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Transient receptor potential vanilloid-type 4 (TRPV4) cation channel is widely expressed

in all tissues as well as in immune cells and its function as mechanosensitive Ca2+

channel seems to be conserved throughout all mammalian species. Of late, emerging

evidence has implicated TRPV4 in the activation and differentiation of innate immune

cells, especially in neutrophils, monocytes, and macrophages. As such, TRPV4 has

been shown to mediate neutrophil adhesion and chemotaxis, as well as production

of reactive oxygen species in response to pro-inflammatory stimuli. In macrophages,

TRPV4 mediates formation of both reactive oxygen and nitrogen species, and regulates

phagocytosis, thus facilitating bacterial clearance and resolution of infection. Importantly,

TRPV4 may present a missing link between mechanical forces and immune responses.

This connection has been exemplary highlighted by the demonstrated role of TRPV4

in macrophage activation and subsequent induction of lung injury following mechanical

overventilation. Mechanosensation via TRPV4 is also expected to activate innate immune

cells and establish a pro-inflammatory loop in fibrotic diseases with increased deposition

of extracellular matrix (ECM) and substrate stiffness. Likewise, TRPV4 may be activated

by cell migration through the endothelium or the extracellular matrix, or even by circulating

immune cells squeezing through the narrow passages of the pulmonary or systemic

capillary bed, a process that has recently been linked to neutrophil priming and depriming.

Here, we provide an overview over the emerging role of TRPV4 in innate immune

responses and highlight two distinct modes for the activation of TRPV4 by either

mechanical forces (“mechanoTRPV4”) or by pathogens (“immunoTRPV4”).

Keywords: TRPV4, mechanosensation, innate immunity, infection, host defense, inflammation

INTRODUCTION

Mechanotransduction is a multistep process to convert mechanical stimuli into biochemical
signals that elicit specific cellular effector functions. Over the past decade many key players in
this mechanosensitive machinery have been identified, e.g., ion channels like transient receptor
potential vanilloid-type 4 cation channel (TRPV4) (1, 2), PIEZO (3–5) and epithelial Na+ channel
(ENaC) (6), cellularmicrocompartments such as primary cilia (7) or caveolae (8), or integrins which
can sense the stiffness of the extracellular matrix (ECM) (9).

In injury, infection, or cancer immune cells are attracted by biochemical cues, yet during
invasion of the affected tissue they encounter changes in the biophysical properties of the
microenvironment, which in turn affect their functions. This emerging role of mechanical forces
in immune responses has been termed mechanoimmunology (10). Moreover, in organs with a
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high dynamic mechanical load such as the lung or the heart
immune cells face rapid changes in mechanical forces during
the respiratory or cardiac cycle; yet relatively little is known
about the effects of such mechanical cues on the innate immune
system. During cell adhesion and migration immune cells
are exposed to various biophysical stimuli including shear (in
the circulation as well as during cell adhesion), deformation
(when squeezing though narrow capillary passages or in
transmigration), or cyclic mechanical stretch (in lung and
heart as a result of ventilation or cardiac function). Although
mechanical forces have been shown to impact signaling
during adaptive immune processes (11–13), their effects on
innate immunity are rarely considered and remain poorly
understood. Recent studies, however, have implicated TRPV4
function in the regulation of innate immune responses (14–16).
In the present review, we connect this emerging evidence
with the established role of TRPV4 in mechanosensation
to propose a novel concept of mechanoimmunology
via TRPV4.

MechanoTRPV4

The polymodal and non-selective TRPV4 cation channel,
originally described by Strotmann et al. (17) and Liedtke et al.
(18) in 2000, has been implicated over the past decades to act as
a cellular mechanosensor in response to mechanical forces such
as shear, stretch, osmotic swelling and shrinking, stiffening, and
surface expansion (19–27) and is ubiquitously expressed in a wide
range of cell types, including parenchymal cells such as smooth
muscle cells, fibroblasts, epithelial cells, and endothelial cells as
well as in immune cells, including macrophages, neutrophils
(14, 16, 27–33).

TRPV4 activation mediates the influx of extracellular Ca2+,
which can in turn activate Ca2+-triggered signaling cascades
resulting in changes in transcription, vesicular transport, or
cytoskeletal remodeling. The molecular mechanism how TRPV4
is activated by mechanical forces is currently not completely
understood. At present, models for either direct or indirect
mechanical activation of TRPV4 have been proposed (34, 35).
The concept of direct activation is based on the assumption that
an initial deformation of the plasma membrane’s lipid bilayer
will cause an expansion in cross sectional area, which creates
a membrane tension-dependent energy difference followed by
conformational change of the ion channel and thereby promotes
force activation, as previously described for KCNK4 potassium
channels by Brohawn et al. (36). This concept is supported by
studies of Loukin et al. (37) who showed that TRPV4 can be
activated by pipette suction in the presence of enzyme inhibitors
in Xenopus oocytes, thus excluding mechanisms of indirect
activation (37).

