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Abstract

This paper is devoted to probabilistic models for concurrent systems under their true-concurrency seman-
tics. Here we address probabilistic event structures. We consider a new class of event structures, called locally
finite, that extend confusion-free event structure. In locally finite event structures, maximal configurations
can be tiled with branching cells: branching cells are minimal and finite sub-structures capturing the choices
performed while scanning amaximal configuration. The probabilistic event structures that we introduce have
the property that “concurrent processes are independent in the probabilistic sense.”
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

For concurrent systems, there is a fundamental difference according to the underlying interleav-
ing or true-concurrency semantics considered. True-concurrency probabilistic models belong to a
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recent research area [1–4] where partially ordered processes are randomized, not their interleavings.
This paper addresses probabilistic event structures [5,6] in this framework.
Probability and stochastic process theories provide the mathematical foundations for randomiz-

ing systems. The general model is the following: first consider the space� of all possible histories of
the system. Randomizing the system consists in defining a probability measure on�, meaning that
a particular execution of the system will occur at random, according to the probability distribution
chosen. For true-concurrency systems, we still conform to this general concept. In particular, for
systems represented by event structures, a history consists of a maximal configuration of the event
structure.
How can such a probability be constructed?And, among all probabilities that can be constructed,

are not there some particular ones to be preferred, with some desirable properties?
For sequential systems such as, say, Markov chains, classical constructions follow the following

natural steps. Regard a history as resulting from a sequence of successive choices (choosing the
next state). Assign a given probability to each choice. Any partial execution, seen as a finite stack
of choices, is given a probability by the usual chain rule. Measure theoretic arguments show that
this construction indeed extends to a “limiting” probability measure on the space of all histories of
the system. Thus, randomizing a system amounts to:

(1) isolating the choices performed by the system—this typically relates to combinatorics;
(2) giving a method for assigning a probability to each choice, and then to each finite stack of

choices—this is the central job of probability theory;
(3) obtaining a “limit probability”—by using arguments from measure theory.

For true-concurrency systems, we wish to follow the same steps. However, the main difference
with the classical setting is that choices are no more totally ordered in time. Indeed, some choices
occur concurrently. The interleaving semantics ignores this issue by assigning a particular order
to the choices made, which results in assigning a probability when choosing among different in-
terleavings. For a true-concurrency randomization, we may not use this trick. Instead, we wish to
consider stacks of possibly concurrent choices. An advantage is that concurrent choices can then
be made probabilistically independent. Such a requirement is natural for distributed systems: local
components act asynchronously and without communication for some limited amount of “time”,
and during this period, the actions inside local components shall be independent in the probabilis-
tic sense since the local components do not communicate. To summarize, our first task consists in
decomposing partial executions of an event structure, i.e., finite configurations, as stacks of possibly
concurrent choices. Then, we will associate a probabilistic interpretation of this decomposition by
making concurrent choices independent in the probabilistic sense.
We analyze a simple example to make these ideas precise.
Consider the event structure depicted at left in Fig. 1. Consider first the triple a#b#c (where #

denotes the conflict relation). Note that a and c are concurrent. If event a is selected in an execution
of the system, the only possibility is that event c eventually fires in the same execution.We have thus
a mutual implication a⇔ c, although events a and c are concurrent. Consequently, events a and c

must be considered jointly for the randomization of maximal configurations. Furthermore, unlike
for sequential systems like, e.g., Markov chains, we cannot assume in general that the probability
decomposes multiplicatively over events.
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Fig. 1. Two event structures. Curved lines denote conflict and directed arrows denote causality.

