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The reconstruction of transcriptional regulatory networks (TRNs) is a long-standing challenge 

in human genetics. Numerous computational methods have been developed to infer regulatory 

interactions between human transcriptional factors (TFs) and target genes from high-throughput 

data, and their performance evaluation requires gold-standard interactions. Here we present a 

database of literature-curated human TF-target interactions, TRRUST (transcriptional regulatory 

relationships unravelled by sentence-based text-mining, http://www.grnpedia.org/trrust), which 

currently contains 8,015 interactions between 748 TF genes and 1,975 non-TF genes. A sentence-

based text-mining approach was employed for efficient manual curation of regulatory interactions 
from approximately 20 million Medline abstracts. To the best of our knowledge, TRRUST is the 

largest publicly available database of literature-curated human TF-target interactions to date. 

TRRUST also has several useful features: i) information about the mode-of-regulation; ii) tests for 

target modularity of a query TF; iii) tests for TF cooperativity of a query target; iv) inferences about 

cooperating TFs of a query TF; and v) prioritizing associated pathways and diseases with a query 

TF. We observed high enrichment of TF-target pairs in TRRUST for top-scored interactions inferred 

from high-throughput data, which suggests that TRRUST provides a reliable benchmark for the 

computational reconstruction of human TRNs.

Transcription factors (TFs) are major molecules that control the transcriptional activity of genes. �e 
human genome is estimated to encode approximately 2,000 TFs1, which operate programs that change 
cellular states by binding to proxy or distal cis-regulatory elements (CREs) for a set of target genes. �e 
reverse engineering of transcriptional regulatory networks (TRNs) by inferring interactions between TFs 
and target genes has been a key challenge in understanding the genetic regulation of complex human 
phenotypes. However, genome-scale regulatory circuit models remain inadequate due to the intrinsic 
complexities of human transcriptional regulatory programs as well as technical limitations in mapping 
regulatory interactions.

Interactions between TFs and CREs of target genes are generally detected by DNA-binding exper-
iments such as chromatin immunoprecipitation (ChIP), which is o�en followed by microarray anal-
ysis (ChIP-chip) or deep-sequencing analysis (ChIP-seq). TF-target regulatory interactions also can 
be inferred from high-throughput gene expression data using a wide variety of computational algo-
rithms2. Expression data have advantages over DNA-binding data in the coverage of diverse cellular con-
texts, which reveal disparate sets of regulatory interactions. �us, by integrating TF-target interactions 
inferred from a wide variety of cellular contexts, we may e�ectively reconstruct genome-scale TRNs. 
�e integrative approach of TRN modelling requires gold-standard TF-target interactions to benchmark 
inferred regulatory interactions from di�erent data sets. �e reconstruction of TRNs via the integration 
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of regulatory interactions inferred from multiple data sets has previously been demonstrated in several 
model organisms, and databases for literature-curated TF-target interactions have played critical roles, 
e.g., RegulonDB3 for an Escherichia coli TRN4, the Yeast Proteome Database (YPD)5 for a Saccharomyces 
cerevisiae TRN6, and the Regulatory Element Database for Drosophila (RED�y)7 for a Drosophila mela-
nogaster TRN construction8.

Several public databases for human TF-target interactions are currently available, including TFactS9, 
TRED10, HTRIdb11, and ORegAnno12. However, some of the databases include interactions inferred 
from high-throughput experiments, which may not be optimal for benchmarking. If we count only 
literature-curated interactions from those databases, then the size of the gold-standard data set may 
not be large enough to fairly evaluate TRNs. �erefore, we need to expand the size of our current set 
of gold-standard regulatory interactions for the more e�ective reconstruction of human TRNs, which 
is our main motivation for developing an extensive database of literature-curated human regulatory 
interactions.

