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True atomic resolution of frequency-modulation atomic force microscopy in liquid is demonstrated.

Hexagonal lattice of a cleaved �001� surface of muscovite mica is resolved in water. Nonperiodic

structures such as defects and adsorbates are simultaneously imaged with the atomic-scale features

of mica surface. The use of small oscillation amplitude �0.16–0.33 nm� of a force sensing cantilever

allows us to obtain vertical and lateral resolutions of 2–6 and 300 pm, respectively, even with a low

Q factor in water �Q=20–30�. © 2005 American Institute of Physics. �DOI: 10.1063/1.1999856�

Frequency-modulation atomic force microscopy

�FM-AFM�1
has a distinctive advantage over other scanning

probe techniques such as scanning tunneling microscopy
2

and contact-mode atomic force microscopy �CM-AFM�:3 the

imaging ability of insulating surfaces with true atomic �i.e.,

subnanometer-scale� resolution.
4

This ability is essential for

the applications in organic molecular science and nanobiol-

ogy where molecular-scale investigations on nonconductive

and soft organic materials are required. Although a large

number of subnanometer-scale FM-AFM images have been

presented so far,
4–9

such high-resolution imaging has been

successful only in ultrahigh vacuum �UHV� environment.

This limitation has prevented a wide range of its applications

in air and liquid. In particular, high-resolution imaging in

liquid is indispensable for investigating biological samples in

their physiological environments.

The major difficulty in high-resolution FM-AFM imag-

ing in liquid is the low force sensitivity due to the low Q

factor of the cantilever resonance.
10,11

Recently, the authors

have overcome the difficulty and succeeded in obtaining true

molecular resolution in air
12

and liquid
13

with a newly devel-

oped multienvironment FM-AFM.
14

We used a home-built

cantilever deflection sensor
14

having a deflection noise den-

sity of 17 fm/�Hz for obtaining a maximum force sensitivity

limited by the cantilever thermal Brownian motion. The re-

markable noise characteristic of the deflection sensor also

allows us to maintain the cantilever oscillation amplitude �A�
at as small as 0.2–0.3 nm in liquid. This small amplitude

operation is extremely effective for enhancing the sensitivity

to the short-range interaction forces
15

and thereby obtaining

a high spatial resolution.
16

In this letter, we present the first

result showing true atomic resolution of FM-AFM in liquid.

A cleaved �001� surface of muscovite mica is imaged in wa-

ter using the above mentioned technique and instruments.

Figure 1�a� shows a-axis projection of the crystal struc-

ture of muscovite mica �KAl2�Si3Al�O10�OH�2�. The crystal

consists of complicated aluminosilicate layers separated by

K+ ions. In the bulk crystal, one-fourth of Si4+ ions are re-

placed with Al3+ ions so that the layer is negatively charged.

This negative charge is compensated by the K+ ion layer

which electrostatically bounds the adjacent two aluminosili-

cate layers. The crystal is easily cleaved at the K+ ion layer,

presenting an atomically flat surface as shown in Fig. 1�b�.
The surface is composed of Si �partially Al� and O atoms

forming an array of hexagons with a unit cell length of 0.52

nm.

Figure 2 shows an FM-AFM image of the cleaved �001�
surface of muscovite mica taken in water. Atomic-scale fea-

tures having a period of 0.52 nm are clearly imaged with

large-scale corrugations and some adsorbates. Although a

number of atomic-scale images of mica have been presented

by CM-AFM,
17,18

simultaneous imaging of atomic-scale fea-

tures with such surface corrugations and adsorbates have not

been successful. This is because the average load force is

relatively large and the tip motion produces a high lateral

force in CM-AFM. In FM-AFM, the vertical oscillation of

the cantilever reduces both vertical load and lateral frictional

force, which allows us to image atomic-sale details even

a�
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FIG. 1. �Color online� The crystal structure of muscovite mica; �a� a-axis

projection; �b� cleaved surface �K+ ions are not shown�.
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with randomly distributed adsorbates weakly bound to the

surface. This capability is essential for the applications in

nanobiology where subnanometer-scale investigations on

weakly bound biological materials are required.

The FM-AFM images of mica taken in water show two

different contrast patterns depending on the frequency shifts

��f� used for the tip-sample distance regulation:

honeycomb-like pattern �Fig. 3�a�� and dot-like pattern �Fig.

3�b��. The honeycomb-like pattern consists of a number of

hexagons repeating with a period of 0.52 nm. This contrast

pattern is found in the FM-AFM images taken with relatively

small frequency shifts �less than +200 Hz when A

=0.20 nm�, namely relatively weak tip-sample interaction

force. This contrast pattern agrees well with the atomic-scale

structure of mica surface shown in Fig. 1�b�. The FM-AFM

image shown in Fig. 3�c� presents more detailed structure of

the honeycomb-like pattern. The image shows some bright

spots on the hexagons. The structural model shown in Fig.

