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Abstract: We propose a new deep neural network termed TRQ3DNet which combines convolutional
neural network (CNN) and transformer for hyperspectral image (HSI) denoising. The network
consists of two branches. One is built by 3D quasi-recurrent blocks, including convolution and
quasi-recurrent pooling operation. Specifically, the 3D convolution can extract the spatial correlation
within a band, and spectral correlation between different bands, while the quasi-recurrent pooling
operation is able to exploit global correlation along the spectrum. The other branch is composed
of a series of Uformer blocks. The Uformer block uses window-based multi-head self-attention
(W-MSA) mechanism and the locally enhanced feed-forward network (LeFF) to exploit the global and
local spatial features. To fuse the features extracted by the two branches, we develop a bidirectional
integration bridge (BI bridge) for better preserving the image feature information. Experimental
results on synthetic and real HSI data show the superiority of our proposed network. For example, in
the case of Gaussian noise with sigma 70, the PSNR value of our method significantly increases about
0.8 compared with other state-of-the-art methods.

Keywords: hyperspectral image denoising; TRQ3DNet; quasi-recurrent block; Uformer block;
bidirectional integration bridge

1. Introduction

Hyperspectral sensors capture information in different continuous wavelengths such
as ultraviolet, visible, and near-infrared simultaneously, and produce hyperspectral images
(HSIs) with numerous bands, which contain richer spatial and spectral information than
RGB images, and better represent real scenes. Thus, HSIs can be applied to multiple remote
sensing tasks, including classification [1–5], segmentation [6,7], spectral unmixing [8], etc.
However, due to the inevitable sensor sensitivity, photon effects, and other physical mech-
anism, raw HSIs are often corrupted by various noise, i.e., Gaussian, stripe, deadline,
impulse, or a mixture of them, exerting a negative influence on the downstream HSI appli-
cations. Therefore, it is crucial to conduct HSI denoising to achieve a better performance.

HSI denoising is an important task in the area of image processing and remote sensing.
Various HSI denoising methods are proposed and an effective toolbox is provided in
previous work [9]. Current HSI denoising methods can be categorized into two classes:
model-based methods and deep-learning-based methods. The model-based methods try
to exploit the prior knowledge among HSIs, and typical methods are dictionary-learning-
based (i.e., TDL [10]), filtering-based (i.e., BM4D [11]), tensor-based (i.e., ITSReg [12],
LLRT [13]), low-rank-matrix-recovery-based (i.e., LRMR [14], LRTV [15], NMoG [16]), and
low-rank-tensor-based (i.e., TDTV [17]). We list some typical methods below. BM4D comes
from BM3D [18] and contains hard-thresholding stage and Wiener-filtering stage, with three
similar steps: grouping, collaborative filtering, and aggregation. Peng et al. [10] propose
the tensor dictionary learning (TDL) as an extension of singular value decomposition (SVD).
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Xie et al. [12] construct the intrinsic tensor sparsity (ITS) measure for the model, which can
exploit both the global correlation along spectrum (GCS) and nonlocal self-similarity across
space (NSS). Chen et al. [16] propose a low-rank matrix factorization (LRMF) model, under
the assumption that the noise consists of non-i.i.d. mixture of Gaussians.

Recently, deep learning methodology has been extensively studied in the HSI de-
noising task. The main idea of this type of approach is to directly learn a mapping net-
work from the noisy HSI to the clean HSI. Representative methods are described below.
Chang et al. [19] introduced the fully convolutional neural network (CNN) to HSI de-
noising (HSI-DeNet). Yuan et al. [20] proposed a band-wise method, using 2D and 3D
CNN to extract the correction and complementarity of adjacent bands (HSID-CNN).
Tai et al. [21] designed a very deep persistent memory network (MemNet), composed of
a feature extraction block (2D convolutional layer), memory blocks (multi-residual con-
volutional layers with recursive and gate mechanism), and a reconstruction block (2D
convolutional layer).

However, 2D convolution ignores the spectral correlation of bands, and fails to exploit
GCS from HSIs. To tackle this problem, Wei et al. [22] proposed the quasi-recurrent pooling
operation to extract the global information from all HSI bands. Cao et al. [23] developed
the global reasoning network (GRN), in which the global channel module (GCM) based
on graph convolution network (GCN) is introduced to reason global interdependencies
across bands. Notice that most of the networks mentioned above contain residual learning
strategy, which can ease the difficulty of training, as proposed in the ResNet [24]. Apart
from convolutional methods, recently, attention mechanism [25] has gained increasing
popularity among the computer vision field, since it is competent for multiple vision tasks,
such as classification [26–30], semantic segmentation [31,32], image generation [33–35], etc.
Liang et al. [36] applied swin transformer in image restoration (SwinIR). Wang et al. [37]
developed a u-shaped transformer network consisting of locally enhanced window (LeWin)
transformer block and multiscale restoration modulator. Among these deep neural network
models, the 3D quasi-recurrent neural network (QRNN3D) [22] is one of the outstanding
deep-learning-based methods for HSI denoising. The network is composed of two main op-
erations. One is 3D convolution, which is applied to extract spatial and spectral correlation
in an HSI, and the other is quasi-recurrent pooling function, which can capture the global
correlation along spectra. Nevertheless, there are still some limitations. QRNN3D focuses
mainly on local spatial correlation of the HSI while overlooking the global contextual
information. Furthermore, 3D convolution used in QRNN3D leads to a sharp increase in
the number of parameters. To alleviate this issue, we further design a transformer block
to extract the global spatial information based on QRNN3D. In addition, we use a locally
enhanced feed-forward network to exploit the local spatial information. In this way, the
proposed network can fully utilize both local and global spatial–spectral information. The
proposed network is dubbed as TRQ3DNet.

Our main contributions of this work are summarized as follows:

• We propose TRQ3DNet, a residual encoder–decoder network for HSI denoising, which
consists of two branches. One is based on convolution, and the other is transformer.
The model can extract both the global correlation along spectrum and the local–global
spatial features.

• We present a bidirectional integration bridge, which aggregates the global features
from convolution layers and the local features from window-based attention mecha-
nism, so as to exploit a better representation of image features.

• We conduct both synthetic and real HSI denoising experiments. Quantitative evalua-
tion results reveal that our model achieves a better performance than other state-of-
the-art model-based and deep-learning-based methods.

