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Abstract: Myocardial damage caused by the newly emerged coronavirus (SARS-CoV-2) infection is
one of the key determinants of COVID-19 severity and mortality. SARS-CoV-2 entry to host cells
is initiated by binding with its receptor, angiotensin-converting enzyme (ACE) 2, and the ACE2
abundance is thought to reflect the susceptibility to infection. Here, we report that ibudilast, which
we previously identified as a potent inhibitor of protein complex between transient receptor potential
canonical (TRPC) 3 and NADPH oxidase (Nox) 2, attenuates the SARS-CoV-2 spike glycoprotein
pseudovirus-evoked contractile and metabolic dysfunctions of neonatal rat cardiomyocytes (NRCMs).
Epidemiologically reported risk factors of severe COVID-19, including cigarette sidestream smoke
(CSS) and anti-cancer drug treatment, commonly upregulate ACE2 expression level, and these were
suppressed by inhibiting TRPC3-Nox2 complex formation. Exposure of NRCMs to SARS-CoV-2
pseudovirus, as well as CSS and doxorubicin (Dox), induces ATP release through pannexin-1 hemi-
channels, and this ATP release potentiates pseudovirus entry to NRCMs and human iPS cell-derived
cardiomyocytes (hiPS-CMs). As the pseudovirus entry followed by production of reactive oxygen
species was attenuated by inhibiting TRPC3-Nox2 complex in hiPS-CMs, we suggest that TRPC3-
Nox2 complex formation triggered by panexin1-mediated ATP release participates in exacerbation of
myocardial damage by amplifying ACE2-dependent SARS-CoV-2 entry.

Keywords: SARS-CoV-2; transient receptor potential canonical; NADPH oxidase; protein–protein
interaction; chemical stress
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1. Introduction

A new pandemic of pneumonia caused by severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) emerged in 2019 and rapidly spread worldwide in early 2020 [1,2].
Severe prognostic symptoms have become a global problem and the development of effec-
tive treatments and drugs is urgently needed [3]. The coronaviruses are known for their
impact on the respiratory tract, but SARS-CoV-2 can invade and infect the heart, and lead
to a diverse spectrum of cardiac manifestations, including inflammation (myocarditis),
arrhythmias, heart attack-like symptoms, and heart failure [4,5]. The tropism of organs has
been studied from autopsy specimens: SARS-CoV-2 genomic RNA was highest in the lungs,
but the heart, kidney, and liver also showed substantial amounts [6]. In fact, above 1000
copies of SARS-CoV-2 virus were detected in the heart of 31% patients who died [7]. It has
been reported that the expression levels of SARS-CoV-2 receptor, angiotensin-converting
enzyme 2 (ACE2), are upregulated in COVID-19 patients [8]. Although many risk factors
for severe COVID-19 are reported, such as smoking, anti-cancer drug treatment, hyper-
glycemia, aging, and pre-existing cardiovascular diseases [9–11], the causal relationship
between these risk factors and potential heart manifestations is unclear.

The cardiovascular and lung tissues highly express ACE2 proteins and physiologi-
cally balance the status of the renin-angiotensin (Ang) system by degrading Ang II and
generating Ang 1–7 [12]. SARS-CoV-2 uses its spike (S) glycoprotein to bind with ACE2,
and mediate membrane fusion and virus entry [13]. Before ACE2 receptor-dependent
syncytium formation (i.e., cell–cell fusion), the surface S proteins are cleaved and acti-
vated by transmembrane protease serine proteases. The ACE2-dependent SARS-CoV-2
virus entry is reportedly achieved through endocytosis regulated by phosphatidylinos-
itol 3-phosphate 5-kinase [14], the main enzyme synthesizing phosphatidylinositol-3,5-
bisphosphate (PI(3,5)P2) in early endosome [15], two-pore channel subtype 2, a major
downstream effector of PI(3,5)P2, and cathepsin L (and possibly B) [16,17], a cysteine pro-
tease that cleaves S protein to facilitate virus entry in lysosome. Increased expression of
these factors is thought to cause the aggravation of COVID-19 symptoms. The myocardial
ACE2 expression levels are reportedly upregulated in humans with cardiovascular dis-
eases [18,19]. Oxidative stress through NADPH oxidase (Nox) 2-mediated reactive oxygen
species (ROS) production has been reported to mediate SARS-CoV-2 pseudovirus-evoked
and interleukin-6-induced ACE2 upregulation in endothelial cells [19]. In addition, we
reported that Nox2 protein is upregulated in pathological hearts by forming a protein
complex with transient receptor potential canonical 3 (TRPC3) channel protein [20,21].
These reports suggest that TRPC3-Nox2 protein complex formation is a common target of
myocardial dysfunction evoked by SARS-CoV-2 infection as well as exposure to cardiac
risk factors. Therefore, we here investigate whether TRPC3-Nox2 complex formation is
involved in SARS-CoV-2-induced myocardial dysfunction and ACE2 upregulation caused
by cardiac risk factors. We demonstrate that targeting inhibition of TRPC3-Nox2 complex
is a new strategy for the prevention of cardiac severity after COVID-19.