TRRUST (transcriptional regulatory relationships unravelled by sentence-based text-mining) is a 
database of TF-target regulatory interactions identi�ed via the manual curation of Medline abstracts. 
For e�cient curation over a large number of Medline abstracts, we used a sentence-based text-mining 
approach in which text sentences that might pertain to transcriptional regulation were �rst extracted and 
then subjected to manual curation. �e current version of TRRUST contains 8,015 TF-target interac-
tions, which to our knowledge is the largest public database of literature-curated human regulatory inter-
actions to date. Moreover, a majority of the interactions have annotations for mode-of-regulation (i.e., 
activation or repression). In addition, by incorporating functional or physical protein interaction net-
works, TRRUST performs a network analysis of TFs and their targets to provide various systemic context 
information for facilitating functional interpretations, including target modularity13, TF cooperativity14, 
and TF-pathway and TF-disease associations. Importantly, we observed that gene pairs in TRRUST are 
highly enriched among the top-ranked regulatory interactions inferred from high-throughput expression 
data, which suggests that the TRRUST data will be a useful benchmark for the computational recon-
struction of human TRNs.

Results
TF-target interactions of the TRRUST database. �e overall process of constructing the TRRUST 
database is summarized in Fig.  1a. To increase the e�ciency of the literature curation, we employed 
a ‘sentence-based text-mining’ approach, which is described in more detail in Methods. Brie�y, we 
scanned ~20 million abstracts from the Medline2014 database for studies involving human biology using 
the MeSH descriptor ‘Humans’, which returned 7,740,270 abstracts. We then extracted 57,360 sentences 
that contained at least one TF name and additional gene names, which are referred to as ‘candidate sen-
tences’. �e list of TF genes were derived from Ravasi et al.15, which reported manually curated TF genes 
from several sources: i) the TRANSFAC database; ii) genes annotated by the Gene Ontology (GO) term 
‘transcription factor’; iii) genes that contain the word ‘transcription’ in the Entrez description �eld; and 
iv) manually curated TF genes by Roach et al.16 A�er further curation, we generated a list of 1,984 TFs for 
our database. False positives of the TF list would not a�ect the quality of our database, because TF-target 
interactions will be identi�ed by manual curation.

For the given candidate sentences, we conducted a two-step text-mining procedure. In the �rst 
step, we established gold-standard candidate sentences via manual curation. �is gold-standard set was 
updated by incoming sentences from post-manual curation, and used to prioritize incoming candidate 
sentences for the next round of manual curation. In the second step, we prioritized the remaining can-
didate sentences by a score based on the frequency di�erence of each word between the gold-standard 
positives (i.e., sentences that contain a TF and other genes for a regulatory interaction) and negatives 
(i.e., sentences that contain a TF and other genes but not for a regulatory interaction) (see Methods for 
details). We then continued the manual curation for an additional 6,000 candidate sentences from the 
top-scored sentences. In total, we identi�ed 8,015 TF-target regulatory interactions between 748 TFs and 
1,975 non-TF genes over two rounds of manual curation from 23,409 candidate sentences corresponding 
to 20,317 abstracts. �e 6,000 sentences that were identi�ed in the second round of manual curation can 
be used to update the set of gold-standard candidate sentences to further improve the retrieval rate in 
future manual curations by re-prioritizing sentences.

We found that TRRUST has substantially more literature-curated (LC) human TF-target regula-
tory interactions than other public databases: TFactS9, TRED10, HTRIdb11, and ORegAnno12 (Table 1). 
TRRUST contains an approximately 2.5-fold greater number of TFs and two-fold greater number of 
TF-target interactions than the second largest database, TFactS. We compared the data content of 
TRRUST with three other major public databases: TFactS, TRED, and HTRIdb (Fig. 1b). Notably, 5,763 
(~72%) of the TRRUST TF-target interactions are non-overlapping with the other three databases. �ese 
results indicate that our literature curation covered a substantially larger number of Medline abstracts 
than these other databases.