The rest of the paper is organized as follows: We introduce the proposed method in
Section 2, and the experimental results are presented in Section 3. In Section 4, we conduct
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analysis and discussion, and in Section 5 we draw the conclusion. Code is available at
https://github.com/LiPang/TRQ3DNet (on 8 September 2022).

2. Proposed Method
2.1. Notations

An HSI Y degraded by various noise can be described as a linear model:

Y = X + N, (1)

where X is the ideal noise-free image, and N is the addictive noise, e.g., Gaussian noise.
Y, X, N ∈ RB×H×W , and H, W, B represent the height, the width, and the band number of
the HSI, respectively. The goal of HSI denoising is to recover the clean X from the noisy
observation Y.

2.2. Overall Architecture

The overall architecture of the TRQ3DNet is shown in Figure 1. Our network consists
of an extractor, a reconstructor, and four pairs of symmetric TRQ3D units. The basic unit
of the residual encoder–decoder network consists of three parts: 3D quasi-recurrent block
(QRU3D block), Uformer block, and the bidirectional integration bridge (BI bridge).

Attention

Conv
Conv

Conv
Conv

...

...

...

...

Trq3d Unit 1

Bidirectional

Bidirectional

Projection

Projection

Input HSI
QRNN3D Block

tanh(·)

3D Conv

sigmoid(·)

...
split

split
...

F

...

...

Quasi-Recurrent 
Pooling

QRNN3D Block

QRNN3D Block

Uformer Block

Uformer Block

Uformer Block

QRNN3D Block

Uformer Block

QRNN3D Block

TRQ3DNet

Z

Input feature 
map

concat

Output feature 
map

Input feature 
map

R
e

sid
u

al

R
e

sid
u

al    

R
e

sid
u

al

Output HSI

...

Layer 
Norm

LeWin Block

W-
MSA

Layer 
Norm

LeFF

LeWin Block
Output feature 

map

Trq3d Unit 2

Trq3d Unit 4

Trq3d Unit 8

Trq3d Unit 5

Trq3d Unit 7

Uformer Block

Linear

Img2Tokens

Depthwise 
Conv

Tokens2Img

Linear

Attention

Window

contact

Attention

Linear Projection

(a)

(b) (c)

...

BI Bridge

BI Bridge

BI Bridge

BI Bridge

Conv

Conv Conv

...

...

...

...

TRQ3D Unit 1

QRU3D Extractor

QRU3D Reconstructor

Uformer Extractor

Uformer 
Reconstructor

Input HSI

QRU3D Block

QRU3D Block

Uformer Block

Uformer Block

Uformer Block

QRU3D Block

Uformer Block

QRU3D Block

TRQ3DNet

R
e

sid
u

al

R
e

sid
u

al

R
e

sid
u

al    

R
e

sid
u

al

Output HSI

TRQ3D Unit 2

TRQ3D Unit 4

TRQ3D Unit 8

TRQ3D Unit 5

TRQ3D Unit 7

BI Bridge

BI Bridge BI Bridge

BI BridgeConvConv

Conv

Conv

Conv

R
e

sid
u

al    

C
o

nv Concat

Figure 1. The overall architecture of the TRQ3DNet.

The input degraded HSIs X are fed into the QRU3D and Uformer extractors sepa-
rately to extract low-level features. As for the QRU3D extractor, the input firstly goes
through a bidirectional QRU3D layer and obtains output named Xqru. For the Uformer
extractor, the input is applied with a dimensional transformation (2D convolution with
LeakyReLU [38] activation) and obtains Xtrans. Next, Xqru and Xtrans are fed into a sequence
of TRQ3D units which are composed of QRU3D and Uformer blocks. Before Xtrans is input
into the Uformer block, information from the QRU3D block is integrated. We apply a
3D and 2D convolution to Xqru, which has the same dimensions as Xtrans by setting the
proper stride of the convolution kernel, then the weighted element-wise sum of the two
parts are fed into the Uformer block, and we obtain the output. This output serves as
the input for the next Uformer block. At the same time, the original Xqru goes through
the QRU3D block, and is added to the output from Uformer block (we also perform the
weighted element-wise sum), which is the input of the next QRU3D block. Eventually, the
restored image is obtained via QRU3D and Uformer reconstructors which are structured
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similarly to extractors. Above all, the degraded HSIs are passed into extractors to extract
low-level characteristics. After being processed by a succession of TRQ3D units, clean HSIs
are obtained by reconstructors. Each TRQ3D unit takes two results from the previous unit
as inputs, one from the QRU3D block and the other from the Uformer block. The two
inputs are separately fed into the two blocks with information exchange, which generates
two outputs that are fed into the next TRQ3D unit.

We set stride = 2 of 3D convolution for the first half of the blocks, and stride = 1/2
for the rest, separately. By adapting the stride of the convolution kernel, we can perform
downsampling operations in the encoder part and upsampling operations in the decoder
part. This can lessen the computation cost, reduce the risk of overfitting, and make the
network more adaptable to larger datasets. In the following, we introduce the three
components of the network in detail.

2.3. 3D Quasi-Recurrent Block

As seen in Figure 2, the 3D quasi-recurrent (QRU3D) block is one of the components
of the TRQ3D unit, which is composed of two modules: a 3D convolution module and a
quasi-recurrent pooling module.
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Figure 2. The structure of the 3D quasi-recurrent block.

(1) 3D Convolution Module: We apply two sets of 3D convolution [39,40] to the inputs,
which activates the convolution output with two different nonlinear functions, and
generates two tensors, named candidate tensor Z and forget gate tensor F. The process
is formulated as

Z = σ(WZ ∗ X), (2)

F = sigmoid(WF ∗ X), (3)

where X ∈ RCin×B×H×W is the input feature map from the last layer, and Cin is the
number of input channels. σ represents a certain activation function, e.g., tanh, relu
or without activation. {Z, F} ∈ RCout×B×H×W and Cout are the number of output
channels. {WZ, WF} ∈ RCout×Cin×3×3×3 are 3D convolution kernels. Notice that we
only use sigmoid for gate tensor F, in order to map the output to values between 0
and 1. Compared with 2D convolution, 3D convolution can not only aggregate spatial
domain information, but also exploit the spectral information of the input.

