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ABSTRACT

Transcription factors (TFs) are major trans-acting

factors in transcriptional regulation. Therefore, elu-

cidating TF–target interactions is a key step to-

ward understanding the regulatory circuitry under-

lying complex traits such as human diseases. We

previously published a reference TF–target interac-

tion database for humans––TRRUST (Transcriptional

Regulatory Relationships Unraveled by Sentence-

based Text mining)––which was constructed using

sentence-based text mining, followed by manual cu-

ration. Here, we present TRRUST v2 (www.grnpedia.

org/trrust) with a significant improvement from the

previous version, including a significantly increased

size of the database consisting of 8444 regulatory in-

teractions for 800 TFs in humans. More importantly,

TRRUST v2 also contains a database for TF–target in-

teractions in mice, including 6552 TF–target interac-

tions for 828 mouse TFs. TRRUST v2 is also substan-

tially more comprehensive and less biased than other

TF–target interaction databases. We also improved

the web interface, which now enables prioritization

of key TFs for a physiological condition depicted by

a set of user-input transcriptional responsive genes.

With the significant expansion in the database size

and inclusion of the new web tool for TF prioritiza-

tion, we believe that TRRUST v2 will be a versatile

database for the study of the transcriptional regula-

tion involved in human diseases.

INTRODUCTION

Transcriptional regulation is a key process that determines
the developmental fate and cellular responses to genetic
and environmental perturbation. Some of the most impor-
tant trans-acting factors involved in this process are tran-
scription factors (TF), which bind to cis-regulatory ele-
ments of the DNA and activate RNA polymerase to be-
gin the transcription of target genes. Activation of speci�c
TFs can induce differentiation into certain cell types, and
mutations in TFs cause dysregulation of target genes as
well as their downstream genes, often resulting in disease
states. Researchers have studied interactions between TFs
and their target genes for many years to reconstruct tran-
scriptional regulatory circuitries in cell types under var-
ious spatiotemporal contexts by using experimental and
computational approaches. However, the complexity of reg-
ulatory circuitries is overwhelming, and most, if not all,
technologies currently available are limited in accuracy as
well as comprehensiveness. To evaluate reconstructed tran-
scriptional regulatory networks, we �rst need to establish
a highly accurate and comprehensive database of reference
TF–target regulatory interactions.
Therefore, we previously constructed and published TR-

RUST (1), a database of reference TF–target regulatory in-
teractions in humans based on literature curation. We con-
ducted sentence-based text mining and prioritized the can-
didate sentences for the cost-effective literature curation.
From manual curation of 23 409 candidate sentences, we
were able to retrieve 8015 TF–target interactions for 748
human TFs. Signi�cant efforts have been made in the past
to retrieve information regarding the mode of regulation
(MoR) for the interactions: either activation or repression.
In our previous study, we could provide MoR information
for ∼60.6% of the interactions in TRRUST. Furthermore,
TRRUST was the most comprehensive public database for
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literature-curated TF–target interactions in humans. We
also showed that TRRUST could benchmark transcrip-
tional regulatory networks inferred from high-throughput
genomics data.
In the present study, we present TRRUST v2 (version 2),

which is a signi�cantly improved version in terms of infor-
mation content and its utility. TRRUST v2 (www.grnpedia.
org/trrust) contains 8444 human TF–target interactions
for 800 human TFs, which is signi�cantly higher than the
amount of information available in the previous version.
Most importantly, we have also added 6552 TF–target in-
teractions for 828 mouse TFs to the database. Mice are the
most important and commonly used laboratory animal for
biomedical research. Moreover, comparison of regulatory
networks between humans and mice has revealed a high de-
gree of conservation of trans-regulatory features including
regulatory network architecture (2). Therefore, we expect
that the information regarding mouse TF–target interac-
tions will effectively complement the information on human
regulatory interactions. We also compared TRRUST v2 to
other literature-curated databases containing TF–target in-
teractions and found it to be superior to all others for both
human andmouse information. Finally, to improve the util-
ity of the TF–target interactions for elucidating transcrip-
tional regulatory circuits involved in diseases, we imple-
mented a network-based algorithm to prioritize key TFs
for the given transcriptionally responsive genes. Using this
prediction tool, we could correctly retrieve a perturbed TF
and successfully predict candidate TFs for lung cancers that
could be validated by literature. These results indicate that
TRRUST v2 is a versatile database to study the transcrip-
tional regulation involved in human diseases.