1�b� suggests that the bright spots found in the image are

located on the Si atom sites in the hexagons. These bright

spots may correspond to the Al3+ ions because Al3+ ions are

probably imaged as relatively large protrusions due to their

negative charges offered from the surrounding O2− ions. The

distance between the adjacent bright spots is about 300 pm,

showing a good agreement with the distance between the two

adjacent Si atom sites �Fig. 1�b��. Such nonperiodic atomic-

scale contrasts in FM-AFM images demonstrate that true

atomic-resolution imaging by FM-AFM is possible even

with a Q factor of as low as 30 in water.

The FM-AFM images taken with a relatively large fre-

quency shifts �larger than +200 Hz when A=0.20 nm�,
namely relatively large tip–sample interaction force, show

the dotlike pattern as shown in Fig. 3�b�. The dotlike pattern

consists of hexagonally arranged bright dots separated by

0.52 nm. Under this condition, some of the bright dots show

asymmetric contrast in the fast scanning direction �Fig. 3�d��,
indicating the influence of the tip–sample frictional interac-

tion. The dot-like pattern is similar to those of “lattice im-

ages” obtained by CM-AFM
17,18

where only periodic struc-

tures are imaged through the frictional interaction averaged

over a relatively large tip–sample contact area. However,

FM-AFM images obtained in this experiment also show

subnanometer-scale structural defects as shown in Fig. 3�d�.
This clear difference from the lattice images reveals that the

image was formed through the frictional interactions acting

in the subnanometer-scale tip-sample contact area.

The precise control of the vertical tip position near the

tip-sample contact point makes it possible to probe a wide

range of interactions from atom-to-atom interactions for true

atomic resolution �Fig. 3�c�� to frictional interactions in the

subnanometer-scale contact area �Fig. 3�d��. This ability also

allows us to obtain a high spatial resolution with sufficiently

small load forces. We have quantitatively investigated the

vertical resolution of FM-AFM in water from the frequency

shift-distance curve measured on mica �Fig. 4�. The curve

shows a force oscillation with a period of about 0.16 nm

probably due to the layering of the water molecules confined

in the tip-sample separation.
19,20

True atomic resolution was

stably obtained with frequency shifts in the range from

+250 Hz to +500 Hz �gray shadow in Fig. 4�. From the

curve shown in Fig. 4, the frequency shift gradient in this

frequency shift range is ����f� /�z�=3–9�1013 Hz/m. On

the other hand, the frequency noise density measured with a

fast Fourier transform analyzer shows a nearly constant value

of 0.58 Hz/�Hz at frequencies less than the FM bandwidth

of 1 kHz. Thus, the frequency noise is �f =18.4 Hz with an

FM bandwidth of 1 kHz. Accordingly, the vertical resolution

of FM-AFM is �z= ��f / ����f� /�z��=2–6 pm in this fre-

quency shift range. Since the vertical corrugation of the

atomic surface is typically 20–100 pm,
21

vertical resolution

FIG. 2. �Color online� FM-AFM image of the cleaved �001� surface of

muscovite mica taken in water �30 nm�30 nm, �f = +364 Hz, A

=0.33 nm, scanning speed: 561 nm/s�. The tip-sample distance regulation

was made in constant frequency shift mode. The cantilever used was an n-Si

cantilever �Nanosensors: NCVH� with a spring constant of 37 N/m and a

resonance frequency of 176 kHz in water. The Q factor measured in water

was 23.

FIG. 3. �Color online� FM-AFM images of the cleaved �001� surface of

muscovite mica taken in water. �a� 8 nm�8 nm, �f = +54 Hz, A

=0.24 nm, scanning speed: 671 nm/s; �b� 8 nm�8 nm, �f = +240 Hz, A

=0.20 nm, scanning speed: 1120 nm/s; �c� 4 nm�2.5 nm, �f = +157 Hz,

A=0.16 nm, scanning speed: 934 nm/s; �d� 4 nm�2.5 nm, �f = +682 Hz,

A=0.20 nm, scanning speed: 671 nm/s. The images were taken in constant

height mode. The cantilever used was an n-Si cantilever �Nanosensors:

NCH� with a spring constant of 42 N/m and a resonance frequency of 136

kHz in water. The Q factor measured in water was 30.
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of 2–6 pm is sufficiently small to achieve true atomic reso-

lution. The result indicates that the signal enhancement ow-

ing to the small-amplitude operation overcomes the large fre-

quency noise due to the low Q factor in water.

The success of true atomic resolution imaging by FM-

AFM in water opens a wide variety of new applications that

cannot be performed by CM-AFM. The small tip-sample

friction force in FM-AFM allows us to investigate atomic-

scale phenomena taking place at the liquid/solid interface

through weak interaction forces. For example, molecular-

scale investigations on the water layers on hydrophilic sur-

faces such as mica is one of the promising future subjects.
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FIG. 4. Frequency shift–distance curve measured on a cleaved �001� surface

of muscovite mica in water �A=0.33 nm, Q=19, f0=155 kHz, k=42 N/m�.
The curve was taken with a tip velocity of 0.7 nm/s and approximately

1000 data points. The tip-sample contact point is not identified.
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