2. Results
2.1. SARS-CoV-2 Pseudovirus Infection Induces Myocardial Dysfunction

We evaluated the effect of SARS-CoV-2 on cardiomyocyte functions using S glyco-
protein pseudoinfection model [22]. ACE2-EGFP-expressing HEK293T cells showed a
marked ACE2 internalization by HiLyte FluorTM555-labeled S protein [23] (Figure 1A).
We previously reported that the treatment of cardiomyocytes with doxorubicin (Dox),
an anti-cancer drug, promotes complex formation of TRPC3 protein, a major component
of receptor-activated cation channels, with Nox2 [20,21], and extracellular ATP released
from neonatal rat cardiomyocytes (NRCMs) evoked by stresses such as Dox and nutrient
deficiency induces formation of TRPC3-Nox2 protein complex via P2Y2 receptor stimu-
lation and resultant ROS production in NRCMs [24]. Nox2-dependent ROS production
contributes to pathological myocardial atrophy. We also identified that ibudilast, an anti-
inflammatory drug used in the treatment of asthma and stroke, has the potency to inhibit
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TRPC3-Nox2 protein complex formation [25]. Exposure to S protein reduced spontaneous
contraction speed of NRCMs, which was canceled by ibudilast treatment (Figure 1B,C). Inter-
nalization of ACE2 evoked by S protein exposure was suppressed by ibudilast pretreatment in
ACE2-EGFP-expressing HEK293T cells. (Figure 1D). Indeed, S protein exposure also reduced
mitochondrial maximal respiration of NRCMs (Figure 1E,F). Patients with severe COVID-19
have been reported to promote the inflammatory response via cytokine storm [26,27]. S
protein entry increased mRNA expression levels of inflammatory cytokine (TNF-α, IL-1β, and
IL-6) (Figure 1G–I). These data suggested that internalization of pseudovirus S protein can
mimic the phenotype of myocardial abnormality caused by SARS-CoV-2 infection in humans.
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Figure 1. Exposure of NRCMs to SARS-CoV-2 pseudovirus causes contractile and metabolic dys-

functions and cytokine productions. (A) Representative images of internalization of HiLyte Fluor 
Figure 1. Exposure of NRCMs to SARS-CoV-2 pseudovirus causes contractile and metabolic dys-
functions and cytokine productions. (A) Representative images of internalization of HiLyte Fluor
555-labeled S protein (red) in NRCMs co-stained with DAPI (blue). Scale bars = 10 µm. (B) Sponta-
neous contraction speed of NRCMs by exposure to S protein (50 nM) for 3 h with (black) or without
(red) ibudilast, or exposure to vehicle (blue). (C) Peak contraction speeds of NRCMs treated with
(black) or without (red) ibudilast (100 nM) 1 h before S protein (50 nM) exposure for 3 h. Those of
vehicle exposed NRCMs (control) are shown in blue. (D) ACE2-EGFP internalization treated with
ibudilast (100 nM) 1 h before S protein for 3 h in HEK293T cells. (E) Oxygen consumption rate (OCR)
of NRCMs stimulated with S protein (red) or PBS (blue) for 24 h. (n = 3 independent experiments)
OL: oligomycin; FCCP: carbonyl cyanide p-[trifluoromethoxy]-phenylhydrazone; ROT: Rotenone;
ANT: antimycin. (F) Average maximal OCR in (E). (G–I) cytokine mRNA expressions in NRCMs
treated with S protein for 3 h. All data are shown as mean ± SEM; n = 3–5. Significance was imparted
using t-test and one-way ANOVA followed by Tukey’s comparison test.
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2.2. TRPC3/Nox2 Complex Formation Involves in Increasing in ACE2 Expression

