

CION (n = 6) or sham (n = 6) surgery. Mice were anaesthetized

with a mixture of ketamine (90mg/kg) and xylazine (3mg/kg)

and transcardially perfused with PBS, followed by 4% paraf-

ormaldehyde. The infraorbital nerve with the surrounding

tissue were removed, placed in 4% paraformaldehyde, and

then embedded in paraffin. Immunofluorescence staining was

performed according to standard procedures. Briefly, after

antigen retrieval (EDTA solution pH 9.0, Dako) for 20min

at 98 �C, sections (4 mm) were incubated with the following

primary antibodies: F4/80 (1:50, Abcam), protein gene product

9.5 (PGP9.5, 1:600, Abcam), TRPA1 (1:400, AVIVA System

Biology) or 4-HNE (1:40, HNEJ-2, Abcam) diluted in fresh

blocking solution (PBS, pH 7.4, 5mg/ml bovine serum albumin

and 2.5% normal goat serum) and applied 1 h at room tem-

perature. Sections were then incubated for 2 h in the dark with

a fluorescent secondary antibody (polyclonal Alexa Fluor� 488

FITC-conjugated, and polyclonal Alexa Fluor 594 TRITC-con-

jugated, Invitrogen) diluted 1:600 in blocking solution (PBS,

pH 7.4, 5mg/ml bovine serum albumin and 2.5% normal goat

serum). Sections were coverslipped using a water-based mount-

ing medium with 4’6’-diamidino-2-phenylindole (DAPI,

Abcam). The analysis of negative controls (non-immune

serum) was simultaneously performed in order to exclude the

presence of non-specific immunofluorescent staining, cross-

immunostaining or fluorescence bleed-through. For histological

evaluation, sections were stained with haematoxylin/eosin, and

based on the morphology, the boundaries of the nerve trunk

corresponding to the epineurium were identified and reported

in adjacent immunofluorescence images with dashed lines. The

number of F4/80 + cells was counted in 104 mm2 boxes within

the dashed lines of the injured branches of the infraorbital

nerve. The 4-HNE staining was evaluated as the fluorescence

intensity measured by an image processing program (ImageJ

1.32J, National Institutes of Health, Bethesda, USA).

Electrophysiology

Trigeminal ganglion neurons were isolated from C57BL/6 mice

at Day 10 after CION (n = 6) and sham (n = 6) surgery, and

whole-cell patch-clamp recordings were performed 24 h after

cell isolation (Nassini et al., 2012; Fusi et al., 2014).

Trigeminal ganglion neurons isolated from CION- and sham-

operated mice were perfused with AITC (30 mM) and capsa-

icin (1 mM). Peak currents activated by each compound were

normalized to cell membrane capacitance and expressed as

mean of the current density (pA/pF) in averaged results.

Currents were evoked in the voltage-clamp mode at a holding

potential of�60mV; signals were sampled at 1 kHz and low-

pass filtered at 10 kHz.

Statistical analysis

Data are presented as mean � SEM. Statistical analysis was
performed by the unpaired two-tailed Student’s t-test for com-
parisons between two groups, the one- or two-way ANOVA,
followed by the post hoc Bonferroni’s test for comparisons of
multiple groups. P50.05 was considered statistically signifi-
cant (GraphPad Prism version 5.00). To meet ANOVA as-
sumptions, mechanical allodynia data were subjected to log
transformation before statistical analysis.

Results

Constriction of the infraorbital nerve
induces pain-like behaviors via TRPA1
activation

Constriction of the infraorbital nerve induced significant

changes in non-evoked nociceptive response and mechan-

ical allodynia in C57BL/6 mice at Day 3 after surgery and

throughout the 20 days of observation, whereas in sham-

operated mice the three outcomes remained stable over the

entire period of observation (Fig. 1B). Constriction of the

infraorbital nerve also induced hypersensitivity to cold

(Fig. 1B). Infraorbital nerve and sham operation did not

affect normal body weight increase (not shown). As previ-

ously reported (Luiz et al., 2010), in C57BL/6 mice, con-

striction of the infraorbital nerve decreased the response

latency to the application of the heat stimulus compared

to the sham-operated group (Fig. 1B). Treatment with HC-

030031 did not affect heat hyperalgesia at Day 10 after

surgery (Fig. 1C). In addition, heat hyperalgesia produced

by constriction of the infraorbital nerve was similar in both

Trpa1 + / + and Trpa1�/�mice (Fig. 1C). As constriction of

the infraorbital nerve-evoked heat hyperalgesia is independ-

ent from TRPA1, and heat does not seem to play a major

role as a trigger or an aggravating factor in trigeminal

neuropathic pain (Eide and Rabben, 1998; Zakrzewska,

2013), heat hyperalgesia was not further investigated.