The concept of indirect TRPV4 activation follows the notion
that TRPV4 is rather mechanically gated via intracellular
signaling pathways such as integrin signaling, intracellular
messengers and kinases, or simply by changes in surface
expression (38, 39). Therefore, it has been demonstrated that
forces applied to β1-integrins result in ultra-rapid activation

of Ca2+ influx through TRPV4 channels and that the TRPV4
channels are rather activated by mechanical strain in the
cytoskeletal backbone of the focal adhesion than by deformation
of the lipid bilayer or peripheral cortical cytoskeleton (40).
Such localized indirect activation is proposed to cause highly
compartmentalized TRPV4-mediated Ca2+ signaling at focal
adhesions and facilitates downstream activation of additional
β1-integrins (integrin-to-integrin signaling) and leads to cell
reorientation (40, 41). Moreover, several studies have shown that
TRPV4 activation in response to osmotic or mechanical stress
depends on formation of intracellular mechanomessengers, like
lipid metabolites as arachidonic acid and its derivative 5′,6′-
epoxyeicosatrienoic acid, and PIP2 (21, 42–45). Additionally,
calmodulin as a classical second messenger binds to TRPV4 and
mediates Ca2+ influx by conformational change and dissociation
of its N- and C-terminus (20). It also has been observed that
several protein kinases affect the activity of TRPV4 and/or
facilitates binding to anchoring proteins (AKAPs) and F-actin
and stabilize the channel in the plasma membrane (24, 27, 46–
48). As such, a series of intracellular signaling cascades have
been identified that modulate TRPV4 activity and may serve as
pathways for indirect TRPV4 activation by mechanical forces.

In addition to the intracellular signaling pathways activating
TRPV4, mechanical forces can affect TRPV4 trafficking and
upregulate surface expression of the channel by recruitment
from intracellular pools of TRPV4 to the plasma membrane
via mechanoreceptive structures like calveolae, integrins, or
adherens junctions (8, 26, 32, 41). Subcellular localization and
trafficking of TRPV4 have been proposed to depend on pre-
and post-translational modifications, like alternative splicing
(49), nitrosylation, glycosylation and phosphorylation (27, 47,
50, 51). As these mechanisms were, however, largely identified
using fluorescent-tagged overexpression systems their exact
role in the trafficking of endogenous TRPV4 still remains
incompletely understood.

In summary, TRPV4 may not only respond to diverse triggers
via various modes (direct and indirect) of activation, diverse
signaling pathways and protein modifications, but also different
mechanisms to increase the abundance of open Ca2+ channels at
the plasma membrane, respectively (Figure 1).

ImmunoTRPV4

The role of TRPV4 in the innate immune system was first
recognized more than a decade ago due to its thermosensitivity.
Increments in body temperature in response to infection
(i.e., fever) are important activators of the immune system
with an evolutionary conserved role in host defense (52, 53).
TRPV4 became first implicated in thermo-dependent immune
modulation based on its role in thermal hyperalgesia (54–
56). At the same time, similar effects were reported for other
Ca2+ channels, such as the temperature-dependent activation
of stromal interaction molecule (STIM) 1, which induces Ca2+

influx and in turn modulates gene expression and immune
functions (57). These studies unveiled for the first time a direct
link between Ca2+ channels, temperature, and immune function.
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FIGURE 1 | Activation of mechanoTRPV4. Direct activation of TRPV4 by shear or stretch forces results in an expansion in cross sectional area that creates a

tension-dependent energy difference and leads to conformational changes of the channel by force activation (direct mechanosensing). Indirect activation is mediated

by intracellular signaling cascades triggered via mechanosensitive focal adhesions or adherens junctions, ion channels, by intracellular mechano- or second

messengers, G-protein-coupled receptors, e.g., protease-activated receptors that either activate TRPV4 or recruit it from intracellular pools to the plasma membrane

(indirect mechanosensing). Created with BioRender.com.