Next, we examined whether TRPC3-Nox2 complex formation participates in ACE2
expression of rodent hearts. Interestingly, we found that ACE2 protein abundance was
markedly increased in Dox-treated mouse hearts (Figure 2A), and this ACE2 upregulation
was canceled by systemic deletion of trpc3 gene or cardiomyocyte-specific overexpression
of inhibitory peptide (C3-C-GFP) of TRPC3-Nox2 protein complex [21] (Figure 2A,B).
These ACE2 upregulations were suppressed by co-treatment with ibudilast (Figure 2C).
Additionally, ACE2 mRNA expression levels were increased in NRCMs by stresses such
as hyperglycemia, Dox treatment, and exposure to cigarette sidestream smoke (CSS) and
MeHg [28], an environmentally toxic heavy metal found in tuna (Figure 2D). Ibudilast
inhibited the upregulation of ACE2 expression by CSS (Figure 2E). Exposure of NRCMs
to Dox and CSS also increased the transcriptional activity of ACE2, like exposure to Ang
II stimulation (Figure 2F). These data suggest that the formation of TRPC3-Nox2 protein
complex contributes to increase in ACE2 gene expression levels caused by several stresses
that are known as risk factors for cardiovascular diseases.
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Figure 2. Involvement of TRPC3-Nox2 protein complex formation in pathological ACE2 upregulation
in rodent hearts and cardiomyocytes. (A–C) Expression of ACE2 proteins in Dox-treated TRPC3(+/+)
and TRPC3(−/−) mouse hearts (A), Dox-treated mouse with cardiomyocyte-specific expressing
GFP-fused inhibitory peptide (C3-C) against TRPC3-Nox2 interactions (B), and Dox-treated mice
with ibudilast (10 mg/kg/day) or vehicle (C). (D,E) ACE2 mRNA expressions in NRCMs exposed to
several cardiac risk factors for 24 h. HG: high glucose (25 mM); Dox: doxorubicin (1 µM); CSS: cigarette
sidestream smoke-containing medium (1%); and MeHg (500 nM). (E) Effect of ibudilast (10 µM) on
CSS-exposed increase in ACE2 mRNA expression. (F) ACE2 transcription activities in NRCMs treated
with Ang II (1 µM) and ATP (1 mM) for 24 h. All data are shown as mean ± SEM; n = 3–8. Significance
was imparted using two-way ANOVA and one-way ANOVA followed by Tukey’s comparison test.
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2.3. Chemical Stresses Accelerate Internalization of S Protein in Cardiomyocytes

As chemical stresses, such as Dox and CSS exposures, strongly increased ACE2 gene
expression levels, we next investigated whether these chemical stresses enhance SARS-
CoV-2 pseudovirus entry to NRCMs. Treatment with fluorescently labeled S protein
after pre-exposure to CSS or ATP, one of the major damage-associated molecular pat-
terns (DAMPs) [29], significantly increased the number of S protein-incorporated cells
(Figure 3A,B). The number of S protein-incorporated NRCMs were decreased by silencing
TRPC3 gene (Figure 3C). The increases in ACE2 transcriptional activities by the expo-
sure to Dox, CSS, ATP, S protein, and Ang II stimulation were also observed in hiPS-
CMs (Figure 3D). Pre-exposure of hiPS-CMs to CSS also promoted the incorporation of
fluorescence-labeled S proteins (Figure 3E). As smoking and anti-cancer drug treatment
are also known as risk factors of COVID-19 severity, these results strongly suggest that
external stresses caused by risk factors of COVID-19 enhance SARS-CoV-2 entry to human
and rodent cardiomyocytes through ACE2-dependent internalization pathway.
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Figure 3. Enhanced S protein entry in NRCMs and hiPS-CMs by exposure to CSS and ATP. (A) Rep-
resentative images of S protein incorporation in NRCMs by exposure to CSS (1%) and ATP (1 mM)
for 24 h before stimulating by HiLyte Fluor 555-labeled S protein (50 nM) for 3 h (red). The
S protein-exposed NRCMs were fixed and co-stained with phalloidin (green) and DAPI (blue).
Scale bars = 10 µm. (B) Number of HiLyte FluorTM555-labeled-S protein-incorporated NRCMs in
(A). (C) Number of S protein-incorporated NRCMs with or without silencing TRPC3. (D) ACE2
transcriptional activities in hiPS-CMs. hiPS-CMs were treated with Ang II (1 µM), ATP (1 µM), Dox
(1 µM), and CSS (1%) for 24 h. (E) Representative images of S protein incorporation in hiPS-CMs
exposed to CSS (1%) for 24 h before stimulating with HiLyte Fluor 555-labeled S protein (50 nM) for
3 h (red). The hiPS-CMs were co-stained with phalloidin (green) and DAPI (blue). Scale bars = 10 µm.
All data are shown as mean ± SEM; n = 5–8. Significance was imparted using one-way ANOVA
followed Tukey’s comparison test.
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2.4. S Protein Pseudovirus-Induced ATP Release via Panx1 Causes ROS Production