DATABASE IMPROVEMENT

Overview of the literature curation process for mouse TF–
target interactions

The overall process of retrieving mouse TF–target interac-
tions from the literature is summarized in Figure 1A. The
Medline database holdsmore than 20million abstracts from
life sciences and biomedical articles. We �rst �ltered 1 081
549 abstracts from Medline2016 data using the MeSH de-
scriptor ‘Mice’. In the �ltered abstracts, we scanned for sen-
tences that contained at least one TF name and additional
gene names. We used a list of 1743 mouse TF genes com-
piled by Ravasi et al. (3) and a list of mouse gene names
and their synonyms derived from the NCBI Gene database
(4), which were further �ltered for the Consensus coding se-
quences (CCDS) database (5). As a result of these �ltration
process, we collected a total of 161 610 candidate sentences
for the following step of the literature curation process.
It was possible that the �ltered sentences contained ap-

propriate gene names, but did not have an indication of the
regulatory interactions. Moreover, exhaustive manual cura-
tion for all the 161 610 sentences would be a daunting task.
We therefore prioritized the sentences using methods sim-
ilar to those described in our previous work (1). Using all
the sentences subjected to manual curation for human TF–
target interactions, we then established a set of 9592 positive
gold-standard sentences (i.e. information of TF–target in-
teractions was con�rmed) and a set of 18 279 negative gold-

Figure 1. (A) An overall work�ow of sentence-based text mining for
mouse TF–target regulatory interactions from research articles. (B) Pro-
portion of true-positive sentences for each bin of 5000 candidate sentences
rank-ordered by scores based on the difference between the frequencies of
each word based on positive gold-standard sentences and that based on
negative gold-standard sentences.

standard sentences (i.e. manual curation revealed no infor-
mation of TF–target interaction). We then prioritized the
candidate sentences for transcriptional regulation in mice
based on the sum of the difference of the frequency of oc-
currence of each word between the positive and negative
gold-standard sentences. The score S for a candidate sen-
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Table 1. Summary of databases of transcription factor (TF)–target interactions

Human Mouse

TF TG Interaction MoR PMID TF TG Interaction MoR PMID

TRRUST v2 800 2521 8444 4866 6562 828 2187 6552 4106 5069
TRRUST v1 748 2375 8015 4861 6175
PAZAR 173 2747 4918 489 162 1726 2329 328
TFactS 275 1873 4209 1468 776 238 1080 2149 1176 472
TRED 119 1621 3275 1542 75 236 508 745
TFe 76 623 1058 134 510 147 388 673 90 353

TF, the number of TF; TG, the number of target genes; Interaction, the number of TF–target interactions; MoR, the number of TF–target interactions
with mode of regulation information; PMID, the number of PubMed articles to support the given database.

tence composed of n words was calculated using the follow-
ing equation:

S =

n∑

i=1

( fPi − fNi )

where fPi and fNi are the frequencies of the i
th word of the

candidate sentence among the positive and negative gold-
standard sentences, respectively. If the words of a candidate
sentence tended to have higher frequencies among the posi-
tive gold-standard sentences than among the negatives, the
candidate sentence was more likely to have information re-
garding TF–target interactions.
We then proceeded with manual curation from the top-

scored candidate sentences. Duringmanual curation, we ex-
amined not only candidate sentences but also the abstracts
that included the sentences to con�rm the retrieved infor-
mation in the larger textual context. Sentences for molecu-
lar interactions involved in processes other than transcrip-
tional regulation, such as protein–protein interactions and
interactions with chemicals, were excluded. Sentences were
also excluded if either gene name for the interaction was
not annotated by CCDS annotations (5). At least one expe-
rienced curator con�rmed the retrieved TF–target interac-
tions from the sentences. A total of 23 577 sentences were
subjected to manual curation for constructing the mouse
database in TRRUST v2. We found some discrepancy be-
tween MeSH information and the abstract content regard-
ing organisms. For example, some abstracts clearly indi-
cated the given TF–target interactions occurred in mice but
were tagged by MeSH terms of both ‘humans’ and ‘mice’.
Therefore, we examined full-text articles if a given TF had
the same name but with a different letter case between two
species to con�rm organism assignment, consequently re-
quiring full-text inspection for more than 1200 articles.
Next, to evaluate the effectiveness of the scoring scheme