Add now three events d#e#f to the event structure, not related to events a, b, c. Then the choices
involving d , e, f are unrelated to the choices involving a, b, c. Thus, we can multiplicatively decom-
pose our desired probability as a product of the two probabilities governing the choices in a, b, c
and d , e, f , respectively. By this way, we make use of our policy according to which, as much as we
can, parallel processes shall be made independent in probability. For example, the probability of
selecting the pair {a, c} jointly with {e} is:

�
({a, c}, {e}) = qa#b#c

({a, c})× qd#e#f
({e}),

where probabilities qa#b#c and qd#e#f are governing the choices in a, b, c and d , e, f , respectively.
Sub-event structures a#b#c and d#e#f are called branching cells. We have implicitly used the fact
that, in this example, every maximal configuration of the event structure decomposes as a union of
maximal configurations of each branching cell. This remark will be instrumental in our theory.
Consider now Example 2 of the same figure. It coincides with Example 1, except that causali-

ty a � d has been added. Remark that any maximal execution of the whole system still induces,
by restriction, a maximal configuration of the branching cell a#b#c. Consider the alternatives
“firing e” versus “firing f .” Both are allowed, whatever the decision taken in branching cell a#b#c
is. However, if branching cell a#b#c produces {b}, then d is disabled, so that e and f compete alone.
Whereas, if the result is {a, c} instead of {b}, then d is enabled, and now the competition involves d ,
e and f . Therefore we have to consider the two possible branching cells e#f and d#e#f . Typically,
probabilities are now computed by:

�
({b}, {e}) = qa#b#c

({b})× qe#f
({e}),

�
({a, c}, {e}) = qa#b#c

({a, c})× qd#e#f
({e}).

As we see, any maximal configuration may be decomposed through stacks of finite configura-
tions, each finite configuration being maximal in some sub-event structure. The different sub-event
structures encountered are called branching cells. Branching cells isolate the choices performed to
obtain a maximal configuration of the event structure. Although branching cells involved in the
decomposition of some given maximal configuration do not overlap, there may be branching cells
with a nonempty intersection—e#f and d#e#f in our example. We interpret this fact by saying
that the decomposition through branching cells is dynamic. This means that an event, when occur-
ring in different executions of the system, may be considered in different branching cells, depending
on the prior context. If one performs the decomposition on trees instead of event structures, or
even on confusion-free event structures, one finds that branching cells are globally disjoint, i.e., the
decompositions are not dynamic. We summarize the properties of branching cells as follows:
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(i) Branching cells isolate in a recursive and dynamic way the independent choices performed
while constructing a maximal configuration of an event structure;

(ii) Branching cells support a randomization where concurrent branching cells are made indepen-
dent in the probabilistic sense.

In this paper, we propose an analysis of event structures that generalizes the above example. We
define branching cells as finite sub-event structures possessing properties (i,ii) above. Hence branch-
ing cells represent the atomic parts in the stacks of choices that we are seeking for event structures.
Branching cells must be dynamically defined. Therefore, for event structures arising from the un-
folding of a Petri net, branching cells differ from clusters [7], which are statically defined on the net.
Branching cells and their properties constitute the first contribution of this paper.
Our study does not encompass all prime event structures. To ensure the finiteness of branch-

ing cells, we add an assumption called local finiteness. Under some very mild conditions, trees and
confusion-free event structures are locally finite. Indeed, locally finite event structures can be seen
as event structures with a kind of “bounded confusion.” Extending the decompositions that we
propose to general event structures—i.e., considering non locally finite event structures—requires
some more work involving in particular transfinite arguments.
The probabilistic construction performed in the above example generalizes to any locally finite

event structure. We attach a local transition probability to each branching cell. Then we show that
local transition probabilities can be combined using a chain rule where concurrent choices aremade
independent. This amounts to define a probability measure on the space of maximal configurations
of the event structure, seen as a kind of product of local transition probabilities. This special con-
struction of probabilities is called a distributed product—this term is reminiscent from the fact that
concurrent choices are made probabilistically independent. Probabilities reached by this way are
called distributed probabilities. For distributed probabilities, parallel processes are made indepen-
dent in probability, at the grain of branching cells. Moreover, we will show that it is not possible, in
general, to get the same property at a finer granularity than branching cells.
Conversely, we show that the “concurrency/independence”matching property is characteristic of

distributed probabilities. In other words, if a probability satisfies this property, then it is a distribut-
ed product. Distributed probabilities and their recursive construction through distributed products
are the second main contribution of the paper.
The paper is organized as follows. In Section 2, we introduce locally finite event structures and

stopping prefixes, which are basic objects for studying locally finite event structures. Section 3 is
devoted to branching cells and the associated decomposition of configurations. Probabilistic event
structures are defined in Section 4 and we also show how to reduce the construction of local-
ly finite probabilistic event structures to that of finite probabilistic event structures. The special
class of distributed probabilities is investigated in Section 5. Two appendices collect the longest
proofs.