As the extracellular ATP released by hypoxic and starvation stress triggers formation
of TRPC3-Nox2 protein complex in NRCMs [24], we examined whether ATP release from
hiPS-CMs was induced by the pseudovirus exposure and chemical stresses. Extracellular
ATP concentration was significantly increased by the exposure to S protein, CSS and Dox
(Figure 4A). Treatment with carbenoxolone (CBX), an inhibitor of ATP-permeable pannexin1
(Panx1), attenuated the S protein-evoked increase in extracellular ATP level (Figure 4B).
Silencing Panx1 by two independent siRNAs suppressed the S protein-evoked ATP release
(Figure 4C). S protein exposure also increased ROS production, which was canceled by the
treatment with apyrase, an ATP-degrading enzyme (Figure 4D). In addition, overexpression
of inhibitory peptide (C3-C-GFP) of TRPC3-Nox2 protein complex reduced ROS production
in hiPS-CMs (Figure 4E).
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Figure 4. Extracellular ATP release through Panx1 mediates S protein-evoked ROS production.
(A) ATP release evoked by the exposure of hiPS-CMs to S protein (50 nM), CSS (1%), and Dox (1µM)
for 24 h. (B) Effects of CSS (1%) and CBX (30 µM) pretreatment for 1 h on S protein-exposed ATP
release from hiPS-CMs. (C) Effect of Panx1 knockdown on S protein-exposed ATP release. (D) Effects
of apyrase (2 U/mL for 1 h) on S protein-induced ROS production (white). Scale bars = 10 µm.
(E) Effects of C3-C-GFP on S protein-induced ROS production. All data are shown as mean ± SEM;
n = 5–8. Significance was imparted using one-way ANOVA followed Tukey’s comparison test.

2.5. ATP Release Evoked by S Protein Internalization Promotes TRPC3-Nox2 Complex Formation
in Cardiomyocytes

Finally, we confirmed using proximity ligation assay (PLA) that the formation of
TRPC3-Nox2 protein complex was promoted by S protein exposure in NRCMs (Figure 5). S
protein-evoked TRPC3-Nox2 complex formation was suppressed by ibudilast. Treatment
with apyrase and oligomycin, an ATP synthase inhibitor, reduced the number of PLA-
positive dots evoked by S protein exposure (Figure 5). These results strongly suggest that
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pseudovirus-evoked ATP release via Panexin1 hemi-channels contributes to enhancement
of SARS-CoV-2 entry and ROS production in human cardiomyocytes through formation of
TRPC3-Nox2 protein complex.
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3. Discussion

Severe COVID-19 cases are reported to cause not only lung damage, and gastrointesti-
nal symptoms but also myocardial dysfunction such as myocardial injury, myocarditis,
arrhythmias, and heart failure [30–33]. Production of cytokines, ROS, and DAMPs includ-
ing ATP have been thought to participate in these symptoms [29,32,34–36]. In addition,
epidemiological studies have clarified that smoking, obesity, and medical history, such as
cancer and anti-cancer drug treatment, diabetes and hypertension, are major risk factors
of severe COVID-19 [10,37]. However, it is unclear how these risk factors contribute to
the severe symptoms including myocardial dysfunction. In this study, we demonstrated
that the increase in ACE2 gene expression levels by the exposure to external stresses were
well-associated with enhancement of SARS-CoV-2 pseudovirus entry followed by ROS and
cytokine mRNA productions, metabolic and contractile dysfunctions in human and rat
cardiomyocytes.

It was previously reported that beating of hiPS-CMs was significantly suppressed after
SARS-CoV-2 infection [38,39]. We established SARS-CoV-2 pseudovirus infection model
using NRCMs and revealed that S protein exposure can mimic the SARS-CoV-2-induced
contractile dysfunction of cardiomyocytes (Figure 1). In addition to contractile dysfunction,
mitochondria are attracted attention as an intracellular virus sensor and mitochondrial
damage is associated with cellular dysfunctions of energy metabolism, intracellular Ca2+

handling, and redox homeostasis [40,41]. Indeed, SARS-CoV-2 infection is thought to
promote mitochondrial dysfunction [39,42,43]. We found that mitochondrial maximal
respiration was reduced, and mRNA expression levels of inflammatory cytokines were
increased in NRCMs after S protein exposure (Figure 1). These results suggest that S
protein exposure in NRCMs also mimics the phenotypes of metabolic dysfunction and
inflammation in human hearts caused by SARS-CoV-2 infection.