(2) Quasi-Recurrent Pooling Module: Considering that the 3D convolution can only
aggregate the information in adjacent bands, motivated by the QRNN3D [22], we
introduce the quasi-recurrent pooling operation and dynamic gating mechanism in
order to fully exploit global correlation along all the bands. We split the candidate
tensor and forget gate tensor along the spectrum direction, obtaining sequences
Z = {z1, z2, . . . , zB} and F = {f1, f2, . . . , fB}. Then, these sequences are applied with
the quasi-recurrent pooling operation, as shown below:
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hi = fi � hi−1 + (1− fi)� zi, i = 1, 2, . . . , B, (4)

where hi is the i-th hidden state (h0 = 0), and � represents the Hadamard product.
The value of fi controls the weight of candidate tensor zi and states from the last step
hi−1. The sigmoid is used as the activation function for the forget gate. All hi are
concatenated along the spectral dimension, generating the output. The benefits of
quasi-recurrent pooling are that the module will automatically preserve the informa-
tion of each spectrum zi through the training process, and achieve global correlation
along all spectra. Notice that the hidden state only depends on the current band
of the input feature map, so the gate tensor relies more on the input as well as the
parameters learned from the training process.

2.4. Uformer Block

As is shown in Figure 3, each Uformer block is stacked by two LeWin transformer
blocks [37]. Each LeWin transformer block has two basic modules: window-based multi-
head self-attention (W-MSA) and locally-enhanced feed-forward network (LeFF), which
are described as

X̂(l) = W-MSA(LN(X(l−1))) + X(l−1), (5)

X(l) = LeFF(X̂(l)) + X̂(l), (6)

where X̂(l) and X(l) represent the output feature maps of the l-th W-MSA and LeFF module.
LN represents the layer normalization [41].
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Figure 3. (a) An overview of the Uformer block. (b) Calculation method of window-based multi-head
self-attention (W-MSA). (c) The structure of the locally-enhanced feed-forward network (LeFF).

(1) Window-based Multi-head Self-Attention: The projection layer transforms the bands
value of the input feature maps, from X ∈ RB×H×W to X ∈ RBout×H×W . Each band
of the feature maps is seen as a 2D map, which is partitioned into non-overlapping
windows with size M×M, expressed as X = {X1, X2, ..., XN}, where N = HW/M2

is the number of windows (also called patches), and Xi ∈ RBout×M×M, i = 1, 2, ..., N.
Then, we flatten these image patches with size M2 × Bout, and calculate the multi-
head self-attention on each of them. Given the total number of head K, we can draw
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that the dimension of k-th head is Dk = Bout/K, and the k-th self-attention of Xi is
calculated as

Y(k)
i = Attention(XiW

(k)
Q , XiW

(k)
K , XiW

(k)
V ), (7)

where {W(k)
Q , W(k)

K , W(k)
V } ∈ RBout×Dk are learnable weight matrices. When calculating

the self-attention, we also employ the relative position bias B ∈ RM2×M2
to each head,

following the work of [37]. Thus, the attention mechanism is

Attention(Q, K, V) = So f tMax(
QKT
√

Dk
+ B)V, (8)

and Q, K, V represent the query, key, and value, separately. The values in B are taken
from a smaller bias matrix B̂ ∈ R(2M−1)×(2M−1) with learnable parameter [42,43]. For N
patches Xi ∈ RM2×Bout , i = 1, 2, ..., N, we obtain corresponding N output feature maps
Y(k)

i ∈ RM2×DK of k-th head, described as Y(k) = {Y(k)
1 , Y(k)

2 , ..., Y(k)
N } ∈ RN×M2×DK

in a whole. Finally, outputs of K heads are concatenated together followed by a linear
transform to generate the result of the LeWin transformer block.

(2) Locally-enhanced Feed-Forward Network: The feed-forward network (FFN) in the
standard transformer model provides linear dimensional transformation and non-
linear activation to the tokens from the W-MSA module, which enhances the ability
of feature representation. The limitation is that the spatial correlation among neigh-
boring pixels is ignored. To overcome this problem, we replace the FFN with a
locally-enhanced feed-forward network (LeFF), because the latter model provides
depth-wise convolution to extract the spatial information. The process is as follows.
First, the input feature maps are fed into a linear layer, and projected to a higher
dimension. Next, we reshape the feature maps to 2D feature, using a 3× 3 depth-wise
convolution to capture local information. Then, we flatten back the features and shrink
the channels via another linear layer to match the dimension of the input channels.
For each linear and convolution layer, GELU [44] is used as the activation function
since it has been proven to achieve comparable denoising results compared with other
activation functions [36,37].

2.5. Bidirectional Integration Bridge

We propose a bidirectional integration bridge (BI bridge), to combine and enhance the
representation of image features. The 3D convolution extracts the local spatial correlation
and spectral correlation between neighboring bands. The quasi-recurrent pooling exploits
the global correlation along the spectrum. The Uformer block is able to exploit the global
spatial features. The BI bridge is used to combine the three parts to better preserve image
details. We point out that the size of the QRU3D output feature map is Cqru × B× H ×W,
while the Uformer output is Ctrans × H ×W.

On one hand, the input of the next Uformer layer is the weighted sum of outputs
of the current Uformer layer and the QRU3D layer. In order to match the output size
from the two modules, dimensional transformation is necessary. We first conduct a 3D
convolution operation, shaping the feature map from Cqru × B× H ×W to 1× B× H ×W,
and squeeze it to B× H ×W. Then, the feature map is applied with a 2D convolution,
transforming from B× H ×W to Ctrans × H ×W. Finally, the element-wise sum of this
feature map and the Uformer layer output is the input of the next Uformer layer. This
dimension transformation, making the QRU3D feature map adapt to the Uformer block, is
seen as a unidirectional bridge.

On the other hand, the input of the next QRU3D layer is also the weighted sum of out-
puts of the current Uformer layer and the QRU3D layer. We use the reverse transformation
method above. Firstly, a 2D convolution transforms the Uformer layer output with size
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Ctrans × H ×W to size B× H ×W. Then, we unsqueeze it to 1× B× H ×W, and apply a
3D convolution to size Cqru × B× H ×W. Finally, we perform a 1× 1× 1 3D convolution
operation on the element-wise sum of this feature map and the QRU3D layer output,
generating the input of the next QRU3D layer. This dimension transformation, making
the Uformer feature map adapt to the QRU3D block, is the other directional integration
bridge. Essentially, the BI bridge is made up of two directional (from QRU3D to Uformer,
and reverse) dimension transformations, based on 2D and 3D convolution.