In wild-type (Trpa1 + / + ) mice, changes in non-evoked

nociceptive behaviour and mechanical allodynia or cold

hypersensitivity produced by constriction of the infraorbital

nerve were similar to those observed in C57BL/6 mice

(Fig. 1C). In contrast, and most importantly, littermate

Trpa1�/�mice were completely protected from all pain-

like behaviours evoked by constriction of the infraorbital

nerve (Fig. 1C). At Day 10 post surgery, systemic (intra-

gastric) treatment with the TRPA1 selective antagonist,

HC-030031, completely reverted the non-evoked nocicep-

tive behaviour, mechanical allodynia and cold hypersensi-

tivity (Fig. 2A). HC-030031 did not affect baseline values

in sham-operated animals (Fig. 2A). The same results were

obtained with another TRPA1 selective antagonist,

A-967079 (Chen et al., 2011). Systemic (intraperitoneal)

A-967079 completely reverted non-evoked nociceptive be-

haviour, mechanical allodynia and cold hypersensitivity
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evoked by constriction of the infraorbital nerve (Fig. 2B).

As for HC-030031, A-967079 did not affect baseline

values in sham-operated animals (Fig. 2B). In addition, to

assess whether TRPA1 inhibition prevents the development

of non-evoked nociceptive behaviour, mechanical allodynia

and cold hypersensitivity, HC-030031 was administered

just before and four times (every 90min) after the CION

or sham procedures. Such treatment delayed the onset of

pain-like behaviours by �15 days (Fig. 2C), which fully

recurred 15–20 days after constriction of the infraorbital

nerve.

To identify the site of TRPA1 engagement, HC-030031

was administered locally. At Day 10 after surgery, local

(subcutaneous) injection of HC-030031 in the left upper

lip, ipsilateral to the surgery, reverted the non-evoked noci-

ceptive behaviour, mechanical allodynia and cold hypersen-

sitivity (Fig. 2D). Importantly, HC-030031 injection in the

right upper lip, contralateral to the surgery side, did not

affect any pain-like behaviours measured in the ipsilateral

upper lip (Fig. 2D). HC-030031 (subcutaneous) did not

change any pain-like parameters in sham-operated mice

(Fig. 2D). However, due to the vicinity of the injection site

to both the ligature site and the skin area where Von Frey

hairs are applied, it is possible that HC-030031 diffuses to

both of them. Accordingly, these experiments cannot distin-

guish if only one or both of the two areas along the nerve

fibre are targeted by the channel antagonist.

There is evidence that nerve injury associated with surgical

procedures affects channel expression in different sections of

sensory nerves (Gillen et al., 1995; Li et al., 2013; Jiang et

al., 2014). We evaluated, by western blotting, TRPA1 pro-

tein content in the infraorbital nerve both ipsilateral and

contralateral to the surgery in either constriction of the infra-

orbital nerve- or sham-operated mice. Two major bands

were identified, one slightly above 100kDa and the other

slightly below 140kDa. In the presence of the immunizing

peptide, the 100kDa band disappeared, thus indicating this

band as the one most likely to correspond to the TRPA1

(Fig. 3A). At Day 10 after surgery, TRPA1 protein expres-

sion was not changed in infraorbital nerve (Fig. 3A) across

the four different experimental conditions.

Selective chemical hypersensitivity to TRPA1 agonists has

been reported in experimental neuropathic pain (Trevisan

et al., 2013). Local injection (subcutaneous) in the left

upper lip of the TRPA1 agonists, AITC or hydrogen per-

oxide, the transient receptor potential vanilloid 1 (TRPV1)

selective agonist, capsaicin and hypotonic saline, which

stimulates the TRPV4 channel (Alessandri-Haber et al.,

2003; Trevisan et al., 2013), evoked a dose-dependent in-

crease in the nociceptive behaviour in naı̈ve, non-operated

C57BL/6 mice (not shown). The nociceptive responses pro-

duced by suprathreshold doses of AITC and hydrogen per-

oxide, but not those evoked by capsaicin or hypotonic

saline, were more intense in CION-operated than in

sham-operated mice (Fig. 3B–E). Notably, Trpa1�/�mice

showed neither acute nociception in response to suprathres-

hold doses of AITC and hydrogen peroxide, nor increased

responses to these stimuli after constriction of the infraor-

bital nerve (Fig. 3F and G). However, in CION-operated

Trpa1 + / + mice the nociceptive responses produced by

suprathreshold doses of AITC and hydrogen peroxide

were similar to those observed in C57BL/6 mice (Fig. 3F

and G).