ACE2 gene expression levels are reportedly elevated in the organs of SARS-CoV-2-
infected patients and the result of GWAS analysis indicates that people with low ACE2
gene expression level tended to be less sensitive to the SARS-CoV-2 virus [8,44]. Thus, the
expression level of ACE2 protein must be one of the key determinants for COVID-19 ag-
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gravation. We found that exposure to several environmental stresses considered as causes
of cardiac risk factors upregulates ACE2 and promotes SARS-CoV-2 pseudovirus entry to
cardiomyocytes (Figures 2 and 3). We also suggest that the extracellular ATP-mediated
formation of TRPC3-Nox2 protein complex contributes to ACE2 upregulation. TRPC3
protein is a component of receptor-operated/diacylglycerol-activated cation-permeable
channels present on the cell membrane and is ubiquitously expressed [45,46]. Nox2 protein
is also distributed broadly in many tissues and organs [47]. We reported that the physical in-
teraction between TRPC3 and Nox2 proteins leads to the increased Nox2 protein-dependent
ROS production and pathological cardiac remodeling, such as myocardial atrophy and
interstitial fibrosis [21]. Pharmacological perturbation of TRPC3-Nox2 protein complex by
ibudilast and inhibitory peptide, C3-C-GFP, prevented the increase in ACE2 expression
and S protein incorporation by exposure to chemical stresses. As S protein exposure also
induces TRPC3-Nox2 complex formation and increases ACE2 expression, SARS-CoV-2
may amplify its incorporation to cardiomyocytes through ACE2 upregulation. ACE2 and
cytokine gene expressions are positively regulated by Apelin, SIRT1, and Foxo [48,49].
As the protein abundances of these transcription factors are reported to be increased by
diabetes, smoking, and cancer [48,50,51], gene transcription-dependent amplification of
SARS-CoV-2 virus entry may be important to cause COVID-19 severity in patients with
risk factor(s).

Recently, SARS-CoV-2 infection was reported to release ATP through Panx1 in lung
cells [52]. In human immunodeficiency virus (HIV) infection, Panx1 has been reported
to promote intracellular uptake of the HIV virus via ATP release [53]. We found that
Panx1 channel-dependent ATP release is caused after exposure of cardiomyocytes to SARS-
CoV-2 pseudovirus, and that the released extracellular ATP contributes to TRPC3-Nox2
protein complex formation and ROS production of cardiomyocytes (Figures 4 and 5). In
addition to S protein exposure, exposure to chemical stresses considered as risk factors
for severe COVID-19 also induces ATP release, and the released ATP increases ACE2
expression through TRPC3-Nox2 complex formation (Figure 6). Not only pseudovirus S
protein exposure but also inflammatory or hypoxic stress reportedly increase the ACE2
expression level through alternative signaling pathways including hypoxia inducible factor
1a (HIF1a) [54,55], but we have not investigated whether Panx1-mediated ATP release
and/or TRPC3-Nox2 axis participates in these alternative pathways. Further studies will
be necessary to determine whether Panx1-mediated ATP release and TRPC3-Nox2 complex
formation are essential for the increase in ACE2 expression. Furthermore, increased ACE2
expression due to various stimuli is thought to increase the risk of SARS-CoV-2 infection
in cells, while increasing anti-inflammatory effect mediated by the intrinsic enzymatic
action of ACE2, converting pro-inflammatory Ang II into anti-inflammatory Ang 1–7 [49].
Therefore, it is necessary to consider a drug discovery strategy to inhibit ACE2-mediated
SARS-CoV-2 entry without inhibiting ACE2 enzymatic activity as well as endogenous
antiviral immunity.

Myocarditis and pericarditis have been reported after COVID-19 mRNA vaccina-
tion [56,57]. To stimulate adaptive immune response, the COVID-19 vaccine generates S
protein within host cells. As the pseudovirus S protein is sufficient to cause cardiomyocyte
dysfunctions, it would be possible to consider the involvement of TRPC3-Nox2 protein
complex in the incidence of adverse effect by mRNA vaccination. As the USA has initiated
a clinical trial of ibudilast to treat acute respiratory distress syndrome (ARDS) in COVID-19
patients [58], further studies focusing on TRPC3-Nox2 protein–protein interactions may
establish a new strategy for the prevention or treatment against human COVID-19 severity
and vaccine side effects.
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Figure 6. Hypothetical model of ACE2 upregulation in cardiomyocytes by the exposure to SARS-
CoV-2 and cardiac risk factors in cardiomyocytes. Exposure to SARS-CoV-2, smoking, and anti-cancer
drug treatment commonly upregulates ACE2 protein expression by ATP release through Panx1. The
released ATP then induces TRPC3-Nox2 complex formation and promotes ROS production probably
through P2Y2 receptor stimulation [24]. The formation of TRPC3-Nox2 protein complex may lead to
SARS-CoV-2-induced cardiac severity by amplifying ROS-dependent signaling in cardiomyocytes.