2.6. Training Loss Function

In this part, we introduce the loss function used in the training process. The l1 loss
and l2 loss are often used in order to make a balance between noise removal and detail
preservation [23]. In this paper, we adopt the l2 loss as the final loss function, which is
defined as

L =
1
N

N

∑
i=1
||Xi − X(gt)

i ||2, (9)

where N is the number of training patch image, and Xi and X(gt)
i represent the output

denoised image patch and ground truth image patch, respectively.

3. Experiments
3.1. Experimental Setup

In this section, we conduct several experiments to evaluate the model. In the following,
we introduce the datasets we use, the denoising methods to compete with, and training
strategies, as well as evaluation metrics. Code is available at https://github.com/LiPang/
TRQ3DNet (on 8 September 2022).

Dataset: We conduct synthetic experiments on the ICVL dataset [45], CAVE [46], Pavia
Centre [47] and Pavia University [47], in which the HSIs can be seen as clean. In addition,
real HSI denoising experiments are conducted on real remotely sensed hyperspectral
datasets, e.g., Urban [48] and Indian Pines [49]. The overall information of the involved
datasets can be seen in Table 1.

Table 1. The summary of the used datasets for HSI denoising.

Datasets Image Size Bands Acquired Tool

ICVL [45] 1392 × 1300 31 Hyperspectral camera

Urban [48] 307 × 307 201 HYDICE
Hyperspectral system

Indian Pines [49] 145 × 145 224 AVIRIS sensor
CAVE [46] 512 × 512 31 Cooled CCD camera

Pavia Centre [47] 1096 × 715 102 ROSIS sensor
Pavia University [47] 610 × 340 103 ROSIS sensor

The ICVL dataset, which contains 201 images, is randomly divided into three disjointed
parts for training, validation, and testing. Taking the training time into account, we use
100 images to train, 20 images to validate, and the rest to test our model. To enlarge the
training dataset, we crop the images into multiple overlapped cubes with size 64× 64 and
bands 31 (same as the original bands number) to preserve the spectral domain integrity. In
addition, transformations such as rotation and scalings are adopted, and we thus generate
about 50 k training HSIs patches in total. As for testing and validation, the images are
cropped to 512× 512× 31 from their domain region. To better assess the robustness of the
trained model, in addition to 20 samples from ICVL dataset, we select 10 samples from
CAVE, adding various noises (e.g., Gauss, impulse, mixture) as the validation set.

The CAVE dataset is made up of 31 hyperspectral images at a spatial size of 512× 512
with 31 bands. To better evaluate the performance of different models, we perform threefold

https://github.com/LiPang/TRQ3DNet
https://github.com/LiPang/TRQ3DNet
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cross validation on the CAVE dataset. We use 21 images for training and the remaining
11 images for testing in each fold. Similar to the process procedure of the ICVL training
set, we crop the training images into cubes with size 64× 64 and bands 31, and perform
rotation and scalings transformations, generating 2562 training patches.

Remotely sensed hyperspectral datasets (i.e., Pavia Centre, Pavia University, Indian
Pines, and Urban) are used to further verify the stability and adaptability of our model. The
number of spectral bands of Pavia Centre is 102 and that of Pavia University is 103, and both
datasets were captured by the ROSIS sensor. Indian Pines and Urban were obtained using
the 224-bands AVIRIS sensor and 210-bands HYDICE hyperspectral system, respectively.

Competing Methods: We conduct synthetic experiments as well as real HSIs denois-
ing experiments. In both sets of experiments, several state-of-the-art model-based methods
and deep-learning-based models are compared.

To evaluate the HSI denoising method, two types of synthetic experiments are often
needed. The first one is the Gaussian noise experiment, and the second one is the complex
noise case. For each of the two cases, the state-of-the-art (SOTA) methods are quite different,
which has been recognized by existing work [22]. Therefore, in our experiments, we use
different SOTA methods for the two cases. In synthetic experiments, we compare our
method with the model-based methods (BM4D [11], TDL [10], ITSReg [12], LLRT [13]), and
the deep-learning-based methods (HSID-CNN [20], swinir [36], QRNN3D [22]) in Gaussian
noise case, and model-based methods (LRMR [14], LRTV [15], NMoG [16], and TDTV [17]),
and the same deep-learning-based methods in complex noise case. All approaches based
on deep learning are trained and tested in the same condition to ensure fairness.

Network Training: The training process contains three successive stages with increas-
ing difficulty, from Gaussian noise with certain intensity to uncertain case, from single noise
to mixture case. The model is trained by minimizing the mean square error (MSE) between
degraded HSIs and the corresponding ground truth. The parameters are optimized by
Adam optimizer [50]. The whole project is based on the deep learning framework Pytorch
on a machine with Tesla V100 PCIe GPU, Intel(R) Xeon(R) CPU E5-2690 v4 of 2.60 GHz
and 503 GB RAM.

Evaluation Metrics: We adopt three common metrics to evaluate the performance of
the models in the synthetic experiment, including PSNR, SSIM [51], and SAM [52], and
report the time cost for each model. The first two metrics measure the spatial similarity, and
the last measures the spectral similarity. Given a reference image I and the reconstruction
image Î, PSNR can be calculated as

PSNR = 10log10

( (2n − 1)2

MSE

)
(10)

MSE =
1

HW

H

∑
i=1

W

∑
j=1

[I(i, j)− Î(i, j)]2 (11)

where H and W represent the height and width of the image, and n is the pixel digits which
is usually 8. The core formula of SSIM can be shown as follows:

SSIM =
(2µIµ Î + c1)(2σI Î + c2)

(µ2
I + µ2

Î
+ c1)(σ

2
I + σ2

Î
+ c2)

(12)

where µI and µ Î are the mean values of images I and Î, σ2
I and σ2

Î
are the respective

variances of images I and Î, and σI Î is the covariance of the images I and Î. The higher
the PSNR and SSIM, and the lower the SAM, the better the model performs. Furthermore,
we adopt a no-reference quality assessment proposed by Liu et al [53] for HSI denoising,
which evaluates the image quality according to the changes in kurtosis values of noisy
images. The lower the score, the higher the quality of the recovered image. As HSIs contain
hundreds of bands, we calculate PSNR, SSIM, and the no-reference quality score for each
band of the HSIs, and take the average value as the final result.
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3.2. Synthetic Experiments

In synthetic experiments, we simulate the real situation by adding various noise to
HSIs artificially. Many experimental works for the HSI denoising task assume that the HSIs
are usually contaminated by Gaussian, impulse, dead pixels, lines, and stripes noises [54].
Therefore, we design five noise combinations, as shown below:

Case 1: Non-i.i.d. Gaussian Noise. Gaussian noise with zero mean, as well as intensi-
ties randomly set from 10 to 70, is added to each band.