The primary role of TRPA1 in CION-evoked hypersen-

sitivity is further supported by in vitro electrophysiological

experiments performed in cultured trigeminal ganglion neu-

rons obtained 10 days after the CION or sham procedures.

Inward currents produced in neurons from CION-operated

mice by a suprathreshold concentration of AITC were

higher than those obtained in neurons from sham-operated

mice (Fig. 3H). In contrast, the response to capsaicin was

similar in neurons from CION- or sham-operated mice

(Fig. 3H). In spite of the exaggerated functional response,

TRPA1 protein expression was unchanged in trigeminal

ganglia of CION or sham mice (Fig. 3I). Thus, TRPA1

hypersensitivity in constriction of the infraorbital nerve

does not seem to depend on increased protein expression.

Oxidative stress mediates pain-like
behaviors induced by constriction of
the infraorbital nerve

At Day 10 after constriction of the infraorbital nerve,

changes in non-evoked nociceptive behaviour, mechanical

allodynia and cold hypersensitivity were abrogated 1 h

after the systemic (intragastric) administration of the antioxi-

dant agent, �-lipoic acid (Fig. 4A). A similar complete at-

tenuation was obtained after local treatment (subcutaneous)

with �-lipoic acid into the left upper lip, ipsilateral to the

surgery (Fig. 4B). Instead, local administration of �-lipoic

acid to the contralateral side did not afford any protection

against pain-like behaviours (Fig. 4B). In addition, at Day 10

after constriction of the infraorbital nerve surgery and 1h

after intragastric or subcutaneous (left upper lip, ipsilateral

to the surgery side) administration of the non-selective NOX

inhibitor, apocynin, abated non-evoked nociceptive behav-

iour, mechanical allodynia and cold hypersensitivity (Fig.

4C and D). Thresholds of sham-operated mice were not af-

fected by either �-lipoic acid or apocynin, independently

from their route of administration (Fig. 4A–D).

Constriction of the infraorbital nerve
induces local monocyte/macrophage
infiltration

At Day 10 after surgery, a number of infiltrating mono-

cytes/macrophages were observed in the infraorbital nerve

of CION-operated mice. At Day 10 after sham operation or

sham operation with the insertion of the silk thread with-

out ligature, only a few macrophages were found in infra-

orbital nerve (Fig. 5A and B). In addition, CCL2 levels in

infraorbital nerve tissue homogenates from CION-operated

mice were markedly augmented (Fig. 5C). In addition,
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CCL2 levels in homogenates of the nerve trunk and the

surrounding tissue were augmented in CION-operated

mice (Fig. 5C). A reduction in monocyte/macrophage con-

tent was observed in CION-operated mice treated

systemically (intraperitoneally) with the macrophage-deplet-

ing agent, LCL, which, as expected, did not affect CCL2

levels (Fig. 5B and C). In addition, the number of infiltrat-

ing monocytes or macrophages and CCL2 tissue levels were

Figure 2 Pharmacological inhibition of TRPA1 prevents the non-evoked nociceptive behaviour, mechanical allodynia and cold

hypersensitivity induced by constriction of the infraorbital nerve. (A and B) At Day 10 after surgery, the systemic administration of

selective TRPA1 receptor antagonists, HC-030031 (HC, 300mg/kg intragastric, i.g.) or A-967079 (A96, 100mg/kg intraperitoneal, i.p.), transiently

reverses non-evoked nociceptive behaviour, mechanical allodynia and cold hypersensitivity 1 h post dosing. (C) HC-030031 (300mg/kg, i.g.)

administered just before and four times at 90min intervals after CION or sham procedures prevents the early, but not the late phase of non-

evoked nociceptive behaviour, mechanical allodynia and cold hypersensitivity induced by contriction of the intraorbital nerve. (D) At Day 10 after

CION surgery, the subcutaneous (s.c.) administration of HC-030031 (100 mg/10 ml) in the left upper lip, ipsilateral (ipsi) to CION surgery, but not

its injection in the contralateral (contra) upper lip, completely reverses the non-evoked nociceptive behaviour, mechanical allodynia and cold

hypersensitivity. (A–D) HC-030031 (s.c. and i.g.) and A-967079 (i.p.) do not affect the non-evoked nociceptive behaviour, mechanical allodynia and

cold hypersensitivity 30min, 1 and 2 h post dosing at Day 10 after sham procedure. ���P5 0.001 versus sham/vehicle, sham/HC and sham/A96,

one-way ANOVA and Bonferroni post hoc test; #P5 0.05, ##P5 0.01 and ###P5 0.001 versus CION/vehicle; one-way ANOVA and Bonferroni

post hoc test. BL = baseline assessment before surgery.
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Figure 3 Constriction of the infraorbital nerve does not increase TRPA1 expression but enhances its activity. (A) TRPA1 protein

content analysed by western blotting is not different in infraorbital nerve tissue homogenates obtained from the side ipisilateral (ipsi) and

contralateral (contra) to the surgery in sham and CION mice 10 days after surgery. Equally loaded protein was checked by expression of b-actin.