4. Materials and Methods
4.1. Cell Culture

ACE2-EGFP-expressing HEK293T cells were cultured in Dulbecco’s modified eagle
medium (DMEM) supplemented with 10% FBS and 1% penicillin and streptomycin [23].
Human-derived iPS cardiomyocytes (hiPS-CMs) products, iCell Cardiomyocytes2, were
purchased from FUJIFILM Cellular Dynamics, Inc. (Osaka, Japan) and maintained accord-
ing to the manufacturer’s instructions. Isolation of neonatal rat cardiomyocytes (NRCMs)
were performed as described previously [20]. Plasmid DNAs were transfected into HEK293
cells, hiPS-CMs and NRCMs with lipofectamine 3000 (Thermo Fisher Scientific, Waltham,
MA, USA) or ViaFect Transfection Reagent (Promega, Madison, WI, USA) according to
manufacturer’s instructions.

4.2. S Protein and HiLyte Fluor 555-Labeled S Protein

Recombinant SARS-CoV-2 spike protein (S protein) were purified using the baculovirus-
silkworm system [22]. Purified S protein was chemically labeled with a fluorescent probe
using HiLyte FluorTM 555 Labeling Kit-NH2 (Dojindo, Kumamoto, Japan).

4.3. ACE2-Internalization Assay with S Protein [59]

ACE2-EGFP-expressing HEK293T cells (1.5 × 104 cells/well) were incubated at least
24 h before addition of S protein. In each well, the cells were incubated with S protein
(50 nM) or HiLyte Fluor 555-labeled S protein (100 nM) for 3 h at 37 ◦C, 5% CO2. Cells
were fixed in 4% paraformaldehyde for 10 min to stop the reaction and mounted with
ProLong Diamond Antifade Mountant containing DAPI (Thermo Fisher Scientific, Waltham,
MA, USA). Imaging was performed on a BZ-X800 microscope (Keyence, Osaka, Japan).
ACE2-internalized cells were counted in each section and normalized without S protein as
a control.

4.4. Observation of Spontaneous Contractility

NRCMs (4 × 105 cells/well) were seeded on Φ 3.5 cm glass bottom dish. The cells
were incubated with S protein (50 nM) for 3 h at 37 ◦C, 5% CO2. Microscopy images of
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NRCMs were recorded for 13 s under pacing conditions. Electrical stimulation was applied
for 10 msec every 1 sec at 4 V (SEN-3301, NIHON KOHDEN, Tokyo, Japan).

4.5. The Analysis of Contractility

Imaging was performed at 6 frames per second on a BZ-X800 microscope (Keyence).
Each video was analyzed by Image J software as previously described [60].

4.6. Mitochondrial Bioenergetics Analysis

Oxygen consumption rate (OCR) were assessed using a XFp Extracellular Flux Ana-
lyzer (Seahorse Bioscience, North Billerica, MA, USA). The hiPS-CMs were seeded onto
the plates with a density of 1.0 × 104 cells/well. The cells were treated with or without
clomipramine (100 nM) for 1 h followed by S protein (50 nM) for 24 h. Prior to analysis,
cells were incubated for 1 h in XF Base Medium supplemented with 25 mM d-glucose,
1 mM pyruvate and 2 mM glutamine. After measurements of baseline OCR, measurements
were made following sequential automatic injections of a final concentration of 10 µM
oligomycin, 2 µM carbonyl cyanide p-[trifluoromethoxy]-phenylhydrazone (FCCP), 10 µM
rotenone, and 10 µM antimycin A. After measurements of OCR, cells were fixed in 4%
paraformaldehyde and washed twice with PBS, permeabilized using 0.1% Triton X-100 in
PBS for 5 min, and treated with 3% BSA in PBS for 1 h at room temperature. Then, nuclei
were stained with DAPI for 1 h, cell images were captured, and the number of cells was
counted using BZ-X800 microscope (Keyence). All values for OCR were normalized to
number of cells present in each well.