Related work. In [4], the randomization of event structures is studied from the domain theory
point of view, by using continuous valuations defined on the domain of configurations of an event
structure. This viewpoint is closely related to the probabilistic powerdomains from Jones and Plot-
kin [8,9]. The authors use the one-to-one correspondence between continuous valuations and Borel
measures on the space of configurations [10]. However, it is not easy to determine when a measure
on the domain of configurations has its support in the space of maximal configurations. This is
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the role of the non-leaking valuations in [4]. Non-leaking valuations are constructed explicitly for
confusion-free event structures, where the example of valuations with independence is given. For
confusion-free event structures, non-leaking valuations with independence coincide with our own
distributed probabilities.
The present approach has its roots in thework [1] where stopping prefixeswhere first proposed for

true-concurrency systems—stopping prefixes were called “stopping times” in the above reference—
and the principle of concurrency matching probabilistic independence was first stated. However, it
is only with the new notion of branching cell first proposed in [3] that the preliminary ideas of [1]
could really be developed. The reader is referred to [1] for motivations of the present work related
to applications.

2. Stopping prefixes of event structures

2.1. Prerequisites on event structures

Throughout this paper we consider only prime event structures. We will say event structures
for short, always meaning prime event structures. We list in Table 1 the notations used throughout
Sections 2–3.

Event structures. Let (E ,�) be a partially ordered set. Elements of E are called events, and we as-
sume that E is at most countable. The order relation � is called the causality relation. ≺ and 	 are
obvious notations for relations derived from �. The downward closure of a subset A ⊆ E is defined

Table 1
Notations for event structures and branching cells

Symbol Meaning

Configurations of event structures
co, # Concurrency and immediate conflict relations
V or VE Poset of finite configurations of E
V or VE Poset of configurations of E
� or �E Set of maximal configurations of E

R-stopped configurations, branching cells
W orWE Poset of finite R-stopped configurations of E
W orWE Poset of R-stopped configurations of E
C or CE Set of branching cells of E
�(v) or �E (v) Set of branching cells of E enabled by v

�(v) or �E (v) Covering of v in E , for v ∈W
Future of a configuration

Vu Poset of finite configurations of Eu

Vu
Poset of configurations of Eu

Wu Poset of finite R-stopped configurations of Eu

Wu
Poset of R-stopped configurations of Eu

Cu Set of branching cells of Eu

�u(v) Covering of v in Eu, for v ∈Wu
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by ↓A = {e ∈ E : ∃e′ ∈ A, e � e′}. For a singleton, we note ↓e = ↓{e}. We assume that ↓e is a finite
subset of E for every event e. An event structure is a triple (E ,�, #), where (E ,�) is a partially ordered
set as above, and # is a binary symmetric and irreflexive relation on E , called the conflict relation. It
is assumed that the conflict relation satisfies the so-called inheritance axiom, i.e.:

∀e1, e2, e3 ∈ E , (e1#e2 and e2 � e3) �⇒ e1#e3 .

With a slight abuse of notations, we shall identify an event structure (E ,�, #) and its set E of
events. Remark that our definition includes the empty set ∅ as an event structure. We say that an
event e ∈ E is minimal in E if e is a minimal element of the partial order (E ,�). We denote by
Min�(E) the set of minimal events of E .
The concurrency relation is the binary relation on E denoted by the symbol co, and defined by:

co= (E × E) \ (� ∪ 	 ∪ #). Hence two events e, e′ are concurrent if they are neither in conflict nor
causally related.

Prefixes and configurations. A subset P ⊆ E is called a prefix of E if it is downward closed, i.e., if
P = ↓P .
A subset v ⊆ E is said to be conflict-free if it does not contain any two elements in conflict, i.e.,

if # ∩ (v× v) = ∅. A subset v ⊆ E is said to be a configuration of E if v is a conflict-free prefix of E .
Remark that ∅ is always a configuration of E . We say that u is a sub-configuration of v if u and v are
two configurations such that u ⊆ v.
We denote by VE , or by V for short, the set of configurations of E . (V ,⊆) is a partial order. We

denote by VE , or by V for short, the sub-poset of finite configurations of E . Remark that, for every
event e ∈ E , the finite subset ↓e is the smallest configuration that contains e.
We say that two configurations v, v′ are compatible if v ∪ v′ is a configuration. Otherwise we say

that v and v′ are incompatible. We say that two events e and e′ are compatible if ↓e and ↓e′ are
compatible, and that an event e is compatible with a configuration v if ↓e and v are compatible.

