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TRUDINGER TYPE INEQUALITIES IN RN

AND THEIR BEST EXPONENTS

SHINJI ADACHI AND KAZUNAGA TANAKA

(Communicated by Christopher Sogge)

Abstract. We study Trudinger type inequalities in RN and their best expo-

nents αN . We show for α ∈ (0, αN ), αN = Nω
1/(N−1)
N−1 (ωN−1 is the surface

area of the unit sphere in RN ), there exists a constant Cα > 0 such that∫
RN

ΦN

α( |u(x)|
‖∇u‖LN (RN )

) N
N−1

 dx ≤ Cα
‖u‖N

LN (RN )

‖∇u‖N
LN (RN )

(∗)

for all u ∈W 1,N (RN ) \ {0}. Here ΦN (ξ) is defined by

ΦN (ξ) = exp(ξ) −
N−2∑
j=0

1

j!
ξj .

It is also shown that (∗) with α ≥ αN is false, which is different from the usual
Trudinger’s inequalities in bounded domains.

0. Introduction

In this note, we study the limit case of Sobolev’s inequalities; suppose N ≥ 2
and let D ⊂ RN be an open set. We denote by W 1,N

0 (D) the usual Sobolev space,
that is, the completion of C∞0 (D) with the norm ‖u‖W 1,p

0 (D) = ‖∇u‖p+‖u‖p. Here

‖u‖p =
(∫

D

|u|p dx
)1/p

.

It is well-known that

W 1,p
0 (D) ⊂ L

pN
N−p (D) if 1 ≤ p < N,

W 1,p
0 (D) ⊂ L∞(D) if N < p.

The case p = N is the limit case of these imbeddings and it is known that

W 1,N
0 (D) ⊂ Lq(D) for N ≤ q <∞,

W 1,N
0 (D) 6⊂ L∞(D).
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This case is studied by Trudinger [14] more precisely and he showed for bounded
domains D ⊂ RN ∫

D

exp

(
α

(
|u(x)|
‖∇u‖N

) N
N−1

)
dx ≤ C |D|(0.1)

for u ∈ W 1,N
0 (D) \ {0}, where the constants α, C are independent of u and D.

Trudinger’s result is extended into two directions; the first one is to find the
best exponents in (0.1). Moser [8] proved that (0.1) holds for α ≤ αN but not for
α > αN , where

αN = Nω
1/(N−1)
N−1(0.2)

and ωN−1 is the surface area of the unit sphere in RN . See also Adams [1]. We
also refer to [3], [5], [7], [13] for the attainability of

sup

{∫
D

exp

(
αN

(
|u(x)|
‖∇u‖N

) N
N−1

)
dx; u ∈ W 1,N

0 (D) \ {0}
}
.

The second direction is to extend Trudinger’s result for unbounded domains and
for Sobolev spaces of higher order and fractional order. We refer to D. R. Adams
[1], R. A. Adams [2], Ogawa [9], Ogawa-Ozawa [10], Ozawa [11], Strichartz [12].

In this paper, we study a version of Trudinger inequalities in RN and their best
exponents; we show

∫
RN

exp

(
α

(
|u(x)|
‖∇u‖N

) N
N−1

)
−
N−2∑
j=0

1
j!

(
α

(
|u(x)|
‖∇u‖N

) N
N−1

)j
dx ≤ C ‖u‖

N
N

‖∇u‖NN

(0.3)

for u ∈ W 1,N (RN ) \ {0}, where α, C > 0 are independent of u, and we also find
the best exponents α for (0.3).

In [9], [11], [2], (0.3) and related inequalities are obtained without studying their
best exponents; Ogawa [9] obtained (0.3) for N = 2 and Ozawa [11] extended it for
functions in the Sobolev space HN/p,p(RN ) = (1 − ∆)−N/2pLp(RN ) of fractional
order. See also [10]. Adams [2] studied a different version of (0.3); however the
dependence in u of the right-hand side is not given explicitly.

The main purpose of this paper is to study the best exponents α in (0.3) as well
as to give a simplified proof of (0.3).

To simplify notation, we use

ΦN (ξ) = exp(ξ)−
N−2∑
j=0

1
j!
ξj .(0.4)

With this notation, (0.3) becomes∫
RN

ΦN

(
α

(
|u(x)|
‖∇u‖N

) N
N−1

)
dx ≤ C ‖u‖

N
N

‖∇u‖NN
.(0.5)

One of the virtues of the inequality (0.5) is its scale-invariance; for u ∈ W 1,N(RN )
and λ > 0, we set

uλ(x) = u(λx).(0.6)
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We can easily see that ‖∇uλ‖N = ‖∇u‖N and∫
RN

ΦN

(
α

(
|uλ(x)|
‖∇uλ‖N

) N
N−1

)
dx = λ−N

∫
RN

ΦN

(
α

(
|u(x)|
‖∇u‖N

) N
N−1

)
dx,(0.7)

‖uλ‖NN = λ−N‖u‖NN .(0.8)

Thus (0.5) is invariant under the scaling (0.6) and we believe the best exponents α
in (0.5) are of interest.