4.7. Isolation of mRNA and Real-Time PCR

NRCM (3.0 × 104 cells/well) were incubated at least 24 h before treatment. Total
RNA was isolated with a TRI reagent (Sigma, Burligton, MA, USA) from NRCM treated
by S protein for 3 h. cDNA was synthesized with a ReverTra Ace qPCR RT Master
Mix kit (Toyobo, Osaka, Japan). Quantitative real-time PCR was performed with ABI
prism 7500 Real-Time PCR system (Thermo Fisher Scientific, Waltham, MA, USA) and
KAPA SYBR FAST qPCR kit (Roche, Basel, Switzerland). TNF-α primers were forward 5′-
AAATGGGCTCCCTCTCATCAGTTC-3′ and reverse 5′- TCTGCTTGGTGGTTTGCTACGAC-
3′ [61]. IL-1β primers were forward 5′-CACCTCTCAAGCAGAGCACAG-3′ and reverse 5′-
GGGTTCCATGGTGAAGTCAA-3′ [61]. IL-6 primers were forward 5′-TCCTACCCCAACTT
CCAATGCTC-3′ and reverse 5′-TTGGATGGTCTTGGTCCTTAGCC-3′ [61]. ACE2 primers
were forward 5′- GCAGATGGCTACAACTATAACCG-3′ and reverse 5′-C CCTCCTCACATA
GGCATGAAGA-3′. A total of 18 s rRNA amplification were forward 5′-ATTAATCAAGAAC
GAAAGTCGCAGGT-3′ and reverse 5′-TTTAAGTTTCAGCTTTGCAACCATACT-3′. Data
were normalized with 18 s rRNA.

4.8. Animals

All animal studies were conducted according to the guidelines concerning the care
and handling of experimental animals, and approved by the ethic committees at National
Institutes of Natural Sciences (21A057, 29 March 2021) or the Animal Care and Use Com-
mittee, Kyushu University (A21-155-0, 12 March 2021). Male C57BL/6 mice (19–23 g,
8–10 weeks old) were purchased from CLEA Japan, Inc. (Tokyo Japan). Male and female
1–3 days old Sprague–Dawley rat pups for the isolation of NRCMs were purchased from
Japan SLC Inc. (Shizuoka, Japan). All mice were maintained under controlled environ-
ment (12 h light/12 h dark cycle, room temperature 21–23 ◦C and humidity 50–60%). The
129Sv mice with homozygous deletion of the gene encoding TRPC3 were provided by the
National Institute of Environmental Health Sciences.

4.9. AAV-Mediated Expression of TRPC3 C-Terminal Fragment in Mouse Hearts

Preparation of Mice expressing a TRPC3 C-terminal fragment in their hearts was
carried out using the previously described method [21]. The Nox2-interacting fragment
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from the TRPC3 C-terminus (C3-C fragment) was PCR amplified and cloned into pEGFP-
N1 vector. The EGFP-fused C3-C fragment (C3-C-GFP) cassette under the control of cardiac
troponin T promoter was subcloned into pZac2.1. Viral vectors encoding EGFP or C3-C-
GFP were generated as described previously. The AAV vectors (1 × 1010 genomic copies)
were injected into male 6-day-old C57BL/6J mice. Expression of C3-C-GFP in the LV
myocardium was verified using a fluorescence microscope (BZ-X710, Keyence, Osaka,
Japan) [21].

4.10. Animal Model

Osmotic pumps (ALZET) for sustained administration of ibudilast (10 mg/kg/day)
or vehicle were implanted intraperitoneally 3 days before Dox administration. Male
C57BL/6 mice were administered Dox (15 mg/kg, i.p.) or vehicle and sacrificed 2 weeks
later. Hearts were removed from mice. The dosage for Dox and ibudilast was determined
in reference to a previous study [21].

4.11. Western Blotting Assay

Hearts were homogenized in RIPA buffer containing 0.1% SDS, 0.5% sodium de-
oxycholate, 1% NP-40, 150 mM NaCl, 50 mM Tris-HCl (pH 7.4), and protease inhibitor
cocktail (Nacalai, Kyoto, Japan). Samples (10 µg) were then fractionated by SDS-PAGE
and transferred onto PVDF membranes (Millipore, Burligton, MA, USA). The membranes
were blocked with Tris-buffered saline plus 0.05% Tween-20 (TBST) containing 1% BSA
and incubated with primary antibodies overnight at 4 ◦C. Primary antibodies against
ACE2 (R&D Systems), and GAPDH (FUJIFILM) were diluted with TBST containing 1%
BSA. After this incubation, the membranes were washed with TBST and incubated with
HRP-conjugated secondary antibodies. The blots were visualized using Western Lightning
Plus ECL (PerkinElmer, Waltham, MA, USA). Blots were normalized to those obtained
with antibodies against GAPDH. Images were captured with an ImageQuant LAS 4000 (GE
healthcare Life Science).