In 2008, Spinsanti and colleagues for the first time detected
high expression levels of TRPV4 in human leukocytes (58).
Subsequent functional studies from our group identified an
important role for TRPV4 in regulating key neutrophil functions
in response to pro-inflammatory stimuli like production of
reactive oxygen species, cell adhesion, or migration (16). In vivo,
Trpv4-deficient mice showed a marked protection from acute
lung injury in two independent studies following either acid-
induced or chlorine-induced lung injury (16, 59, 60). These
effects were replicated by pharmacological inhibition of TRPV4,
which similar to Trpv4 deficiency attenuated characteristic
signs of lung injury including hypoxemia, reduced compliance,
edema formation, histological evidence of lung injury, and
last not least, neutrophil infiltration and the release of pro-
inflammatory cytokines (27, 59). Bone marrow chimeras from
Trpv4-deficient and corresponding wild type mice revealed
that the barrier protective effects in Trpv4-deficient mice
was mostly attributable to a lack of TRPV4 in parenchymal
tissue (presumably most relevant in endothelial cells), whereas
TRPV4 deficiency in hematopoietic blood cells primarily reduced
neutrophil infiltration into the injured lung (16). As such, it
remains to be shown to which extent TRPV4-mediated activation
of neutrophils affects organ function in vivo. In principle, these

findings demonstrate that TRPV4 regulates neutrophil adhesion
and migration, whereas in barrier forming cells like endothelial
and epithelial cells, TRPV4 acts as a door opener for protein and
fluid extravasation.

In macrophages, TRPV4 mediates both pro-inflammatory
functions including phagocytosis, adhesion, and reactive oxygen
species production, as well as anti-inflammatory effects and
secretion of pro-resolution cytokines and bacterial clearance
(14, 15). As such, macrophage TRPV4 may exert both protective
and detrimental effects to the host tissue, by facilitating
bacterial clearance in infection while promoting parenchymal
injury in sterile inflammation (16, 27, 59). In a recent
study, a similar double-edged role of mechanosennsation in
the modulation of the innate immune response to sterile
inflammation vs. bacterial infection was reported for another
emerging mechanoimmunological cation channel, PIEZO1 (5).

An important additional role of TRPV4 in innate immunity
relates to expression and function in the vascular endothelium,
which by way of lining the inner surface of blood vessels and
regulating cell adhesion andmigration via expression of adhesion
molecules acts as a gate keeper and controls the access for
cells of the innate (and adaptive) immune system to sites of
inflammation (61). TRPV4 activation in lung endothelial cells has
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been shown to increase vascular permeability (16, 27, 29), in part
via disintegration of cell junctions (62) and degradation of ECM
components and non-matrix components like integrins and VE-
cadherins by matrix metalloproteinases (MMPs) MMP2 and
MMP9 (63), and in part by calmodulin-dependent activation of
the endothelial contractile machinery (64). As a consequence of
these effects, TRPV4 activation results in endothelial detachment
from the basal lamina, consecutive disruption of the endothelial
barrier, and ultimately edema formation (65, 66). These effects
seem to be most prominent in the pulmonary microvasculature
(67), which may be related to TRPV4’s roles in immunity and
defense on the one, and the fact that the alveolo-capillary
barrier presents a large surface for pathogen invasion on the
other hand.

In lung alveolar epithelium, TRPV4 has been shown to act as a
critical regular of epithelial barrier function, but at the same time
revealed protective effects by increasing in bacterial clearance
in large airways (31, 68, 69). All these findings identify TRPV4
as an important regulator of innate host defense responses
including the regulation of phagocytes such as neutrophils
and macrophages, but also of barrier forming epithelial and
endothelial cells.

TRPV4 IN HOST DEFENSE

In line with its role in innate immune cells, TRPV4 has been
implicated in different scenarios of host defense. In a murine
model of Streptococcus pneumoniae infection TRPV4-deficiency
prevented leukocyte infiltration, reduced bacterial load in the
alveolar space, and attenuated characteristic features of lung
injury (70). While these data unequivocally highlight the role
of TRPV4 in host defense against gram-positive bacteria, the
mechanism of TRPV4 activation by such bacteria or their
pore-forming toxins such as pneumolysin (S. pneumoniae), α-
hemolysin (S. aureus), or listeriolysin O (L. monocytogenes) is still
unclear (70–72).