Case 2: Gaussian + Stripe Noise. On the basis of Case 1, all bands have Gaussian
noise added, among which 10 bands are randomly selected to be corrupted by stripe
noise. The number of stripes in each band is 5% to 15% of the number of columns by
uniform sampling.

Case 3: Gaussian + Deadline Noise. Similar to Case 2, the only difference is that we
use deadline noise instead of stripe noise.

Case 4: Gaussian + Impulse Noise. On the basis of Case 1, all bands have Gaussian
noise added, among which 10 bands are randomly selected to be corrupted by impulse
noise, and the intensity of impulse noise ranges from 10% to 70% by uniform sampling.

Case 5: Mixture Noise. On the basis of Case 1, all bands have Gaussian noise added,
among which 10 bands are randomly selected to be corrupted by one of the extra noise
mentioned in above cases.

We adapt the training and testing strategy mentioned above (see experimental setup).
Specifically, in stage 1, namely, in the first 30 epochs, the training set is formed by HSIs
corrupted by Gaussian noise with zero mean and known noise intensity σ = 50, and batch
size set to 16. In stage 2, from epochs 30 to 50, it is similar to stage 1, yet the intensity of
Gaussian noise is uniformly sampled from 30 to 70. In stage 3, from epochs 50 to 100, we
use noise combinations randomly chosen from Case 1 to Case 4. Batch size in stage 2 and 3
is set to 64 to stabilize the training process. At the end of stages 2 and 3, we test the model
on the Gaussian denoising task and complex denoising task separately.

Gaussian Noise Denoising on ICVL: We compare our model with four model-based
methods (BM4D, TDL, ITSReg, and LLRT) and three DL-based methods (HSID-CNN,
swinir, and QRNN3D). Figure 4 presents the Gaussian denoising example (with noise
intensity σ = 50) of the ICVL dataset. Intuitively, we evaluate the performance of the model
on different levels of Gaussian noise intensity (σ = 30, 50, 70 and blind). The qualitative
evaluation results and time cost are shown in Table 2. Compared with other methods, our
model achieves better performances in most Gaussian noise cases.

Complex Noise Denoising on ICVL: We compare our model with four model-based
methods (LRMR, LRTV, NMoG, and LRTDTV) and three DL-based methods (HSID-
CNN [20], swinir [36], and QRNN3D [22]). We evaluate the performance of the model in
complex noise cases from Case 1 to Case 5 mentioned above, select one of the images from
each case, and visualize the restoration status in Figure 5. The qualitative evaluation results
and time cost are shown in Table 3. The results show that our model outperforms other
state-of-the-art methods in all cases. We plot the PSNR value of each band in Gaussian and
complex noise cases, as seen in Figure 6. We can easily observe that the PSNR values of
most bands obtained by our model are higher than competing methods, indicating that our
model outperforms others.

Noisy BM4D ITSReg LLRT HSID-CNN swinir QRNN3D OursTDL

Figure 4. Gaussian (σ = 50) denoising outputs at the 20th band of the image on the ICVL dataset.
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Table 2. The denoising results in the Gaussian noise case on the ICVL dataset.

Sigma Index

Methods

Noisy BM4D
[11] TDL [10] ITSReg

[12]
LLRT
[13] HSID-CNN [20] swinir

[36]
QRNN3D

[22] Ours

30
PSNR 18.59 38.32 41.04 41.26 42.16 39.25 37.44 42.48 42.63
SSIM 0.111 0.925 0.953 0.947 0.963 0.980 0.970 0.989 0.990
SAM 0.898 0.187 0.101 0.177 0.077 0.081 0.121 0.048 0.046

50
PSNR 14.15 35.39 38.35 38.71 38.93 36.62 35.00 40.47 40.79
SSIM 0.047 0.876 0.924 0.909 0.936 0.967 0.941 0.983 0.985
SAM 1.060 0.236 0.144 0.201 0.103 0.106 0.160 0.059 0.050

70
PSNR 11.23 33.52 36.65 36.57 37.23 34.54 32.82 38.54 39.41
SSIM 0.025 0.833 0.896 0.883 0.916 0.949 0.901 0.975 0.980
SAM 1.160 0.275 0.172 0.228 0.120 0.132 0.200 0.078 0.055

Blind
PSNR 15.70 36.42 39.35 39.43 39.98 38.66 36.61 42.04 42.28
SSIM 0.083 0.889 0.931 0.923 0.941 0.975 0.957 0.987 0.989
SAM 1.010 0.221 0.131 0.184 0.097 0.086 0.130 0.050 0.046

Time of
blind (s)

0.000 350.3 34.39 871.9 1828.0 0.993 1.110 0.200 0.389

Figure 5. Visual comparison of the denoised image for all the five cases of the ICVL dataset.
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Table 3. The denoising results in the complex noise case on the ICVL dataset.