4.12. Preparation of Cigarette Sidestream Smoke-Containing (CSS)

Preparation of CSS was carried out using the previously described method [62]. Briefly,
CSS generated by the spontaneous combustion of five cigarettes (tar: 14 mg, nicotine: 1.2 mg,
Japan Tobacco Co., Tokyo, Japan) was trapped in 100 mL of DMEM (100% CSS) by bubbling
using a dry vacuum pump (pumping speed: 45 l/min; DA-30D; ULVAC, Kanagawa, Japan).

4.13. Dual Luciferase Assay

The Dual luciferase assay was performed with the Dual-Glo luciferase assay system
(Promega), according to the manufacturer’s instructions. ACE2 (-1119)-luciferase plasmids
(Addgene #31110)46 and pEF-Renilla luciferase plasmids were co-transfected into hiPS-CMs
and NRCMs (1.7 × 104 cells/well). A total of 48 h after transfection, each compound was
added. The activity of both firefly and Renilla luciferases was determined 24 h after stimu-
lation. Luciferase activity was measured using a NIVO plate reader (PerkinElmer). The
luciferase activities were normalized to the Renilla luciferase activity of the internal control.

4.14. Gene Knock Down in NRCMs

NRCMs (2 × 104 cells/well) were seeded on matrigel-coated 96 well plates. The cells
were incubated with S protein (50 nM) for 3 h at 37 ◦C, 5% CO2. For protein knockdown,
cells were transfected with siRNAs (100 nM) using Lipofectamine RNAi Max transfection
reagent (Thermo Fisher Scientific) for 72 h. Rat siTRPC3#1 and siTRPC3#2 is RSS329520
and RSS329521 (Thermo Fisher Scientific). Human siPanx1#1 and siPanx1#2 is HSS119236
and HSS119237 (Thermo Fisher Scientific).
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4.15. Extracellular ATP Assay

After incubating in serum-free DMEM with S protein (50 nM) for 3 h at 37 ◦C, ex-
tracellular ATP concentration in the medium were measured using ATP bioluminescent
Assay kit ( Sigma, Burligton, MA, USA) according to a manufacturer’s instruction. Each
compound was added 1 h before incubation with S protein.

4.16. Measurements of ROS Production in hiPS-CMs

Production of ROS in hiPS-CMs were measured using DHE staining. DHE staining
was performed by the incubation with DHE (2 µM) for 30 min at 37 ◦C, 5% CO2. Cells
(1.7 × 104 cells/well) were fixed in 4% paraformaldehyde and mounted with ProLong
Diamond Antifade Mountant containing DAPI. Imaging was performed on a BZ-X800
microscope. The DHE florescence intensity was analyzed from at least 40 cells in each
experiment using ImageJ software.

4.17. Plasmid DNA and Transfection

Detailed information of fragment of TRPC3 C-terminus (C3-C-GFP) was described in
the previous study [20]. Plasmid DNAs were transfected to hiPS-CMs by Lipofectamine
3000 (Thermo Fisher Scientific, Waltham, MA, USA).

4.18. Proximity Ligation Assay (PLA) Assay

To determine TRPC3-Nox2 interaction in NRCMs, proximity ligation assay was con-
ducted using Duolink PLA Fluorescence (Sigma Aldrich) according to the manufacturer’s
instruction. After fixing and blocking, NRCMs were incubated with rabbit anti-TRPC3
(Alomone lab, Jerusalem, Israel) and mouse anti-Nox2 (Santa Cruz, Dallas, Texas, USA)
followed by PLA probes incubation for 1 h. The ligation (1 h) and amplification (3 h)
steps were performed in 37 ◦C chamber and NRCMs were nuclear stained with DAPI and
phalloidin. Images were captured using a fluorescence microscope (BZ-X800, Keyence).

4.19. Materials

Ibudilast was purchased from Tokyo Chemical Industry (Tokyo, Japan). CBX and
apyrase were purchased from Sigma Aldrich. Oligomycin was purchased from Fujifilm.
Ang II purchased from Peptide Institute, INC (Osaka, Japan).

4.20. Statistics

G*Power3.1.9.2 software was used to calculate the sample size for each group. All
results are presented as the mean± SEM from at least 3 independent experiments. Statistical
significance was determined by unpaired t-test for two group comparisons by one-way
analysis of variance (ANOVA) with Tukey’s test for comparison, by two-way ANOVA
followed with Tukey’s comparison test for comparison among three or more groups.
Statistical analysis was performed using GraphPad Prism 9.0 (GraphPad Software, LaJolla,
CA, USA). Some results were normalized to control to avoid unwanted sources of variation.
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