Our main result is the following.

Theorem 0.1. Suppose N ≥ 2. Then for any α ∈ (0, αN) (αN is given in (0.2)),
there exists a constant Cα > 0 such that∫

RN

ΦN

(
α

(
|u(x)|
‖∇u‖N

) N
N−1

)
dx ≤ Cα

‖u‖NN
‖∇u‖NN

for u ∈W 1,N (RN ) \ {0}.

We remark that the restriction α < αN is optimal. The limit exponent αN is
excluded for (0.5). It is quite different from Moser’s result for (0.1).

Theorem 0.2. For α ≥ αN , there exists a sequence (uk(x))∞k=1 ⊂W 1,N (RN ) such
that ‖∇uk‖N = 1 and

1
‖uk‖NN

∫
RN

ΦN

(
α

(
|uk(x)|
‖∇uk‖N

) N
N−1

)
dx

≥ 1
‖uk‖NN

∫
RN

ΦN

(
αN

(
|uk(x)|
‖∇uk‖N

) N
N−1

)
dx→∞

(0.9)

as k →∞.

Remark 0.3. Even if we consider (0.5) in a bounded domain D, i.e.,∫
D

ΦN

(
α

(
|u(x)|
‖∇u‖N

) N
N−1

)
dx ≤ Cα

‖u‖NN
‖∇u‖NN

for u ∈W 1,N (D) \ {0},(0.10)

the limit exponent αN is still excluded. It is because of the scale-invariance (0.7)–
(0.8). See Remark 2.1 below.

As to the proof of the inequality (0.5), following the original idea of Trudinger, [9],
[10], [11] made use of a combination of the power series expansion of the exponential
function and sharp multiplicative inequalities:

‖u‖q ≤ C(N, q)‖u‖N/qN ‖∇u‖1−N/qN .(0.11)

For multiplicative inequalities of type (0.11) and their applications, we refer to
Edmunds-Ilyin [4] and Kozono-Ogawa-Sohr [6]. We also remark that in Ozawa [11]
multiplicative inequalities for functions HN/p,p(RN ) are given and they are applied
to obtain Brezis-Gallouet-Wainger type inequalities.

We give proofs of Theorems 0.1 and 0.2 in the following sections. We take a
different approach from [9], [10], [11], we use Moser’s idea; we take symmetrization
of functions and we reduce (0.5) to one-dimensional inequality.
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1. Proof of Theorem 0.1

To prove Theorem 0.1, we use an idea of Moser [8]. By means of symmetrization,
it suffices to show the desired inequality (0.5) for functions u(x) = u(|x|), which are
non-negative, compactly supported, radially symmetric, and u(|x|) : [0,∞) → R
are decreasing.

Following Moser’s argument, we set

w(t) = N
N−1
N ω

1
N

N−1u
(
e−

t
N

)
, |x|N = e−t.(1.1)

Then w(t) is defined on (−∞,∞) and satisfies

w(t) ≥ 0 for t ∈ R,(1.2)

ẇ(t) ≥ 0 for t ∈ R,(1.3)

w(t0) = 0 for some t0 ∈ R .(1.4)

Moreover we have∫
RN

|∇u|N dx =
∫ ∞
−∞
|ẇ(t)|N dt,(1.5) ∫

RN

ΦN
(
αu

N
N−1

)
dx =

ωN−1

N

∫ ∞
−∞

ΦN

(
α

αN
w(t)

N
N−1

)
e−t dt,(1.6) ∫

RN

|u(x)|N dx =
1
NN

∫ ∞
−∞
|w(t)|Ne−t dt.(1.7)

Thus, to prove Theorem 0.1, it suffices to show that for any β ∈ (0, 1) there exists
a constant Cβ > 0 such that∫ ∞

−∞
ΦN

(
βw(t)

N
N−1

)
e−t dt ≤ Cβ

∫ ∞
−∞
|w(t)|Ne−t dt(1.8)

for all functions w(t) satisfying (1.2)–(1.4) and∫ ∞
−∞
|ẇ(t)|N dt = 1.(1.9)

Proof of Theorem 0.1. Let w(t) be a function satisfying (1.2)–(1.4) and (1.9). We
set

T0 = sup{t ∈ R;w(t) ≤ 1} ∈ (−∞,∞].

We decompose the integral on the left-hand side of (1.8) according to the decom-
position (−∞,∞) = (−∞, T0] ∪ [T0,∞).

For t ∈ (−∞, T0], we have w(t) ∈ [0, 1]. We can find a constant mN > 0 such
that

ΦN (ξ) ≤ mNξ
N−1 for ξ ∈ [0, 1].

Thus we have ∫ T0

−∞
ΦN

(
βw(t)

N
N−1

)
e−t dt ≤ mN

∫ T0

−∞
w(t)Ne−t dt.(1.10)
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Next we consider the integral over [T0,∞). Since w(T0) = 1, we have for t ≥ T0

w(t) = w(T0) +
∫ t

T0

ẇ(τ)dτ

≤ w(T0) + (t− T0)
N−1
N

(∫ ∞
T0

ẇ(τ)Ndτ
) 1
N

≤ 1 + (t− T0)
N−1
N .