for prioritizing the candidate sentences, we examined the
proportion of true positive sentences that harbored infor-
mation regarding mouse TF–target interactions for each
bin of 5000 sentences from the highest score. We observed
a signi�cantly higher proportion of true positive sentences
from the top three bins than from others with lower scores
(Figure 1B). We could retrieve mouse TF–target interac-
tions from 27–30% of the 5000 sentences from the top
three bins. However, the proportion of true positive sen-
tences dropped to 16 and 10% for the subsequent bins with
lower scores. Given the signi�cant decrease in the propor-

tion of true positive sentences, we froze the current version
of mouse TF–target interaction database based on the top
23 577 sentences, which yielded 6552 TF–target interactions
for 828 mouse TFs. These results indicated that our strat-
egy of prioritizing candidate sentences was useful for cost-
effective manual curation as it effectively differentiated sen-
tences for their likelihood of containing information regard-
ing TF–target interactions. Manual curation of the remain-
ing candidate sentences will be continuously conducted to
expand the database in the future.

Expansion of the database for human TF–target interactions

In addition to the new mouse TF–target interactions, we
also expanded the size of the database for human TF–target
interactions in TRRUST v2. We previously generated pos-
itive and negative gold-standard sentences for humans via
initial manual curation of 17 409 out of 57 360 candidate
sentences. Using the scoring scheme described above, we
then prioritized the remaining candidate sentences and con-
tinuedmanual curation for the top 6000 candidate sentences
(i.e. a total of 23 409 candidate sentences were curated); this
yielded 8015 human TF–target interactions for the previous
version of TRRUST. However, since the publication of the
�rst version of TRRUST, we have performed manual cu-
ration for an additional top 4,000 candidate sentences for
humans. As a result, TRRUST v2 now contains a total of
8444 TF–target interactions for 800 human TFs, which is
approximately a 5.3 and 6.9% increase in the number of in-
teractions and TFs, respectively.

DATABASE ASSESSMENT

Based on the combined count of 14 996 human and mouse
TF–target interactions, TRRUST v2 contains more than
twice as much information as the previous version. We also
compared the improved TRRUST v2 with other manu-
ally curated databases for TF–target interactions. We com-
piled information regarding regulatory interactions from
PAZAR (6), TFactS (7), TRED (8) and TFe (9) and then
compared it with TRRUST v2 in terms of the number of
TFs, targets, interactions, interactions with MoR and sup-
porting PubMed articles. Besides TRRUST v2, only TFactS
and TFe provided MoR information. For TRED, we con-
sidered interactions with a binding quality of ‘known’ as
literature-curated interactions. We found that TRRUST v2
to be the most comprehensive database for both human
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Figure 2. Comparison of TRRUST v2 with other databases of TF–target interactions. (A) Radar plots depicting �ve database-related parameters: TF, the
number of transcription factors (TFs); TG, the number of target genes; Interaction, the number of TF–target interactions; MoR, the number of TF–target
interactions with mode of regulation information; PMID, the number of PubMed articles to support the given database. The maximum value of each
parameter is shown in parentheses, and scales were normalized by the maximum value. (B) The proportion of the interaction involving the top 10 TFs with
the highest number of interactions in humans and mice. (C) Gini index that measures the degree of dispersion of interactions across TFs in humans and
mice.