�e regulatory action of a TF either activates or represses the transcription of its target gene. 
Information about the mode-of-regulation may be important in interpreting the phenotype e�ects of 
TF dysregulation. �erefore, we collected mode-of-regulation information for given TF-target interac-
tions from the abstracts, if available. Among other public TF-target databases, only TFactS includes 
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Figure 1. (a) �e overall process of constructing the TRRUST database via the manual curation of Medline 

abstracts using a sentence-based text-mining approach is outlined. GS stands for gold-standard. (b) A Venn 

diagram illustrates the overlap of TF-target regulatory interactions from four literature-curated databases: 

TRRUST, TRED-LC (literature-curated interactions of TRED), HTRIdb-LC (literature-curated interactions of 

HTRIdb), and TFactS.
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mode-of-regulation information. Currently, 4,861 TF-target interactions in TRRUST (~60%) include 
mode-of-regulation annotations based on evidence from the literature: 3,180 interactions for activation, 
1,881 interactions for repression, and 200 interactions for both. A TF-target link could be annotated for 
both activation and repression modes by independent studies, due to the di�erential regulatory coordi-
nation across cellular contexts.

Target modularity and TF cooperativity in the TRRUST database. �e assembly of all identi�ed 
TF-target interactions in TRRUST reveals a complex TRN of 8,015 links (Fig. 2a). �is global network 
model of transcriptional regulation can be used to address more complex questions than simple que-
ries for interacting molecules. TFs are fundamental regulators of cellular processes, which are generally 
operated by functionally coherent genes. �us, target genes regulated by the same TF tend to be modu-
lar13, o�en comprising protein complexes or pathways. �is target modularity has been used to remove 
false-positive targets detected from genome-scale ChIP-chip/seq experiments17. Given that our database 
contains only highly reliable TF-target interactions derived from the literature, we expected that a major-
ity of the database TFs would be a highly modular group of target genes. To measure the functional 
modularity of a group of target genes, we leveraged a genome-wide functional network for humans, 
HumanNet18. If a group of target genes belong to a functional module, then these genes might be well 
connected in a functional gene network. We measured the signi�cance of an observed ‘within-group 
edge count’ of the target groups for 275 TFs with no less than �ve targets by permutation tests using 1,000 
groups with the same number of random genes. We classi�ed TFs by target modularity, i.e., TFs with 
modular targets and TFs with non-modular targets, using a stringent signi�cance threshold (P <  0.01). 
We found that ~75% of the tested TFs (i.e., 213 of 275 TFs) have modular targets (Fig. 2b), which indi-
cates a high level of target modularity among human TFs in the TRRUST database.

A single target gene also can be regulated by synergistic interactions between multiple TFs14. �is coop-
erative regulation o�en is mediated by direct physical interactions among TFs. �erefore, we can test and 
visualize cooperativity among TFs for a target gene using TF-TF physical interaction data. We measured 
the cooperativity of a group of TFs that regulate the same target gene by employing literature-curated 
protein-protein interactions derived from major databases19-24 and similar approaches as for the analysis 
of target modularity. For this analysis, we also used only target genes regulated by no less than �ve TFs. 
Similar to the target modularity measurement, the signi�cance of the observed ‘between-group edge 
count’ for each group of TFs for a target gene was measured by permutation tests using 1,000 groups 
with the same number of random genes. Similarly, we classi�ed target genes by TF cooperativity, i.e., 
targets regulated by cooperative TFs and targets regulated by disjoint TFs, using a stringent signi�cance 
threshold (P <  0.01). We found that ~87% of the targets (344 of 397 targets for analysis) are regulated by 
cooperative TFs (Fig. 2c), which supports our current view of the transcriptional regulatory architecture.

An interactive web server for analysing a literature-curated human TRN. To perform a data-
base query, users submit a gene name to the search page of the TRRUST web server (http://www.grn-
pedia.org/trrust), which returns not only the regulatory interactors of the query gene but also other 
information that facilitates the functional interpretation of human TFs: i) a list of targets, their modular-
ity measure, and functional network (for TF queries only); ii) a list of TF regulators, their cooperativity 
measure, and the TF-TF physical interaction network (for any query gene); iii) a list of cooperating TFs 
and a map of the TF-TF physical interactions between them (for TF queries only); and iv) a list of asso-
ciated pathways and diseases (for TF queries only). �e results of an example query using BRCA1 are 
presented as selective screenshots in Fig. 3.