Representative blots show TRPA1 protein expression in the infraorbital nerve and negative control obtained by preadsorption with the

immunizing peptide. (B and C) The nociceptive response induced by a suprathreshold subcutaneous (s.c., 10 ml) dose of the TRPA1 agonists,

AITC (1 nmol/site) or hydrogen peroxide (0.1 mmol/site) injected in the left upper lip, ipsilateral to CION surgery, is enhanced in CION mice

compared to sham mice 10 days after surgery. (D and E) The responses to suprathreshold doses of capsaicin (CPS, 0.01 nmol/site) or hypotonic

saline (NaCl, 0.45%/site) are not changed in CION mice. (F and G) AITC (1 nmol/site) or hydrogen peroxide (0.1 mmol/site) injection induces

nociceptive behaviours that are increased in Trpa1 + / + CION versus sham mice. Both the nociceptive behaviour and its potentiation in CION mice

are completely absent in Trpa1�/�mice. Trpa1�/�mice do not show any nociceptive behaviour, including CION potentiation of nociceptive

response, when the two TRPA1 agonists are administered. (H) A low concentration of AITC (30 mM) elicits an inward current in trigeminal

neurons isolated from sham mice, a response that results potentiated in neurons taken from CION mice at Day 10 after surgery. (I) TRPA1

protein content analysed by western blotting is not different in trigeminal ganglion homogenates obtained from the side ipisilateral (ipsi) and

TRPA1 mediates trigeminal neuropathic pain BRAIN 2016: 139; 1361–1377 | 1369
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significantly reduced by the systemic (intraperitoneal) ad-

ministration at Days 8 and 10 of the CCL2 antibody as

compared to the administration of the inactive IgG2B iso-

type (Fig. 5B and C). Finally, the failure of indomethacin to

affect pain-like behaviours evoked by constriction of the

infraorbital nerve indicates that infiltrating monocytes or

macrophages do not promote pain-like behaviours due to

a cyclooxygenase-dependent inflammatory response (Fig.

5D).

Monocytes/macrophages increase
oxidative stress in the infraorbital
nerve and pain-like behaviors

At Day 10 after surgery, superoxide dismutase activity and

hydrogen peroxide levels were increased in the peripheral

infraorbital nerve and perineural tissue homogenates from

CION-operated mice as compared to sham-operated mice

(Fig. 6A and B). Treatment with systemic (intraperitoneal)

LCL or CCL2 antibody significantly reduced superoxide

dismutase activity and hydrogen peroxide levels in CION-

operated mice (Fig. 6A and B), without affecting base-

line levels of sham-operated mice. To identify the site of

origin of the oxidative burst, associated with the TRPA1-

dependent pain-like behaviours, we measured the content

of 4-HNE, a final product of peroxidation of plasma mem-

brane phospholipids (Csala et al., 2015). Staining with 4-

HNE was markedly increased within the ligated infraorbi-

tal nerve and in the surrounding tissue of CION-operated

as compared to sham-operated mice (Fig. 6E). Importantly,

4-HNE accumulated within or in the vicinity of TRPA1-

expressing nerve bundles (Fig. 6E). TRPA1 staining was

found within nerve bundles (PGP9.5 positive) of the infra-

orbital nerve and in some cells surrounding the nerve trunk

in slices from Trpa1 + / + mice but not from Trpa1�/�mice

(Fig. 6C). The ability of the antibody to label TRPA1 was

further proved by the intense staining observed in trigem-

inal ganglion from Trpa1 + / + mice and the absence of stain-

ing in trigeminal ganglion from Trpa1�/�mice (Fig. 6D).

The increased 4-HNE content associated with constriction

of the infraorbital nerve was attenuated by systemic (intra-

peritoneal) administration of either the CCL2 antibody or

LCL (Fig. 6E).

Importantly, monocyte/macrophage reduction by LCL or

CCL2 antibody was associated with a remarkable inhib-

ition of non-evoked nociceptive behaviour, mechanical allo-

dynia and cold hypersensitivity (Fig. 7A and B). To

determine whether pain-like behaviours were dependent

from monocytes/macrophages accumulated at the site of

nerve injury, we administered the CCL2 antibody locally.