and mouse regulatory interactions (Table 1 and Figure 2A).
Moreover, the number of human TF–target interactions
in TRRUST v2 is twice that of the next biggest database,
PAZAR.
The amount of information may not be a suf�cient cri-

terion to determine a database as useful. If the majority of
TF–target interactions of the database are concentrated in
only a minor group of TFs, the usefulness of the database
could be unsatisfactory. Given that there exist study and
technical biases in biomedical research, the information ex-
tracted from research articles can be easily biased toward
some genes with higher clinical importance or toward those
with well-developed experimental methods for investiga-
tion. Therefore, we �rst examined the proportion of total
regulatory interactions involving the top 10 TFs for each
database (Figure 2B) and found that the top 10 TFs of TR-

RUST v2 are involved in 22 and 19% of the total human
and mouse regulatory interactions, respectively. However,
the top 10 TFs of other public databases turned out to be
involved in a substantially higher proportion of the total
regulatory interactions. We also examined the degree of dis-
persion of the regulatory interactions across TFs in each
database using the Gini index (G) as follows:

G = 1 −

n∑

i = 1

p2i

where pi is the proportion of interactions involving the i th

TF in the ranks from the largest number of interactions,
and n is the number of TFs involved in the interactions. TR-
RUSTv2 showed the highestGini index, which indicates the
most dispersed regulatory interactions across TFs (Figure
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2C). These results indicated that the database of transcrip-
tional regulatory interactions in TRRUST v2 is not only
more comprehensive but also less biased than other public
databases.

WEB INTERFACE IMPROVEMENT

Web interface for mouse database

The most important improvement in TRRUST v2 over the
previous version is the launch of the database of mouse TF–
target interactions. The majority of mouse genes have hu-
man orthologous genes, often with the same name but with
a different letter case system. Since we conducted species-
speci�c information extraction from the literatures, TR-
RUST v2 generally contains different TF–target interac-
tions between human and mouse homologous genes with
the same name, as shown in the example of human BRCA1
(Figure 3A) and mouse Brca1 (Figure 3B). The TRRUST
v2 web interface for a single human gene query was applied
to the mouse database search with modi�cations for gene
network visualization. If users search for targets of a par-
ticular TF, TRRUST v2 not only returns the list of regu-
latory targets but also returns a visualization of a network
of the target genes. It will be useful to know whether the
genes that are regulated by a TF are functionally associated
with each other. While network visualization for human TF
target genes is based on HumanNet (10) (Figure 3A), that
for mouse TF target genes is based on MouseNet v2 (11)
(Figure 3B). TRRUST v2 also returns a list of TFs that reg-
ulate the given query gene and the list of other TFs that sig-
ni�cantly share the target genes. Network links among the
TFs are based on protein–protein interactions derived from
iRefIndex 14.0 (12). In addition to the database query, all
the TF–target interactions for both humans and mice are
freely available as bulk downloadable �les under a Creative
Commons Attribution-ShareAlike 4.0 International license
(https://creativecommons.org/licenses/by-sa/4.0/).

Web-based prediction of key TFs

To increase the utility of TRRUST v2 database, we have
newly developed a web-based prediction tool to study the
transcriptional regulatory circuitry in a physiological con-
dition. We hypothesized that if there is a statistically signif-
icant overlap between the target genes of a TF and tran-
scriptionally responsive genes, the TF is highly likely to be
involved in transcriptional regulation of the physiological
condition. Therefore, we implemented the TRRUST v2 web
server to search for key TFs by using Fisher’s exact test of
overlap between the target genes of each TF and the genes
submitted by users. To reduce false positives, we excluded
TFs with less than �ve target genes from the statistical test
and TFs with only a single overlapped gene. False discov-
ery rate for each overlap was also calculated with justi�-
cation using the Benjamini–Hochberg procedure. The TFs
with signi�cant P-values are highly likely to be key regula-
tors of the physiological condition depicted by the respon-
sive genes.
Next, to verify the prediction power of this method, we

used a list of genes that were differentially expressed upon
knockdown of a TF. Previously, Muthukaruppan et al. (13)