�e TRRUST web server returns a list of BRCA1 targets as well as their functional network from links 
in HumanNet18 (Fig.  3a). High connectivity among the BRCA1 targets suggests that BRCA1 regulates 
functionally coherent targets. A network of TFs that regulate BRCA1 also is shown by literature-curated 
protein-protein interactions derived from major databases19-24 (Fig.  3b). High connectivity among the 
TFs suggests that BRCA1 also is regulated by a group of cooperative TFs. �e TRRUST web server also 
infers TFs that might cooperate with a query TF, BRCA1, by measuring the signi�cance of target overlap. 

Database # of TFs
# of non-TF 

genes # of Links

TRRUST 748 1,975 8,015

TFactS 277 1,932 4,311

TRED-LC* 119 1,582 3,332

HTRIdb-LC* 282 1,358 2,284

ORegAnno 67 122 202

Table 1.  A summary of TRRUST and four other databases for literature-curated TF-target regulatory 

interactions in human. *Only literature-curated (LC) interactions in the database were considered for this 

study.

http://www.grnpedia.org/trrust
http://www.grnpedia.org/trrust
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Figure 2. (a) A network of TF (red nodes) and non-TF genes (green nodes) based on the regulatory 

interactions from TRRUST is shown. (b) Bar graphs show the number of TFs for two classes based on the 

di�erent modularity of their targets. Only TFs with more than �ve target genes were considered for this 

analysis, resulting in 213 TFs with modular targets and 62 TFs with non-modular targets. (c) Bar graphs 

show the number of target genes for two classes based on the di�erent cooperativity of their TFs. Only 

target genes regulated by more than �ve TFs were considered for this analysis, resulting in 344 target genes 

regulated by cooperative TFs and 53 target genes regulated by disjoint TFs.
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TFs that share at least two targets with BRCA1 by high statistical signi�cance [i.e., false discovery rate 
(FDR) <  0.05, hypergeometric test] are reported along their interaction network (Fig. 3c). �e top three 
cooperative TFs for BRCA1 turned out to be TP53, RELA, and NFKB1. All networks described above 
are visualized by Cytoscape Web25, which is installed on the TRRUST server.

�e TRRUST server also prioritizes associated pathways and diseases for a query TF. �e signi�cance 
of associations between a set of target genes regulated by the query TF and a gene set for a pathway or 
disease was measured by the hypergeometric test across all gene sets with more than �ve member genes 
derived from Disease Ontology26, KEGG27, or Gene Ontology biological process28. �e server returns all 
disease/pathway terms associated by FDR <  0.05. For BRCA1, we identi�ed ‘breast carcinoma’, ‘prostate 
carcinoma’, and ‘malignant neoplasm of pancreas’ as top candidate diseases (Fig.  3d), which were all 
validated by the literature29–31.

Users can freely download the edge information for the TF-target regulatory interactions of TRRUST 
in both TSV (tab-separated values) and BioC32 formats from the download page.

TRRUST as a benchmark for human TRNs. Our main motivation for the development of the 
TRRUST database was to establish a reference database of TF-target interactions for benchmark-
ing reconstructed human TRNs. To test the benchmarking power of the TRRUST data, we used two 
inferred human TRNs: i) a published TRN inferred from a combined data set of ChIP-chip/seq from 

Figure 3. Selective screenshots from TRRUST search results for an example query gene, BRCA1, are 

shown. (a) A functional network of BRCA1 target genes based on HumanNet links is shown. (b) �e 

physical interaction network of TFs that regulate BRCA1 based on literature-curated protein-protein 

interactions derived from major databases is shown. (c) A network of TFs that are predicted to cooperate 

with BRCA1 based on literature-curated protein-protein interactions derived from major databases is shown. 