Case Index

Methods

Noisy LRMR
[14]

LRTV
[15]

NMoG
[16]

LRTDTV
[17] HSID-CNN [20] swinir

[36]
QRNN3D

[22] Ours

1
PSNR 17.83 28.68 32.61 33.81 36.27 39.06 34.30 42.84 43.15
SSIM 0.169 0.547 0.877 0.813 0.923 0.980 0.944 0.991 0.992
SAM 0.713 0.241 0.061 0.117 0.063 0.068 0.130 0.042 0.037

2
PSNR 18.02 28.57 32.82 34.11 36.20 38.50 34.08 42.54 42.86
SSIM 0.179 0.549 0.882 0.820 0.922 0.978 0.940 0.990 0.992
SAM 0.703 0.238 0.058 0.142 0.064 0.074 0.139 0.044 0.038

3
PSNR 17.10 27.62 31.57 32.79 34.41 38.28 33.28 42.31 42.74
SSIM 0.161 0.532 0.873 0.818 0.907 0.976 0.938 0.990 0.992
SAM 0.735 0.257 0.088 0.143 0.083 0.073 0.138 0.044 0.039

4
PSNR 14.90 24.23 31.35 28.30 35.41 35.93 30.51 40.58 41.30
SSIM 0.123 0.400 0.858 0.661 0.915 0.949 0.881 0.977 0.984
SAM 0.781 0.392 0.132 0.353 0.071 0.149 0.212 0.079 0.063

5
PSNR 13.96 23.27 29.99 27.84 33.29 34.94 29.46 39.52 40.36
SSIM 0.105 0.397 0.845 0.684 0.897 0.946 0.860 0.976 0.982
SAM 0.797 0.426 0.170 0.410 0.091 0.146 0.230 0.083 0.063

Time of
case 5 (s)

0.000 14.10 221.2 609.5 549.3 0.864 1.150 0.200 0.389

(b) Gaussian (Case 1) (c) Gaussian + Stripe (Case 2)

(d) Gaussian + Deadline (Case 3) (e) Gaussian + Impulse (Case 4) (f) Mixture (Case 5)

(a) Gaussian (σ = 50)

Figure 6. PSNR values of each band for the synthetic experiments.

Complex Noise Denoising on CAVE: In addition to testing on ICVL, we also perform
threefold cross validation on the CAVE dataset in the mixture noise case. Since the CAVE
dataset is small, which is prone to cause overfitting, we employ a small amount of samples
from the CAVE dataset to fine-tune the model trained on the ICVL dataset instead of
training from scratch. All the competing DL-based approaches are trained in the same way
for fair comparison. The experimental results are shown in Table 4, from which we can
observe that our proposed TRQ3DNet obtains the best denoising performance compared
with other methods.
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Table 4. The denoising results in the complex noise case on the CAVE dataset.

Index
Methods

Noisy LRMR [14] LRTV [15] NMoG [16] LRTDTV [17] HSID-CNN [20] swinir [36] QRNN3D [22] Ours

PSNR 14.19 23.61 29.04 25.30 32.91 33.02 26.68 36.19 36.41
SSIM 0.103 0.465 0.806 0.589 0.887 0.879 0.637 0.934 0.950
SAM 1.087 0.793 0.579 0.748 0.314 0.458 0.615 0.319 0.258

Complex Noise Denoising on Pavia University: To further verify the effectiveness
of our proposed method, we also conduct experiments on the Pavia University dataset
in the mixture noise case. Considering the similarity between Pavia Centre and Pavia
University, we first evaluate the performance of our method trained from scratch on Pavia
Centre (denoted as Ours-S). The Ours-S model seems to overfit the data and obtains an
undesirable result owing to the fact that the Pavia Centre training set is relatively small
(only 969 patches of size 64× 64× 31, which is small compared with 53,000 training patches
of the ICVL dataset). Nevertheless, the model trained on the ICVL dataset (denoted as
Ours-P) outperforms all the other methods. For fair comparison, all the DL-based methods
are obtained by the model trained on the ICVL dataset, which is the same as Ours-P. Further-
more, we fine-tuned the Ours-P model for another 50 epochs on the Pavia Centre dataset
(denoted as Ours-F). It can be observed from Table 5 that the fine-tuned model significantly
boosts the performance, which verifies the adaptability of our proposed TRQ3DNet.

Table 5. The denoising results in the complex mixture noise case on the Pavia University dataset.

Index

Methods

Noisy LRMR
[14]

LRTV
[15]

NMoG
[16]

TDTV
[17]

HSIDCNN
[20]

swinir
[36]

QRNN3D
[22]

Ours-
S

Ours-
P

Ours-
F

PSNR 14.09 22.59 26.46 28.64 26.62 30.41 27.05 34.66 27.75 34.97 36.01
SSIM 0.181 0.494 0.696 0.787 0.697 0.914 0.854 0.964 0.829 0.966 0.972
SAM 0.887 0.485 0.281 0.477 0.132 0.130 0.181 0.091 0.196 0.087 0.075

3.3. Real HSI Denoising

Except for the aforementioned synthetic experiments, we also evaluate our model on
two real HSI datasets, i.e., Indian Pines and Urban. The two real noisy HSI datasets have no
ground truth image for reference, and thus it is very difficult to evaluate the performance.
In this paper, we adopt the visualization and one no-reference quality assessment proposed
in [53] for HSI denoising, which evaluates the image quality according to the changes in
kurtosis values of noisy images. The lower the score, the higher the quality of the recovered
image. As illustrated in Table 6, TRQ3DNet achieves the best denoising performance in
terms of this index. Additionally, we also show some visualization comparison results in
Figures 7 and 8, from which it can be seen that our model achieves better performance than
other methods since it can not only remove the complex noise, but also preserve the local
details of the HSIs, which is consistent with the quantitative results.

Table 6. Real HSI denoising results comparison using the no-reference quality assessment.

Datasets

Methods

Noisy BM4D
[11]

TDL
[10]

ITSReg
[12]

LLRT
[13]

LRMR
[14]

LRTV
[15]

NMoG
[16]

LRTDTV
[17]

QRNN3D
[22]

Ours

Indian
Pines 0.359 0.239 0.326 0.113 0.230 0.173 0.084 0.159 0.031 0.060 0.030

Urban 3.043 2.004 2.928 1.170 1.771 1.526 0.101 1.004 0.136 0.097 0.058
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Figure 7. The denoised results on band 2 of the Indian Pines dataset for all the competing methods.

Figure 8. The denoised results on band 106 of the Urban dataset for all the competing methods.

3.4. Ablation Study

Our model has three main components: QRU3D block, Uformer block, and BI bridge.
To explore the specific function of each part, we design the following ablation experiments.
We follow the steps in Section 5, and test different noise combinations from Case 1 to Case 5.
Results from swinir and QRNN3D are listed as reference. Our QRU3D block has a slight
difference from that in QRNN3D, where our model contains 1× 1 convolution layers, when
fusing the output from two blocks.