We remark that for any ε > 0 there exists a constant Cε > 0 such that

1 + s
N−1
N ≤ ((1 + ε)s+ Cε)

N−1
N for all s ≥ 0.

Thus, we have

|w(t)| N
N−1 ≤ (1 + ε)(t− T0) + Cε for t ≥ T0.

Since β ∈ (0, 1), we can choose ε > 0 small so that β(1 + ε) < 1. Thus we have∫ ∞
T0

ΦN
(
βw(t)

N
N−1

)
e−t dt ≤

∫ ∞
T0

exp
(
βw(t)

N
N−1 − t

)
dt

≤
∫ ∞
T0

exp ((β(1 + ε)− 1)(t− T0) + βCε − T0) dt

=
1

1− β(1 + ε)
eβCεe−T0 .(1.11)

On the other hand, ∫ ∞
T0

|w(t)|Ne−t dt ≥
∫ ∞
T0

e−t dt = e−T0 .(1.12)

Therefore it follows from (1.11) and (1.12) that∫ ∞
T0

ΦN
(
βw(t)

N
N−1

)
e−t dt ≤ eβCε

1− β(1 + ε)

∫ ∞
T0

|w(t)|Ne−t dt.(1.13)

Thus, setting Cβ = max{mN ,
eβCε

1− β(1 + ε)
}, we obtain (1.8).

2. Proof of Theorem 0.2

It suffices to show Theorem 0.2 for α = αN . We use the idea of Moser again.
Repeating the argument of the previous section, it suffices to find a sequence of
functions wk(t) : R→ R which satisfies (1.1)–(1.4), (1.9) and∫ ∞

−∞
|wk(t)|Ne−t dt→ 0 as k →∞,(2.1) ∫ ∞

−∞
ΦN

(
wk(t)

N
N−1

)
e−t dt ≥ 1

2
for large k.(2.2)

If we define a sequence of functions (uk(x))∞k=1 ⊂ W 1,N(RN ) from (wk(t))∞k=1

through the relation (1.1), it follows from (1.5)–(1.7), (1.9), (2.1) and (2.2) that
‖∇uk‖N = 1 and (0.9). Thus (uk)∞k=1 has a desired property in Theorem 0.2.
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Here we give an example of (wk(t))∞k=1 explicitly. We set

wk(t) =


0 for t ≤ 0,

k
N−1
N

t

k
for 0 ≤ t ≤ k,

k
N−1
N for k ≤ t.

Such functions appeared in [8] to show that the integral on the left-hand side of
(0.1) can be made arbitrarily large for α > αN . It is easily seen that wk(t) satisfies
(1.2)–(1.4) and (1.9).

First we verify (2.1).∫ ∞
−∞
|wk(t)|Ne−t dt =

∫ k

0

(
k
N−1
N

t

k

)N
e−t dt+

∫ ∞
k

kN−1e−t dt

≤ 1
k

∫ ∞
0

tNe−t dt+ kN−1e−k

→ 0 as k →∞.
Next we deal with (2.2).∫ ∞

−∞
ΦN

(
wk(t)

N
N−1

)
e−t dt

=
∫ k

0

ΦN

(
k

(
t

k

) N
N−1

)
e−t dt+

∫ ∞
k

ΦN(k)e−t dt

=
∫ k

0

exp

(
k

(
t

k

) N
N−1

)
−
N−2∑
j=0

1
j!

(
k

(
t

k

) N
N−1

)j e−t dt

+ ΦN (k)e−k

=
∫ k

0

exp

(
k

(
t

k

) N
N−1

− t
)
dt−

N−2∑
j=0

1
j!
k−

j
N−1

∫ k

0

t
N
N−1 je−t dt

+

ek − N−2∑
j=0

1
j!
kj

 e−k

≥
∫ k

0

e−t dt−
N−2∑
j=0

1
j!
k−

j
N−1

∫ k

0

t
N
N−1 je−t dt

+

ek − N−2∑
j=0

1
j!
kj

 e−k

→ 1− 1 + 1 = 1 as k →∞.
Thus we obtain (2.1) and (2.2). This completes the proof of Theorem 0.2.

Remark 2.1. The function uk(x) corresponding wk(t) has a compact support,
i.e., suppuk(x) ⊂ {x ∈ RN ; |x| ≤ 1}. Thus (0.10) with α = αN is false for D =
{x ∈ RN ; |x| < 1}. If we set for a > 0

wa,k(t) = wk(t+N log a),
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then corresponding ua,k(x) has a compact support, i.e., suppua,k(x) ⊂ {x ∈
RN ; |x| ≤ a} and satisfies ‖∇ua,k‖N = 1 and (0.9). Since we can choose a > 0
arbitrarily small, (0.10) with α = αN is false for any domain D.
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