(d) Disease Ontology terms prioritized for BRCA1 are listed. �e top three associated diseases, breast 

carcinoma, prostate carcinoma, and malignant neoplasm of pancreas, are all validated by the literature.
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the hmChIP database33 and various related gene expression data using the ChIPXpress34 algorithm and; 
ii) an unpublished TRN inferred from a series of microarray samples from Gene Expression Omnibus 
(GEO)35 and GSE1476436 using the GENIE337 algorithm. �e benchmarking power of a given set of 
TF-target interactions was assessed by their enrichment for each of successive bins of 1,000 inferred 
regulatory interactions, which were sorted by algorithm scores. To compare TRRUST with other data-
bases of literature-curated TF-target interactions in benchmarking human TRNs, we performed the same 
assessment for TFactS, TRED-LC, and HTRIdb-LC. As illustrated in Fig. 4, the enrichment of database 
TF-target interactions is highest for the bin of top-scored interactions, and gradually declines as score 
decreases in both inferred TRNs. A sigmoidal curve generally shows the best �t for the tested data. 
We observed the best correlation between algorithm scores and benchmarking interactions enriched by 
TRRUST in both TRNs (Fig. 4a,b). In contrast, the other databases exhibited relatively weaker correla-
tions for the same TRNs (Fig. 4c–h). �ese results suggest that TRRUST provides a reliable benchmark 
for computationally inferred human TRNs from high-throughput data.

Discussion
A set of gold-standard TF-target interactions to benchmark inferred regulatory interactions from 
high-throughput data is a vital data tool for the reconstruction of genome-scale human TRNs. In this 
paper, we presented the largest publicly available database for literature-curated regulatory interactions to 
date, TRRUST. �is new database of human TF-target interactions has several useful features, including 
the annotations for mode-of-regulation, the incorporation of functional and physical interaction net-
works for testing target modularity and TF cooperativity, the identi�cation of cooperating TFs, and the 
prioritization of associated pathways or diseases to a TF. �e context information about TFs and targets 
will facilitate the functional interpretation of given TFs and their target genes in the regulatory networks. 
�e information about mode-of-regulation also will be useful for mechanistic studies of transcriptional 
regulation. Most importantly, we demonstrated that TF-target interactions of TRRUST can benchmark 
inferred TRNs from the computational analysis of high-throughput data. Taken together, we conclude 
that TRRUST will be a useful reference database of TF-target regulatory interactions for the study of TF 
functions and the reverse engineering of human transcriptional regulatory programs.

Methods
Sentence-based text mining. We �rst �ltered ~20 million abstracts from the Medline2014 data-
base using the MeSH descriptor ‘Humans’ to consider only human biology studies. �is �lter returned 
7,740,272 abstracts. Human biology studies also could be found among articles without the ‘Humans’ 
MeSH term; therefore, this �ltering may generate false negatives. However, we empirically found that 
this �ltering step greatly reduces false positives, which is critical to achieving a high retrieval rate dur-
ing manual curation. For example, many mouse and zebra�sh gene names are identical to human gene 
names. From the 7,740,272 abstracts for human biology, we extracted 57,360 candidate sentences, which 
needed to contain at least one TF name and another gene name based on our de�nition. �e list of TF 
genes was derived from Ravasi et al.15, which is based on the manual curation of several sources: i) the 
TRANSFAC database; ii) genes annotated by the Gene Ontology (GO) term ‘transcription factor’; iii) 
genes that contain the word ‘transcription’ in the Entrez description �eld; and iv) manually curated TF 
genes by Roach et al.16 A�er further curation, this list included 1,984 TFs.