reported 50 microarray probes corresponding to 33 human
genes with differential expression under siRNAknockdown
of the ESR1 gene in human MCF7 cells. We prioritized
human TFs by signi�cance of overlap between their tar-
get genes and these 33 genes, and could correctly retrieve
the perturbed gene, ESR1, as the top candidate TF (Figure
3C). We then tested the feasibility of identifying disease-
associated TFs using TRRUST v2. To the end, we com-
piled gene expression data for 46 non-small cell lung cancer
(NSCLC) samples and 45 matched normal samples from
GSE18842 of Gene Expression Omnibus database (14). Us-
ing the LIMMApackage, we then selected the top 100 most
signi�cantly differentially expressed genes in tumor sam-
ples and submitted them to the TRRUST v2 web server
to prioritize key TFs for NSCLC. E2F1, E2F3 and TP53
appeared as the top candidates with signi�cant P-values
(1.85e-9, 4.52e-7 and 2.14e-6, respectively) (Figure 3D). We
could con�rm their association with NSCLC via literature
examination. For example, mice lacking E2F1 have been
reported to develop NSCLC (15), and E2F1 has been re-
ported to be overexpressed in NSCLC patients and high
E2F1 expression is correlated with poorer clinical outcomes
(16). E2F3 also shows over-expression in human lung can-
cer (17), and patients with high E2F3 expression show poor
survival rates (18). TP53 is mutated in more than 70% of
lung cancer cases (19) and has been suggested as a therapeu-
tic target (20). These results suggest that TRRUST v2 can
facilitate the identi�cation of disease-associated TFs based
on gene expression data of disease samples.

DISCUSSION

With the addition of 6552 mouse TF–target interactions,
the new version of TRRUST, TRRUST v2, is now the most
comprehensive database based onmanual curation for both
human and mouse TF–target interactions. Therefore, TR-
RUST v2 can facilitate comparative analysis of transcrip-
tional regulatory circuitries between humans and mice. In
a previous study, large-scale TF footprint data for humans
and mice were used to investigate the conservation of trans-
acting circuitry during mammalian regulatory evolution
and showed ∼20% of conservation between two species (2).
We found that ∼15% of human TF–target interactions of
TRRUST v2 were conserved in mice. The lower conserva-
tion of literature-based TF–target interactions could be due
to the study-biases between humans andmice. Interestingly,
the results of the large-scale TF footprint study suggested
that conservation of cis-regulatory features is low, whereas
that of trans-regulatory features such as TF-to-TF associa-
tions and regulatory network architecture is high. Notably,
the authors estimated that conservation of regulatory net-
work architecture between humans and mice is higher than
95%. It would be interesting to study the evolution of reg-
ulatory circuitry using literature-based TF–target interac-
tions as well.
We previously demonstrated the utility of TRRUST (ver-

sion 1) in benchmarking transcriptional regulatory net-
works inferred from high-throughput experimental data.
From a more practical point of view, many users of bioin-
formatics resources might also want to identify highly prob-
able candidate genes for their context of interest such as dis-

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
6
/D

1
/D

3
8
0
/4

5
6
6
0
1
8
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

https://creativecommons.org/licenses/by-sa/4.0/


Nucleic Acids Research, 2018, Vol. 46, Database issue D385

Figure 3. Screenshots of the search result pages for human BRCA1 gene (A) and for mouse Brca1 gene (B). Screenshots of the search result page for
candidate key transcription factors (TFs) based on 33 genes responsive to siRNA knockdown of ESR1 gene (C) and based on 100 differentially expressed
genes in lung tumor samples (D). In the case of lung tumor samples, only 97 of the 100 user-input genes are valid genes, which are annotated by CCDS.

ease condition. Therefore, in TRRUST v2, we implemented
a network-based algorithm to prioritize TFs for a biologi-
cal context that is depicted by transcriptionally responsive
genes. We also validated the web-based predictions using
two case studies: correct retrieval of ESR1 using genes dif-
ferentially expressed upon ESR1 knockdown, and litera-
ture validation of the top three TF candidates for lung can-
cer, predicted by using differentially expressed genes in tu-
mor samples. Our results showed that TRRUST v2 not only
provides information extracted from the literatures but can
also generate novel functional hypotheses to study the tran-
scriptional regulation involved in human diseases. Genera-
tion of functional hypothesis using co-functional networks
have increased the popularity of such networks, and various
network-based algorithms have been developed (21). Algo-
rithms also need to be developed based on regulatory gene
networks to identify key transcriptional regulators associ-
ated with human diseases.
TRRUST v2 also has many TF–target interactions that