In gram-negative infections with bacteria such as Escherichia
coli and Pseudomonas aeruginosa, TRPV4 activation by ECM
stiffening during infection synergizes with LPS-stimulated TLR4
activation of p38 and thereby promotes host defense and
resolution from lung injury (15, 73). Conversely, activation
of protease-activated receptor (PAR)-2 by thrombin suppresses
TRPV4 activity in macrophages and resolves lung injury (74).
Similarly, PARs are also activated by neutrophil elastase (NE),
matrix metalloproteases (MMPs) or other microbial proteases
(33, 75–79) which has been implicated to degrade ECM
and thereby causing remodeling and matrix stiffening during
infection (33, 63, 73, 80).

Albeit the number of studies on TRPV4 in immune cells
is still limited, TRPV4 emerges as a regulator of innate
immunity and host defense andmay sense mechanical changes of
the extracellular environment during inflammation. Therefore,
occurring mechanical forces are crucial for TRPV4-mediated
immune response and regulate both pro- and anti-inflammatory
effects, which may have both beneficial effects in terms of
bacterial clearance and resolution from injury.

TRPV4 IN MECHANOSENSATION OF
IMMUNE CELLS

Mechanical forces generated by hemodynamic forces or a factor
of ECM composition under physiological and pathophysiological
conditions are acting on immune cells and can be subclassified
in (i) mechanical stretch by shape changes during cell passage
through narrow capillary segments, (ii) shear stress acting on
circulating or adherent immune cells as a function of blood flow
or viscosity, and (iii) changes in substrate stiffness of the ECM
induced by inflammation (81, 82).

In particular, mechanical stretch has been implicated as a
central component in pathological processes at the alveolo-
capillary barrier of the lung where it has been extensively
studied in the context of ventilator-induced lung injury (VILI).
In endothelial and epithelial cells, TRPV4 has been shown
to become activated during mechanical stretch as exerted by
mechanical (over-) ventilation leading to Ca2+ influx and
subsequent loss of lung barrier integrity and the release of
cytokines (27, 29, 68). For macrophages, TRPV4 function has
been shown to be critical in the pro-inflammatory response
to mechanical ventilation (14). As shown by Hamanaka
and colleagues in studies on isolated-perfused mouse lungs,
replacement of wild type with Trpv4-deficient macrophages in
wild type lungs was sufficient to attenuate classical features of
VILI, a finding that was linked to stretch-induced and TRPV4-
dependent intracellular Ca2+ signaling, and the subsequent
formation of reactive oxygen and nitrogen species in vitro.

In neutrophils, transmigration during VILI has so far largely
been considered as a response secondary to the mechanical
stretch on parenchymal cells (16, 83). In contrast to the
systemic circulation where neutrophil adhesion and migration
are primarily localized to postcapillary venules and mediated by
adhesion molecules (61), the initial mechanism of neutrophil
sequestration in the lung is largely based on cytoskeletal
rearrangement and formation of F-actin rims which increase
cellular stiffness and as a result, decrease their ability to
change their shape from spherical to elliptical. These changes in
deformability prevents activated neutrophils to pass through the
narrow capillary segments of the alveolo-capillary network where
they get trapped at sites of inflammation (84). While neutrophil
stiffening was originally considered an irreversible feature,
recent studies suggest that alternating neutrophil stiffening
and softening can drive the dynamic oscillation of neutrophils
between the activated/primed and deactivated/deprimed state
(85). Since F-actin has been shown to bind to activated
TRPV4, it can be speculated that this priming/depriming
occurs as a function of TRPV4 activation secondary to the
formation of F-actin rims (24). Given the implications of
such mechanical effects due to e.g., changes in neutrophil
shape and stiffness not only on neutrophil kinetics through
the vascular system but also on their biological responsiveness
in health and disease (86), the molecular dissection of the
underlying signaling pathways and the potential link to TRPV4
mechanosensation may be of considerable scientific interest
and relevance.
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FIGURE 2 | ImmunoTRPV4 activation during infection. Pathogen-associated signals, e.g., lipopolysaccharide (LPS) can modulate TRPV4 function directly or indirectly.

Direct activation can lead to pro-inflammatory phenotypes and boost the response in acute inflammation. Activation of TLR-4 by LPS and cleavage of PAR-2 by

release matrix metalloproteases (MMPs) and/or neutrophil elastase (NE) during inflammation can modulate the TRPV4-mediated immune response toward an

anti-inflammatory phenotype and induce bacterial clearance. Created with BioRender.com.