�e candidate sentences were subjected to our two-step text-mining procedure. �e �rst step estab-
lished gold-standard sets of positive and negative candidate sentences for TF-target regulatory inter-
actions. To increase the number of positive sentences, we began our manual curation with sentences 
that contained commonly used words in the study of transcriptional regulation, such as ‘regulate’, ‘con-
trol’, ‘bind’, ‘activate’, ‘enhance’, ‘induce’, ‘repress’, ‘inhibit’, ‘transcription factor’, ‘expression’, ‘promoter’, 
‘mRNA’, and ‘target’. A total of 17,409 candidate sentences were subjected to manual curation, and 4,524 
and 12,885 sentences were assigned to the gold-standard positive and negative sets, respectively. �ese 
gold-standard sentences then were used to prioritize the remaining candidate sentences for the next 
round of manual curation.

In the second step, we prioritized the remaining candidate sentences based on the frequency di�er-
ence of each word between the gold-standard positives and negatives. We devised the following score S 
for a given sentence composed of a series of n words:

( )∑= −
=

S f f
i

n

Pi Ni
1

where fPi is the frequency of the ith word in gold-standard positive sentences and fNi is the frequency of 
the ith word in gold-standard negative sentences. All the remaining candidate sentences were ranked by 
S, and the top 6,000 sentences were subjected to the next round of manual curation. �e 6,000 curated 
sentences also can be used to update the set of gold-standard candidate sentences to re-prioritize the 
remaining and incoming sentences to further improve the retrieval rate in future manual curations. For 
the current version of TRRUST, a total of 23,409 sentences were subjected to two rounds of manual 
curation, and 8,015 unique TF-target regulatory interactions were identi�ed.
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Figure 4. Scatter plots representing the relationship between scores from algorithms (x-axis) and the 

enrichment fold for TRRUST (a,b), TFactS (c,d), TRED-LC (e,f) and HTRIdb-LC (g,h) gene pairs (y-axis) 

for inferred human TRNs are shown. TF-target interactions inferred from ChIP-chip/seq data of hmChIP 

database were scored by the ChIPXpress algorithm (a) and those from a series of microarray samples 

from the Gene Expression Omnibus database (GSE14764) were scored by the GENIE3 algorithm (b). �e 

enrichment fold was measured for each of successive bins of 1,000 links, which were sorted by algorithm 

scores. We found best regressions between algorithm scores and the enrichment of benchmarking TF-

target interactions using a sigmoidal curve �t for all tested databases. TRRUST exhibits substantially better 

correlation for the hmChIP-ChIPXpress (Fig. 4a, r2 =  0.74) and GSE14764-GENIE3 (Fig. 4b, r2 =  0.48) TRNs 

than the other databases (Fig. 4c–h). We used the most signi�cant 100,000 TF-target interactions for all 

benchmarking analyses, and computed the logarithm of the original ChIPEXpress score due to the highly 

biased score distribution for the low score range.
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Manual curation. We conducted manual curation to identify TF-target regulatory interactions based 
on the following criteria. For a candidate sentence, we con�rmed that o�cial gene symbols appeared in 
the sentence. For the sentences that passed the gene name criterion, we identi�ed a TF-target regulatory 
interaction from a sentence: (i) if the sentence indicated that the TF acts as a transcriptional regulator of 
the target gene; (ii) if a change in the activity of the TF in�uences the expression of the target gene; (iii) 
if the TF binds to the promoter region of the target gene; or (iv) if a mutation of the TF binding site on 
the promoter of the target gene in�uences the expression of the gene. All primarily identi�ed TF-target 
regulatory interactions were con�rmed by a more experienced curator.

During the manual curation of the 23,409 extracted sentences, many sentences were excluded for 
several reasons. First, many gene names have aliases that o�en overlap with non-gene names, such as 
cell names (e.g., T), chemical names (e.g., SIM), antigen names (e.g., LPS), and regulatory element names 
(e.g., CRE). Second, some mouse and rat genes have names identical to those of humans. For this reason, 
we checked whether the gene names in a sentence were human by reading its associated abstract. �ird, 
sentences were excluded if the relationship between the cited genes did not involve transcriptional regu-
lation. For example, many sentences discussed the regulation of protein activity. Additional ambiguities 
during the curation of sentences were resolved by carefully examining their associated abstracts. We 
�nally identi�ed 8,015 interactions from 6,851 sentences extracted from 6,175 abstracts.