Maximal configurations. Any union of pairwise compatible configurations is a configuration. In
particular, any chain of configurations admits an upper bound. Furthermore, the set V of config-
urations is nonempty since ∅ ∈ V . As a consequence, by virtue of Zorn’s Lemma, V has maximal
elements, i.e., configurations ω such that, for every configuration v, v ⊇ ω⇒ v = ω. We denote the
nonempty set of maximal configurations by �E , or by � for short. The notation is indeed reminis-
cent to the� from probability theory, the reason will be given in Section 4. Any configuration of E
is a sub-configuration of some maximal configuration.

Sub-event structures. Let F be a subset of E . Let � |F and #|F denote, respectively, the restrictions
of causality and conflict to F , defined by:

� |F =� ∩(F × F), #|F = # ∩ (F × F) .

Then the triple (F ,� |F , #|F ) is an event structure, we denote it by (F ,�, #) for short. Implicitly,
every subset F ⊆ E will be considered as an event structure with this convention.
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Sequential event structures: trees of events. Event structures are a model for concurrency, where co
captures the concurrency properties of E . Accordingly, sequential systems, seen as particular cases
of concurrent systems, shall be characterized by a trivial concurrency relation.
Therefore, we say that an event structure E is a tree of events [11] if co= ∅. This is equivalent to E

be an at most countable union of disjoint oriented trees in the usual sense, with the conflict relation
as follows: all roots are pairwise in conflict, and for every event e, the immediate successors of e are
pairwise in conflict.

2.2. Future of a configuration. Concatenation of configurations

Let v be any configuration of E . We introduce the notion of future to analyze the set of events
that can occur “after” v, in a sense to be made precise, since event structures involve concurrency.

Definition 2.1. For v a configuration of E , we define the following subset of E :
Ev = {e ∈ E : e is compatible with v and e /∈ v}.

Ev is called the futureof v.

Note the extremal cases: E∅ = E , and Ev = ∅ if and only if v is a maximal configuration of E .

Notations: We note Vv for short instead of VEv to denote the poset of finite configurations of Ev.
Similarly, Vv

denotes the poset of configurations of Ev.

Example. Let E be a tree of events, and let v be a configuration of E , i.e., v is a path in E . If v is
infinite, then Ev = ∅, otherwise v can be written as v = {e1, . . . , en} with e1 ≺ . . . ≺ en. The future Ev

is given by: Ev = {e ∈ E : en ≺ e}. See an illustration in Fig. 2.
Example. In general, and because of concurrency, events in the future Ev need not be causally re-
lated to events of v. This is illustrated in Fig. 3. Indeed, for v = {e2, e5}, events e3 and e6 belong to
Ev without being causally related to any event of v.

Concatenation. It follows from Definition 2.1 that, for any two configurations, u of E , and v of Eu,
the union of subsets u ∪ v is a configuration of E . To distinguish this kind of union from union of
compatible configurations of E , we call u ∪ v the concatenationof u and v, and we use the following
special (non commutative) notation:

u⊕ v = u ∪ v, only defined for u ∈ V and v ∈ Vu
.

Fig. 2. Left, a tree of events. Immediate successors of a same events are pairwise in conflict. The future of v = {e1, e3} is
depicted on the right.
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Fig. 3. An event structure E and a configuration v of E . The future of v = {e2, e5} is shown on the right.

When it is well defined, it satisfies u⊕ v ⊇ u. Conversely, for any configuration w containing u,
w \ u is a configuration of Eu, which is the “tail of w after u.” We use the following notation:

w � u = w \ u, defined for all u,w ∈ V such that u ⊆ w.

To summarize, if the following objects are well-defined, we have:

u⊕ v ∈ V , w � u ∈ Vu
, (u⊕ v)� u = v .