are not included in other databases. Since double-checks
were performed by experienced curators for most interac-
tions, we believe that the complementary interactions in
TRRUST v2 are mostly true. We also observed many TF–

target interactions that are not present in TRRUST v2 but
were retrieved for other databases. Assuming that all the
databases compared in this study were constructed by man-
ual curation, these non-overlaps are more likely comple-
mentary interactions rather than errors. This relative low
concordance can be attributed to the difference in sensitiv-
ity between text mining methods. Then, it would also be
worth to consolidate regulatory interactions from different
databases to create a single more comprehensive database.
Conducting manual curation using entire candidate sen-

tences would be a formidable task. Therefore, formore cost-
effective manual curation, we prioritized the candidate sen-
tences for harboring information regardingTF–target inter-
actions and showed that the higher ranked sentences were
more likely to be true positives. We conducted manual cu-
ration for only the top ∼28 000 and ∼24 000 sentences for
humans and mice, respectively. However, continued manual
curation for the remaining candidate sentences will increase
the size of the database, although the retrieval rate would
keep decreasing as we move to lower ranked sentences. For
example, the retrieval rate of mouse TF–target interactions
substantially decreased after the top 15 000 sentences, but
the lower ranked ones still have a 10% or higher chance to
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contain information regarding TF–target interactions. Fur-
thermore, the probability of true-positive sentences could
be improved by developing new prioritizing schemes.More-
over, the upcoming published articles will continue to con-
tribute database improvement.
In conclusion, we believe that TRRUST v2 is a versatile

and expandable database of TF–target interactions, which
will be a useful bioinformatics resource for the study of tran-
scriptional regulatory circuitry in human diseases.

FUNDING

National Research Foundation of Korea [2015R1A2A1A1
5055859, 2017M3A9B4042581]; Brain Korea 21 (BK21)
PLUS program (to I.L.). Funding for open access charge:
National Research Foundation of Korea.
Con�ict of interest statement.None declared.

REFERENCES

1. Han,H., Shim,H., Shin,D., Shim,J.E., Ko,Y., Shin,J., Kim,H.,
Cho,A., Kim,E., Lee,T. et al. (2015) TRRUST: a reference database
of human transcriptional regulatory interactions. Sci. Rep., 5, 11432.

2. Stergachis,A.B., Neph,S., Sandstrom,R., Haugen,E., Reynolds,A.P.,
Zhang,M., Byron,R., Can�eld,T., Stelhing-Sun,S., Lee,K. et al.
(2014) Conservation of trans-acting circuitry during mammalian
regulatory evolution. Nature, 515, 365–370.

3. Ravasi,T., Suzuki,H., Cannistraci,C.V., Katayama,S., Bajic,V.B.,
Tan,K., Akalin,A., Schmeier,S., Kanamori-Katayama,M., Bertin,N.
et al. (2010) An atlas of combinatorial transcriptional regulation in
mouse and man. Cell, 140, 744–752.

4. Coordinators,N.R. (2016) Database resources of the National Center
for Biotechnology Information. Nucleic Acids Res., 44, D7–D19.

5. Farrell,C.M., O’Leary,N.A., Harte,R.A., Loveland,J.E.,
Wilming,L.G., Wallin,C., Diekhans,M., Barrell,D., Searle,S.M.,
Aken,B. et al. (2014) Current status and new features of the
Consensus Coding Sequence database. Nucleic Acids Res., 42,
D865–D872.

6. Portales-Casamar,E., Kirov,S., Lim,J., Lithwick,S., Swanson,M.I.,
Ticoll,A., Snoddy,J. and Wasserman,W.W. (2007) PAZAR: a
framework for collection and dissemination of cis-regulatory
sequence annotation. Genome Biol., 8, R207.

7. Essaghir,A., Toffalini,F., Knoops,L., Kallin,A., van Helden,J. and
Demoulin,J.B. (2010) Transcription factor regulation can be
accurately predicted from the presence of target gene signatures in
microarray gene expression data. Nucleic Acids Res., 38, e120.