Investigations of Subcomponent: We split our model into three parts (QRU3D block,
Uformer block, and BI bridge) and test each part independently, which are recorded as
QRU3D, TR, and WithoutI, separately. WithoutI is the combination of the QRU3D block
and the Uformer block with the BI bridge removed, and the purpose is to explore the
improvement of the BI bridge to the model.

QRU3D Block: To investigate the role of QRU3D, we remove this structure as well as
the BI bridge, keeping the Uformer block only. The quantitative comparison between TR
and WithoutI shows the promotion of the Uformer block on the model. Nevertheless, the
parameters of the model are also greatly reduced; thus, we change the hidden channels of
TR (16 to 32), called WTR, with approximate parameters with the full model. The results
show that WithoutI outperforms the TR and WTR in all cases, and only the SAM value in
Case 5 is larger than WTR, indicating that the QRU3D block takes positive effect and extracts
features successfully. One possible reason why TR performs poorly is that, different from
the image classification task in which general information is more important, the image
denoising problem focuses more on the details of the image, such as the value of each pixel.



Remote Sens. 2022, 14, 4598 14 of 20

Compared with transformer, convolutional neural network can better capture the local
correlation and preserve image details [55], and thus obtain better denoising performance.

Uformer Block: Similar to the first experiment, we keep the QRU3D block and com-
pare the performance with WithoutI. We also test WQRU3D by doubling the channels. It
can be observed that the Uformer block boosts the performance to some extent.

BI Bridge: We compare the effectiveness of the original model and WithoutI (called
Ours). It can be seen that Ours is the best of the bunch, demonstrating that the information
interaction between the QRU3D modules and the Uformer modules can also improve
the performance.

The ablation results on each sub component are listed in Table 7.

Table 7. Ablation study on ICVL dataset in five complex noise cases.

Case Index
Methods

swinir [36] QRNN3D [22] QRU3D WQRU3D TR WTR WithoutI Ours

1
PSNR 35.45 42.82 42.01 42.49 40.08 41.62 42.12 43.09
SSIM 0.961 0.991 0.990 0.991 0.985 0.989 0.990 0.992
SAM 0.118 0.043 0.046 0.044 0.049 0.045 0.042 0.038

2
PSNR 35.19 42.58 41.83 42.32 39.43 41.24 41.95 42.87
SSIM 0.947 0.991 0.990 0.991 0.984 0.989 0.990 0.992
SAM 0.124 0.044 0.046 0.044 0.051 0.046 0.043 0.039

3
PSNR 34.01 42.33 41.67 42.18 39.02 40.57 41.67 42.72
SSIM 0.943 0.990 0.989 0.990 0.983 0.988 0.990 0.992
SAM 0.126 0.045 0.047 0.045 0.054 0.050 0.044 0.039

4
PSNR 26.85 40.47 40.02 40.49 36.53 38.59 39.59 41.17
SSIM 0.815 0.977 0.978 0.979 0.964 0.974 0.979 0.984
SAM 0.183 0.080 0.070 0.070 0.088 0.073 0.069 0.063

5
PSNR 27.05 39.55 39.47 39.84 35.24 37.44 39.20 40.33
SSIM 0.811 0.976 0.978 0.980 0.961 0.975 0.979 0.983
SAM 0.188 0.081 0.072 0.072 0.079 0.067 0.068 0.063

Time of
case 5 (s)

1.15 0.200 0.180 0.270 0.100 0.130 0.320 0.389

Params(M) 5.99 0.860 0.440 0.680 0.240 0.850 0.660 0.680

Investigations of Network Hyperparameters: The purpose of this experiment is to
select hyperparameters beforehand, so as to achieve the trade-off between performance
and computation cost. We consider two kinds of parameters: the depth of the model (the
total number of TRQ3D blocks), and width of the model (hidden channels). We search the
parameter in a small grid map on Gaussian denoising case (σ = 50), and choose by the
integration of PSNR value, time cost (seconds), and the size of the network. The first step is
to fix width and search for the best depth, then use the best depth and determine the width.
The evaluation results of each hyperparameter pair are shown in Table 8. We finally take
depth = 8 and width = 16, and apply this to the above experiments. Although the model
with width = 20 achieves better results than that with width = 16, the computation load
and the network size in this case increase greatly.

Table 8. Quantitative results under different network hyperparameters.

Depth Width PSNR (dB) Time (s) Params (#)

6

16

40.11 0.3 0.52

8 40.23 0.39 0.68

10 40.22 0.45 1.28

8

12 40.10 0.32 0.40

16 40.23 0.39 0.68

20 40.33 0.57 1.04
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4. Analysis and Discussion
4.1. Training Strategy

We adopt a three-stage training strategy in our experiment, which is an incremental
training policy and has already been used to train the deep neural network to prevent the
network from converging to a poor local minimum [22]. All the other DL-based models
are trained in the same way so that they can be fairly compared. We also trained our
proposed TRQ3DNet only using the complex noise case. As shown in Figure 9, in contrast
to training incrementally, training from scratch makes the optimization converge to a poor
local optimum.

Figure 9. PSNR comparison of different training strategies.

4.2. Feature Analysis

We also visualized the feature maps to explicitly show the better feature preservation
ability of the BI bridge. Specifically, we made comparisons of the feature maps of the
second encoder layer and the third decoder layer in Figure 10. Our QRU3D and our
Uformer denote the outputs of the TRQ3D block, while QRU3D and Uformer represent the
feature maps of the single branch trained without other subcomponents of TRQ3DNet. It
was introduced that TRQ3DNet takes advantage of both local and global features. From
Figure 10, we can see that QRU3D enhances local details such as the small bright regions
in the middle of the peppers. Our QRU3D benefits from the global representation of the
Uformer branch and activates more decentralized areas. For example, QRU3D activates
a distinct area inside the peppers in the feature map (e), while our QRU3D activates the
entire peppers in the feature map (f). Compared with Uformer, our Uformer retains the
detail of the local features from the QRU3D branch (e.g., (c,d)). In addition, it seems that
there are obvious striping artifacts in the features. One possible reason is that the training
set has stripe noise added, as described in Section 3.2, and thus the proposed network can
learn the stripe features which are reflected in the outputs of the hidden layer. Therefore,
even if the testing data do not contain such stripe noise, we can not guarantee whether
this phenomenon will occur or not. More effective training methods can be explored to
alleviate the problem.
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Figure 10. Comparison of feature maps of QRU3D, Uformer, and TRQ3D.