Injection (subcutaneous) of CCL2 antibody in the left

upper lip, ipsilateral to the surgery, reverted the non-

evoked nociceptive behaviour, mechanical allodynia and

cold hypersensitivity (Fig. 7C). In contrast, when the

CCL2 antibody was injected in the right upper lip, contra-

lateral to the surgery side, no change in pain-like behav-

iours was found in the ipsilateral left upper lip (Fig. 7C).

These data indicate that the invasion of the infraorbital

nerve and perineural tissue by monocytes/macrophages is

a necessary and sufficient condition for the development of

pain-like behaviours produced by constriction of the infra-

orbital nerve.

Discussion
The present findings show for the first time that TRPA1 is

essential in generating pain-like behaviours in a model of

mechanical injury of the trigeminal nerve, as genetic abla-

tion of this channel totally prevented non-evoked nocicep-

tive behaviour, mechanical allodynia and cold and chemical

hypersensitivity produced by constriction of the infraorbital

nerve. Remarkably, TRPA1-deleted mice were fully pro-

tected from all CION-evoked pain-like behaviours over

the entire period of observation (20 days). Although spon-

taneous pain and mechanical allodynia are major features

in the different clinical presentations of trigeminal neuro-

pathic pain, non-noxious thermal stimuli are reported as

triggers and/or worsening factors (Zakrzewska, 2013). As

the effect of TRPA1 genetic deletion in preventing, and

TRPA1 pharmacological blockade in reverting, cold hyper-

sensitivity parallels the results obtained with mechanical

hypersensitivity, it may be concluded that channel engage-

ment mediates responses in mice that recapitulate the major

symptoms observed in trigeminal neuropathic pain.

The key role of TRPA1 in the maintenance of nocicep-

tion evoked by constriction of the infraorbital nerve and

mechanical or cold hypersensitivity is further corroborated

by pharmacological findings. At Day 10, when nociception

and hypersensitivity robustly persisted, systemic administra-

tion of the selective TRPA1 antagonists HC-030031 and A-

967079 completely reverted all pain-like behaviours, indi-

cating that some hitherto undefined endogenous mechan-

isms promote the ongoing channel activation that

maintains the altered condition. Furthermore, repeated sys-

temic treatment with HC-030031 at the time of nerve

injury delayed, but did not prevent, the onset of pain-like

Figure 3 Continued

contralateral (contra) to the surgery in sham and CION mice 10 days after the surgery. Equally loaded protein was checked by expression of b-

actin. Representative blot are shown. Values are mean � SEM of six to eight mice. �P5 0.05 versus sham/vehicle or vehicle or sham Trpa1+ / + ,
��P5 0.01 versus CION/vehicle or sham Trpa1 + / + , ���P5 0.001 versus sham/vehicle or sham Trpa1+ / + , #P5 0.05 versus sham Trpa1+ / + ,
##P5 0.05 versus sham AITC or sham hydrogen peroxide or sham Trpa1+ / + , ###P5 0.001 versus CION Trpa1+ / + ; one-way ANOVA and

Bonferroni post hoc test.
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Figure 4 Systemic and local administration of a-lipoic acid or NOX inhibitor apocynin transiently reverts non-evoked noci-

ceptive behaviour, mechanical allodynia and cold hypersensitivity induced by constriction of the infraorbital nerve. (A and B) In

C57BL/6 mice, 10 days after CION surgery, both intragastric (i.g.) �-lipoic acid (�-LA) (100mg/kg) and subcutaneous (s.c.) administration in the

left upper lip, ipsilateral (ipsi) to CION surgery, but not in the contralateral (contra) upper lip, of �-LA (100 mg/site) transiently (for 2 h starting

from 30min post dosing) abates non-evoked nociceptive behaviour, mechanical allodynia and cold hypersensitivity. (C) At Day 10 after CION

surgery, apocynin [Apo; intragastric (i.g.), 100mg/kg], 1 h after its injection, transiently reverts non-evoked nociceptive behaviour, mechanical

allodynia and cold hypersensitivity. (D) A similar complete reduction in non-evoked nociceptive behaviour, mechanical allodynia and cold

hypersensitivity is observed 1 h after s.c. administration in the left upper lip, ipsilateral (ipsi) to CION surgery, but not in the contralateral (contra)

upper lip, of Apo (s.c., 1 mg/site). Either i.g. or s.c. injection of �-LA or Apo does not affect any nociceptive behaviour evaluated in sham mice.