Shear stress in the vasculature is a result of blood flow
velocity, vessel diameter, and blood viscosity and primarily acts
on endothelial cells outlining the vessel lumen. Endothelial
cells respond to shear stress by segregation of TRPV4 channels
from β-catenin following relocating TRPV4 from adherens
junctions to focal adhesions of the basal membrane which in turn
increases endothelial permeability by destabilization of junctional
complexes and Ca2+-mediated cytoskeletal remodeling (87).
While it is reasonable to expect that circulating immune cells
tethering or adhering to the vascular wall experience likewise
considerable degrees of vascular shear stress, the effects of
fluid shear stress on innate immune cells have so far not been
extensively addressed. In the alveolar compartment, alveolar
macrophages have been shown to contribute to VILI by secretion
of pro-inflammatory mediators in a TRPV4-dependent manner
(14). This effect is presumably predominantly caused by stretch
rather than shear effects. Nevertheless, it is conceivable that
shear-dependent activation ofmacrophagesmay become relevant
in conditions of alveolar fluid accumulation when fluid will
cyclically shift in and out of the alveolus resulting in considerable
shear forces exerted not only on alveolar epithelial cells but also
on alveolar macrophages (88, 89).

Finally, substrate stiffness is regulated by the composition
of the ECM which changes as a function of physiological
(development, aging) and pathophysiological (atherosclerosis,
hypertension, fibrosis) processes (90–93). TRPV4 has been
identified as a major mechanosensor for substrate stiffness, but so
far this function has been exclusively attributed to parenchymal
cells (30, 31, 94–96). Yet, it is fair to speculate that changes in
substrate stiffness will similarly affect the mechanical forces that

act upon immune cells during the processes of adhesion and
transmigration, which accordingly may affect TRPV4-dependent
cellular responses. Conversely, TRPV4-mediated activation of
immune cells may in turn affect local ECM structure and
composition by secretion of MMPs. As such, TRPV4 may play
an important role in proteolytic disruption of ECM, cell-cell, and
cell-matrix interaction by MMPs that is required for effective
immune cell extravasation to sites of injury and inflammation
(63). By similar mechanisms, TRPV4 may also contribute to
chronic parenchymal remodeling, explaining its prominent role
in tissue fibrosis in a positive feedback of substrate stiffening and
TRPV4-mediated pro-fibrotic effects (30, 97).

In line with a critical role of substrate stiffness for immune
cell function, the Ca2+ response to LPS in of macrophages
were shown to correlate with substrate stiffness. Notably,
such substrate stiffness-dependent modulation of macrophage
signaling can alter macrophage phenotype toward an anti-
inflammatory phenotype (M2) initiating bacteria clearance and
resolution of lung injury (15, 73).

SUMMARY AND CONCLUSION

This review provides an update on the role of TRPV4
in mechanosensation (“mechanoTRPV4”) on the one and
inflammation and host defense (“immunoTRPV4”) on the other
hand with the aim to point toward a possible, albeit still
speculative, role of TRPV4 in mechanoimmunology.

Activation of mechanoTRPV4 directly impacts host defense
in that it reduces endothelial and epithelial barrier function, but
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at the same time promotes the infiltration of innate immune
cells and the release of pro- and anti-inflammatory cytokines
(15, 16, 27). In addition, TRPV4 activation can regulate the
delivery of circulating immune cells to local sites of inflammation
and infection by mediating vasodilation (98, 99). Activation of
immunoTRPV4 triggers and promotes inflammation and has
emerged as a key regulator of bacterial clearance. Importantly,
mechanosensitive and immunoregulatory functions of TRPV4
may not be distinct, but intrinsically linked, thus opening a new
view on mechanoregulation of immune responses. This concept
has already been well-established for epithelial and endothelial
cells, wheremechanical activation of TRPV4 has emerged amajor
regulator of barrier function and inflammatory responses. Yet,
this notion has also been demonstrated for innate immune cells
such as macrophages where Ca2+ signaling as a function of
TRPV4-mediated sensing of substrate stiffness has been shown
to shift the immune response from pro-inflammatory to an
anti-inflammatory and resolving phenotype (15, 73) (Figure 2).
Similar scenarios of mechanoregulation of immune cell function
via TRPV4 may relate to a variety of scenarios where immune
cells undergo changes in mechanical stress, such as during cell

adhesion (shear stress) and transmigration (substrate stiffness,
shape change), capillary transit (shape change) as well as tissue
strain e.g., in mechanically ventilated lungs (stretch). So far,
the link between mechanoTRPV4 and immunoTRPV4 has not
been characterized in detail, but may provide for important
insights into the regulation of innate immunity and host
defense and as such, for the development of novel preventive,
therapeutic, or adjuvant strategies in inflammatory and infectious
diseases such as sepsis, pneumonia, or sterile inflammation as
in VILI.
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