Extracting information about mode-of-regulation. If a sentence suggested a mode-of-regulation, 
i.e., either activation or repression, for the given TF-target regulatory interaction, we collected and depos-
ited the information along with the given TF-target interaction in the database. An example sentence that 
describes activation is “Moreover, a co-expression of p300 and ATF-2 enhanced the promoter activity of 
IFN gamma gene.” An example sentence that describes repression is “ESE-1 regulates MMP-9 expression 
in a negative manner and the ets binding site on the MMP-9 promoter contributed to suppression by 
ESE-1.” If there was no indication about the mode-of-regulation in either the given sentence or its asso-
ciated abstract, then we assigned the term ‘unknown’ for the mode-of-regulation of the TF-target regu-
latory interaction. In addition, if multiple sentences from either a single or multiple abstracts indicated 
both activation and repression, we listed the TF-target interactions twice with each mode-of-regulation 
along with the supporting Medline abstract for each mode.

TF-target interactions in other public databases. We downloaded the regulatory interactions 
from TFactS9, HTRIdb11, and ORegAnno12 as batch �les. For TFactS, we used TF-target interactions for 
human only. For ORegAnno, TF-target interactions by ChIP-seq experiments were excluded. �e regu-
latory interactions from TRED10 were manually collected by querying all searchable TFs, because TRED 
does not o�er downloadable batch �les. We �ltered the interactions from TRED for targets with bind-
ing quality ‘known’ to retrieve only literature-curated interactions of the database (TRED-LC). HTRIdb 
also contains many regulatory interactions derived from high-throughput DNA-binding experiments, 
which need to be excluded from the literature-curated HTRIdb (HTRIdb-LC). We excluded interactions 
from HTRIdb that were labelled with the technique term ‘Chromatin Immunoprecipitation coupled with 
microarray’ or ‘Chromatin Immunoprecipitation coupled with deep sequencing’.

Measuring target modularity and TF cooperativity. To measure the functional modularity of the 
target genes for each TF, we applied a functional gene network, HumanNet18, on the TRRUST web server. 
By assuming that a modular group of genes has more within-group links than groups of random genes, 
we assessed modularity via the signi�cance of the observed ‘within-group edge count’ among genes tar-
geted by the same TF. �e signi�cance test was based on a null model by permutation tests with 1,000 
groups of random genes for the same group size. For the target modularity test, we considered only TFs 
with no less than �ve targets. We classi�ed TFs by target modularity, i.e., TFs with modular targets and 
TFs with non-modular targets, using a stringent signi�cance threshold (P <  0.01). We also assessed TF 
cooperativity using a similar approach on a set of 10,119 literature-curated protein-protein interactions 
between TFs derived from major databases19–24. �e same signi�cance threshold was used to divide the 
target genes into two classes: targets regulated by cooperative TFs and targets regulated by disjoint TFs.

Enrichment of TRRUST TF-target interactions in human TRNs. �e hmChIP database33 pro-
vides 148 �les of TF-target links for 69 TFs. Each �le contains a ranked list of target genes for a TF and 
scores calculated by the ChIPXpress algorithm34 based on ChIP-chip/seq data and various gene expres-
sion data. We combined those �les to construct one example of a human TRN that comprises TF-target 
relationships ranked by score. We applied the GENIE3 algorithm37 to GSE1476436 microarray data to 
infer another example of a human TRN. More signi�cant regulatory interactions have lower scores by 
the ChIPXpress algorithm and higher scores by the GENIE3 algorithm. We measured the enrichment 
of database TF-target interactions for each bin of 1,000 inferred interactions in the two example TRNs.
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