4.3. Structure Analysis

We propose the bidirectional integration bridge (BI bridge) to fuse convolutional
local features with transformer-based global representations in an interactive fashion.
Considering the BI bridge as a short connection, it can thus be flexibly placed in different
positions of the TRQ3D unit. For example, as shown in Figure 11, case (a) and case (b) place
the BI bridge in the input and the output of the unit, respectively, and case (c) places one
direction of the bridge in the input and the other direction in the output. Case (a), in which
the BI bridge is added before each TRQ3D unit, means that the outputs from the previous
layer are firstly processed by the BI bridge (as introduced in Section 2.5) and then are fed
into the Uformer and QRU3D blocks separately, generating the inputs of the next layer.
Similarly, we add the BI bridges after and at both ends of each TRQ3D unit in case (b) and
case (c). Furthermore, we compare the results of using a one-way bridge which means
that there is only one direction of information exchange in each TRQ3D unit in case (d).
In other words, only the QRU3D output or the Uformer output is added to the output of
the other block (as shown in Figure 11d). In addition, we replace the 3D convolution in
each TRQ3D unit with 2D convolution which is implemented by changing the convolution
kernel size to 3× 3× 1 in case (e). Table 9 shows the denoising performance on ICVL of
different network structures in the case of Gaussian noise. Although there is no significant
difference, one can see that the network structure in case (c) obtains the best denoising
performance. Additionally, we can empirically observe that case (c) outperforms case (a)
and case (b), which may be attributed to the placement of the BI bridge in the network
structure. Additionally, the one information exchange direction in case (d) leads to less
computation cost but worse denoising performance as the dependency of the QRU3D and
Uformer blocks is poorly modeled. The result of case (e) indicates that 3D convolution can
better model spectral domain knowledge, as the spectral distortion is relieved compared to
2D convolution, which is also proved in previous work [22].

Figure 11. Visualization of different network structures. Case (a) and case (b) place the BI bridge
in the input and the output of the unit, respectively, and case (c) places one way of the bridge in
the input and the other way in the output. In addition, there is only one direction of information
exchange in case (d) and case (e) replaces 3D convolution with 2D convolution in each TRQ3D unit.
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Table 9. Quantitative results on ICVL in Gaussian noise case under different network structures.

Sigma Index
Cases

a b c d e

30
PSNR 41.83 41.72 42.04 41.79 41.05
SSIM 0.988 0.988 0.989 0.988 0.986
SAM 0.058 0.057 0.058 0.058 0.065

50
PSNR 40.13 40.01 40.23 40.05 39.48
SSIM 0.983 0.983 0.983 0.982 0.981
SAM 0.063 0.064 0.063 0.063 0.073

70
PSNR 38.78 38.70 38.86 38.72 38.14
SSIM 0.977 0.977 0.977 0.977 0.974
SAM 0.070 0.072 0.068 0.071 0.083

Blind
PSNR 41.31 41.24 41.53 41.28 40.52
SSIM 0.986 0.986 0.986 0.986 0.984
SAM 0.060 0.059 0.059 0.059 0.067

4.4. Practical Implications

HSIs are widely employed to recognize various objects and terrain land cover classes
based on spectral features [56]. However, owing to environmental factors and precision of
instrument, HSIs are inevitably corrupted by various noise, making model training and
prediction more challenging. Therefore, to further verify the significance of our work, we
compared classification performance on Pavia University and Indian Pines with different
noise level. Each dataset has mixture noise added and is denoised by several methods.
We train the classification network proposed in [56] for 15 epochs on each dataset under
different noise situations. The network employs convolutional blocks to learn spectral and
spatial characteristics and a multilayer perceptron to predict labels. Seventy-five percent of
pixels are used as the training set and the rest are the testing set. For equality, the split of
training and testing sets as well as parameter settings are kept the same in all cases. The
results are shown in Table 10. From this table, we can observe that noisy images degrade
the classification performance. In contrast, the accuracy improves significantly when
denoising is performed, and our method achieves the most significant classification results
improvement, even better than training with original clean images, which demonstrates
the value of our work.

Table 10. Classification results on Pavia University and Indian Pines with different noise level.

Datasets Noisy
Denoised

Clean
swinir [36] QRNN3D [22] Ours

Pavia Centre 0.385 0.900 0.973 0.978 0.861

Pavia University 0.798 0.768 0.986 0.995 0.989

4.5. Limitations Analysis

Although our network achieves excellent denoising performance, there are still several
limitations. Firstly, since the TRQ3D unit is composed of two blocks (i.e., QRU3D and
Uformer), more computational cost is required. One of our future research directions
focuses on modifying the network structure to be lighter so that the performance can still be
preserved while the running time can be reduced. Secondly, the BI bridge is composed of
2D and 3D convolutional blocks, leading to a sharp increase in parameters and computation
cost when the number of hidden layer channels is large. As a consequence, it is possible to
investigate more efficient aggregation methods. Last, but not least, similar to most deep-
learning-based methods, TRQ3DNet can be well trained and tested on a single dataset,
while the denoising performance of the model dramatically degrades in a new dataset. In
the future, we will focus on this generalization issue and try to alleviate this limitation.
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5. Conclusions and Future Work

In this paper, we design a new network (i.e., TRQ3DNet) for HSI denoising. This
network is composed of two branches. The first one is based on the 3D quasi-recurrent
block, including convolution and quasi-recurrent pooling operation, and can help to extract
the local spatial correlation and the global correlation along the spectrum. The second
branch contains the Uformer block with window-based multi-head self-attention (W-MSA)
and locally-enhanced feed-forward network (LeFF) to exploit the global spatial features.
Experimental results on synthetic and real HSI denoising illustrate the superiority of our
proposed network compared with other state-of-the-art methods.

Specifically, in the future work, it is worth investigating a more effective training
strategy in case the performance on previous datasets degrades when training on a new
dataset. In addition, the structure of the network and the aggregation methods can be
further exploited to lighten the model so that the running time can be reduced. In addition,
more real HSI datasets can be used for training to improve the model performance. In
addition, better validation methods should be considered to verify the effectiveness of the
proposed network.
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