8. Zhao,F., Xuan,Z., Liu,L. and Zhang,M.Q. (2005) TRED: a
Transcriptional Regulatory Element Database and a platform for in
silico gene regulation studies. Nucleic Acids Res., 33, D103–D107.

9. Yusuf,D., Butland,S.L., Swanson,M.I., Bolotin,E., Ticoll,A.,
Cheung,W.A., Zhang,X.Y., Dickman,C.T., Fulton,D.L., Lim,J.S.
et al. (2012) The transcription factor encyclopedia. Genome Biol., 13,
R24.

10. Lee,I., Blom,U.M., Wang,P.I., Shim,J.E. and Marcotte,E.M. (2011)
Prioritizing candidate disease genes by network-based boosting of
genome-wide association data. Genome Res., 21, 1109–1121.

11. Kim,E., Hwang,S., Kim,H., Shim,H., Kang,B., Yang,S., Shim,J.H.,
Shin,S.Y., Marcotte,E.M. and Lee,I. (2016) MouseNet v2: a database
of gene networks for studying the laboratory mouse and eight other
model vertebrates. Nucleic Acids Res., 44, D848–D854.

12. Razick,S., Magklaras,G. and Donaldson,I.M. (2008) iRefIndex: a
consolidated protein interaction database with provenance. BMC
Bioinformatics, 9, 405.

13. Muthukaruppan,A., Lasham,A., Woad,K.J., Black,M.A.,
Blenkiron,C., Miller,L.D., Harris,G., McCarthy,N., Findlay,M.P.,
Shelling,A.N. et al. (2017) Multimodal assessment of estrogen
receptor mRNA pro�les to quantify estrogen pathway activity in
breast tumors. Clin. Breast Cancer, 17, 139–153.

14. Barrett,T., Wilhite,S.E., Ledoux,P., Evangelista,C., Kim,I.F.,
Tomashevsky,M., Marshall,K.A., Phillippy,K.H., Sherman,P.M.,
Holko,M. et al. (2013) NCBI GEO: archive for functional genomics
data sets–update. Nucleic Acids Res., 41, D991–D995.

15. Yamasaki,L., Jacks,T., Bronson,R., Goillot,E., Harlow,E. and
Dyson,N.J. (1996) Tumor induction and tissue atrophy in mice
lacking E2F-1. Cell, 85, 537–548.

16. Huang,C.L., Liu,D., Nakano,J., Yokomise,H., Ueno,M., Kadota,K.
and Wada,H. (2007) E2F1 overexpression correlates with thymidylate
synthase and survivin gene expressions and tumor proliferation in
non small-cell lung cancer. Clin Cancer Res., 13, 6938–6946.

17. Cooper,C.S., Nicholson,A.G., Foster,C., Dodson,A., Edwards,S.,
Fletcher,A., Roe,T., Clark,J., Joshi,A., Norman,A. et al. (2006)
Nuclear overexpression of the E2F3 transcription factor in human
lung cancer. Lung Cancer, 54, 155–162.

18. Chou,Y.T., Hsieh,C.H., Chiou,S.H., Hsu,C.F., Kao,Y.R., Lee,C.C.,
Chung,C.H., Wang,Y.H., Hsu,H.S., Pang,S.T. et al. (2012) CITED2
functions as a molecular switch of cytokine-induced proliferation and
quiescence. Cell Death Differ., 19, 2015–2028.

19. Mogi,A. and Kuwano,H. (2011) TP53 mutations in nonsmall cell
lung cancer. J. Biomed. Biotechnol., 2011, 583929.

20. Rousseau,B., Jacquot,C., Le Palabe,J., Malleter,M., Tomasoni,C.,
Boutard,T., Sakanyan,V. and Roussakis,C. (2015) TP53 transcription
factor for the NEDD9/HEF1/Cas-L gene: potential targets in
non-small cell lung cancer treatment. Sci. Rep., 5, 10356.

21. Shim,J.E., Lee,T. and Lee,I. (2017) From sequencing data to gene
functions: co-functional network approaches. Anim. Cells Syst., 21,
77–83.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
6
/D

1
/D

3
8
0
/4

5
6
6
0
1
8
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