Values are mean � SEM of six to eight mice �P5 0.05 and ���P5 0.001 versus sham/vehicle. #P5 0.05, ##P5 0.01 and ##P5 0.001 versus

CION/vehicle; one-way ANOVA and Bonferroni post hoc test. BL = baseline assessment, before surgery.
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behaviours, suggesting that a possible therapy with channel

antagonists must consider a chronic schedule of treatment.

The observation that local HC-030031 attenuated pain-like

behaviours only when injected ipsilaterally to the injury

indicates that TRPA1 targeting is confined to the damaged

nerve. However, due to the close proximity of the injection

site to both the injured nerve trunk and the skin area where

hypersensitivity is assayed, the precise site of action of the

TRPA1 antagonist remains unidentified.

Although fluctuations in the expression of transient re-

ceptor potential channels have been described in some

rodent models of nerve injury (Gillen et al., 1995; Li et

al., 2013; Jiang et al., 2014), no change in TRPA1 protein

expression was found in the infraorbital nerve under the

present experimental circumstances. However, we observed

a selective hypersensitivity in behavioural responses to

TRPA1 agonists in CION mice. One possible interpretation

is that, rather than TRPA1 upregulation, an unidentified

mechanism, which is activated within the injured nerve

trunk or in neighbouring tissue, engages the channel to

cause the hypersensitivity. The finding that the putative en-

dogenous channel agonist hydrogen peroxide caused an

exaggerated response in CION mice points to oxidative

stress by-products as possible mediators of the perpetuation

Figure 5 Constriction of the infraorbital nerve induces monocyte/macrophage infiltration in the site of ligature, which is

reduced by macrophage depletion. (A and B) Representative images and pooled data of monocytes/macrophages infiltrating the nerve trunk

in CION, sham or sham/silk (insertion of the silk thread without ligature) mice. Dashed lines represent the epineurium border of one of the

injured branches of the infraorbital nerve. (B) Systemic intraperitoneal (i.p.) liposome-encapsulated clodronate (LCL, 5mg/ml, injected at Days 7

and 10 after surgery) or an antibody directed to CCL2 chemokine (CCL2 antibody, 40 mg/200 ml, injected from Days 8 to 10 after surgery)

prevent macrophage infiltration. (C) Pooled data of the increase in CCL2 content in tissue (infraorbital nerve and surrounding tissue) taken from

the ipisilateral side to the surgery in CION mice on Day 10 after surgical procedure compared to sham. CCL2 antibody, but not LCL, prevents the

increase in CCL2 content. (D) At Day 10 after surgery, i.p. administration of indomethacin (Indo, 30mg/kg) does not affect non-evoked noci-

ceptive behaviour, mechanical allodynia and cold hypersensitivity induced by constriction of the orbitofrontal nerve. Values are mean � SEM of six

to eight mice. �P5 0.05 and ���P5 0.001 versus sham/vehicle or sham/silk or sham/IgG2B, #P5 0.05 versus CION/IgG2B, ###P5 0.001 versus

CION/vehicle or CION/IgG2B; one-way ANOVA and Bonferroni post hoc test. The number of F4/80+ cells was counted in 104 mm2 boxes in left

upper lip sections.
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of TRPA1 activation. In agreement with this hypothesis,

antioxidants have been used with some efficacy in a variety

of neuropathic pain models, usually produced in experi-

mental animals by injuring non-cephalic nerves (Mao

et al., 2009; Senoglu et al., 2009; Gong et al., 2012).

The observation that �-lipoic acid reverted CION-evoked

spontaneous nociception and mechanical and cold hyper-

sensitivity indicates that oxidative stress byproducts, gener-

ated by nerve injury, promote pain-like behaviours. It is

well established that reactive molecules activate TRPA1,

which, for this reason, is considered to be a sensor of oxi-

dative stress (Bessac et al., 2008; Nassini et al., 2014).

Thus, as both TRPA1 blockade and oxidative stress inhib-

ition diminished non-evoked nociceptive behaviours and

mechanical or cold hypersensitivity, it can be proposed

that oxidative stress by-products mediate CION-evoked

pain-like behaviours through TRPA1. As for HC-030031,

ipsilateral, but not contralateral, treatment with �-lipoic

acid recapitulated the protective effects obtained with

systemic antioxidant administration. Therefore, the oxida-

tive stress byproducts needed for the TRPA1-dependent

hyperalgesic phenotype must be produced in the vicinity

of the injured nerve trunk. Biochemical and morphological

evidence robustly supports this hypothesis.

Constriction of the infraorbital nerve increased both

superoxide dismutase activity and hydrogen peroxide

levels in tissue homogenates of perineural tissue, containing

the injured nerve. In addition, constriction of the infraorbi-

tal nerve remarkably augmented 4-HNE staining, which

was localized mainly within and around TRPA1-expressing

nerve bundles. The close proximity of 4-HNE and TRPA1

channels supports the hypothesis that oxidative stress by-

products are the mediators that initiate and maintain the

ongoing TRPA1-dependent pain-like condition. Attenuation

of nociception or hypersensitivity by apocynin, indicates

NOX-dependent production of superoxide anion as the

early and upstream step in the enzymatic chain that even-

tually results in the increased hydrogen peroxide and

Figure 6 Constriction of the infraorbital nerve induces the increase in superoxide dismutase activity, hydrogen peroxide levels,

and 4-HNE content in peripheral infraorbital nerve and perineural tissue, ipsilateral to surgery. (A and B) Superoxide dismutase

activity and hydrogen peroxide content measured at Day 10 after sham or CION surgery, are reduced by intraperitoneal (i.p.) liposome-

encapsulated clodronate (LCL, 5mg/ml, injected at Days 7 and 10 after surgery) or the antibody against CCL2 (CCL2 antibody, 40 mg/200 ml,

injected at Days 8 and 10 after surgery), but not by their respective vehicles. (C) TRPA1 staining is present both in PGP9.5 positive nerve bundles

of infraorbital nerve and in some cells of the surrounding tissue, and in trigeminal ganglion (D) from Trpa1 + / + , but not from Trpa1�/�mice. (E)

Representative images and pooled data of the 4-HNE content. 4-HNE staining is markedly increased within the ligated infraorbital nerve and in the

surrounding tissue of CION-operated mice as compared to sham-operated mice, and that increase is reverted by treatment with LCL or CCL2

antibody. Values are mean � SEM of six mice. ��P5 0.01 and ���P5 0.001 versus sham/vehicle or sham/IgG2B, ##P5 0.01 and ###P5 0.001

versus CION/vehicle or CION/IgG2B; one-way ANOVA and Bonferroni post hoc test. BL = baseline assessment before surgery.
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4-HNE tissue levels and the ensuing pain-like behaviours.

Reduced nociception provided by perineural application of

apocynin further reinforces the proposal that oxidative

stress produced locally is the main contributing factor in

CION-evoked pain-like behaviours. Therefore, the most

parsimonious hypothesis indicates that in the CION

mouse model, increased oxidative stress byproducts are

required to activate neuronal TRPA1, which promotes

pain-like behaviours, and that these events are initiated

and persist over time within and in the vicinity of the

ligated nerve trunk. Nevertheless, present findings do not

exclude that after initial events occurring at the injured

nerve trunk, upstream sites in the pain pathway exaggerate

nociceptive signals. Although TRPA1 protein expression

was not increased in trigeminal ganglion neurons after con-

striction of the infraorbital nerve, the observation that

freshly dissociated trigeminal ganglion neurons are select-

ively hypersensitive to TRPA1 activation is in line with this

hypothesis. A variety of mechanisms, independent from

protein overexpression have been proposed to regulate

TRPA1 functionality and sensitization. These mechanisms

include increased channel translocation to the plasma mem-

brane (Schmidt et al., 2009), activation of phospholipase C

(Dai et al., 2007) or protein kinase A (Wang et al., 2008)

Figure 7 Systemic and local administration of LCL or CCL2 antibody reverts non-evoked nociceptive behaviour, mechanical

allodynia and cold hypersensitivity evoked by the constriction of the infraorbital nerve. (A and B) The effect of intraperitoneal (i.p.)

treatment with LCL (5mg/ml, injected at Days 7 and 10 after surgery), the CCL2 antibody (40 mg/200 ml, injected at Days 8 and 10 after surgery)

and their respective vehicles in sham and CION-operated mice. Both treatments revert non-evoked nociceptive behaviour, mechanical allodynia

and cold hypersensitivity induced by constriction of the intraorbital nerve. (C) At Day 10 after surgery and 1 h post dosing, subcutaneous (s.c.)

administration of CCL2 antibody (4 mg/10 ml, two injections starting from Day 8 after surgery) in the left upper lip, ipsilateral (ipsi) to CION

surgery, but not its injection in the contralateral (contra) upper lip, completely reverts the non-evoked nociceptive behaviour, mechanical allodynia

and cold hypersensitivity. Values are mean � SEM of six to eight mice. ���P5 0.001 versus sham/vehicle or sham/IgG2B, ###P5 0.001 versus

CION/vehicle or CION/IgG2B; one-way ANOVA and Bonferroni post hoc test. BL = baseline assessment, before surgery.
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and changes in intra- and extra-cellular calcium (Doerner et

al., 2007; Zurborg et al., 2007). However, the identifica-

tion of additional contributing mechanisms to the CION-

evoked hypersensitivity in the trigeminal ganglion or in the

CNS is beyond the purpose of this study.

Neuropathic pain following nerve injury has long been

known to be associated with Wallerian degeneration,

which is hallmarked by local infiltration of inflammatory

cells (Ramer et al., 1997; Gaudet et al., 2011). However,

uncertainty remains regarding the mechanisms by which

pain symptoms result from such cellular recruitment and

activation. In the present mouse model, as previously

found in sciatic nerve injury paradigms (Komori et al.,

2011) and partially reported in a CION rat model

(Nakai et al., 2010), we found a remarkable increase in

the monocytes/macrophages, which accumulated at the

site of nerve damage. The ability of the monocyte/macro-

phage depleting agent, clodronate, to attenuate the in-

crease in hydrogen peroxide, 4-HNE tissue levels and

nociception/hypersensitivity underlines the essential role

of cellular infiltration in CION-evoked pain-like behav-

iours. Genetic or pharmacological inhibition of the

CCL2-CCR2 pathway was reported to attenuate inflam-

matory cell accumulation and hyperalgesia in a mouse

model (sciatic nerve ligation) of neuropathic pain

(Abbadie et al., 2003). Previous reports (Hackel et al.,

2013; Pflucke et al., 2013) showed that, in rats, CCL2

intraplantar injection increased monocytes/macrophages

and 4-HNE and produced TRPA1-dependent mechanical

allodynia. Present observations that constriction of the

infraorbital nerve increased CCL2 levels within the injured

area, and that both a systemic and perineural anti-CCL2

antibody attenuated monocyte/macrophage accumulation,

hydrogen peroxide and 4-HNE increases, and nociception

or hypersensitivity, indicate that local CCL2 release is a

major contributing mechanism, most likely placed up-

stream to the cascade of cellular and molecular events

that drive TRPA1-dependent pain-like behaviours (Fig. 8).

This study identifies for the first time the mechanisms

that, from the original nerve insult, determine the pain-

producing engagement of TRPA1 in a model of trigeminal

neuropathic pain. However, a number of questions remain

to be addressed, and some study limitations should be men-

tioned. While TRPA1 or oxidative stress blockade fully

abrogated CION-evoked pain-like behaviours, CCL2 im-

munological inhibition and monocyte/macrophage deple-

tion were associated with a substantial, but incomplete,

attenuation of such responses. Residual effects could be

due to inadequacy in terms of dosing or timing of the

pharmacological interventions (CCL2 antibody and clodro-

nate), or because additional cell type(s) and mediator(s)

give a minor, but still meaningful, contribution to the over-

all phenomenon. Indeed, while CCL2, which is released by

a variety of resident or inflammatory cells, seems to play a

major role, it is possible that other chemokines (Old et al.,

2014) or additional pro-inflammatory mediators, upstream

to CCL2, may contribute. Similarly, whereas pain-like

behaviours seem mostly to depend on monocytes/macro-

phages, the contribution of additional pro-inflammatory

cells cannot be ruled out (Vicuna et al., 2015).

Trigeminal neuropathic pain affects a substantial propor-

tion of the general population (Zakrzewska, 2013;

Zakrzewska and Linskey, 2014) and patient treatment re-

mains unsatisfactory (Renton et al., 2012). Present findings

that CCL2-dependent monocyte/macrophage accumulation

and the ensuing oxidative stress by-products that engage

TRPA1 are key factors for the development and mainten-

ance of pain-like behaviours in a mouse model of trigem-

inal neuropathic pain offer a new interpretation of the

pathophysiology of this condition. In this novel paradigm,

different mechanisms identified in the present study emerge

as new pharmacological targets for drug development.

However, while predictable pharmacodynamic or pharma-

cokinetic hurdles may limit interventions directed to inhibit

monocyte/macrophage accumulation or oxidative stress,

TRPA1 blockade appears to be a feasible endeavor, fos-

tered by the current clinical development of channel

antagonists.

Figure 8 TRPA1-dependent mechanisms in the constric-

tion of the infraorbital nerve. Drawing depicts the possible

cellular and molecular events contributing to TRPA1-dependent

pain-like behaviours induced by constriction of the infraorbital

nerve. Surgery promotes, within the injured area, the release of

CCL2, which, in turn, stimulates monocyte/macrophage recruit-

ment and activation to generate oxidative stress (reactive oxygen

species, ROS) and lipid peroxidation (4-HNE) byproducts, which

engage TRPA1 in nociceptors, evoking pain-like behaviours.
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