Clearly, the following formula holds, for the composition of futures:

∀u ∈ V , ∀v ∈ Vu
,

(Eu
)v = Eu⊕v. (1)

Pre-regular event structures. As event structures of particular interest, we find the event struc-
tures arising from unfoldings of 1-safe Petri nets [5]. The systematic analysis of the notions
introduced here, applied to the case of unfoldings is out of the scope of this paper—this is
the topic of Markov nets [12]. However, we define pre-regular event structures in order to cap-
ture an important property of unfoldings. According to the following terminology, unfoldings
of 1-safe Petri nets are uniformly pre-regular. We choose this terminology since pre-regularity
(actually, uniform pre-regularity) is a condition for an event structure to be regular in the sense
of Thiagarajan [13].

Definition 2.2.We say that E is pre-regular if, for every finite configuration u of E , the set Min�(Eu)

is finite. We say that E is K-uniformly pre-regular if for any finite configuration u of E , Min�(Eu) has
at most K elements (in which case this is true for any configuration u). We say that E is uniformly
pre-regular if there is a constant K such that E is K-uniformly pre-regular.
If E is pre-regular, it follows from the composition formula (1) that the future Eu of any finite

configuration u is then pre-regular. If E is K-uniformly pre-regular, this is also the case for any
future Eu.

2.3. Stopping prefixes and stopped configurations

In probability, the notion of choice is central, as the very purpose of probabilities is to randomize
choices. Choice is therefore a key concept in this paper. Choice in event structures relies on the
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Fig. 4. An event structure withminimal conflicts depicted by curved arcs. Some stopping prefixes are depicted by dashed
frames.

notion of immediate conflict we recall next. The immediate conflict relation is the following binary
relation on E , denoted by #, and defined by:

∀e1, e2 ∈ E , e1# e2 ⇐⇒ # ∩ (↓e1 × ↓e2
) = {(e1, e2)}.

Informally, “stopping” is the action of “cutting” a prefix of an event structure in such a way that
choices remain internal to the considered prefix.

Definition 2.3. A prefix B is called a stopping prefix if B is #-closed, i.e., if for all (e1, e2) ∈ B× E ,
e1# e2 ⇒ e2 ∈ B.
If B is a stopping prefix, a configuration v of E is called B-stopped if v is a maximal configuration

of B. A configuration v of E is called stoppedif there is a stopping prefix B such that v is B - stopped .

We give some examples to illustrate the notions of stopping prefix and of stopped configuration.

Example. Let E be the event structure consisting of E = {e1, e2, e3} with empty causality relation,
and with conflict relation defined by e1#e2 and e2#e3. Then these conflict are also minimal conflicts,
and therefore, the only two stopping prefixes of E are ∅ and E itself. It follows that stopped con-
figurations of E are either ∅ or maximal configurations of E . The latter are (e1e3) and (e2). Here,
configuration (e1) is an example of configuration which is not stopped.

Example. Fig. 4 depicts stopping prefixes of an event structure.
The following example analyzes the case of trees of events. Confusion-free event structures are

treated in Section 2.6.

Example. If E is a tree of events, a prefix B is a stopping prefix if and only if B satisfies: for every
event e ∈ B, if ve denotes the configuration ve = ↓e \ {e}, B contains all the events minimal in Eve .
Fig. 5, left, depicts a stopping prefix in a tree of events, while the prefix depicted on the right is not
a stopping prefix. We see that stopping prefixes are given by unions of groups of events that can be
simultaneously enabled.
Stopping prefixes satisfy the following crucial property:

Lemma 2.4. Recall that �B denotes the set of maximal configurations of B.

(1)For every stopping prefix B and every maximal configuration ω, the intersection ω ∩ B is a max-
imal configuration of B. Hence, every stopping prefix B induces a mapping:
�B : �→ �B, ω �→ �B(ω) = ω ∩ B .
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Fig. 5. Left: a stopping prefix of a tree of events. Right: a prefix which is not a stopping prefix.

(2)For every pair B,B′ of stopping prefixes with B ⊆ B′, we have a mapping:
�B,B′ : �B′ → �B, v �→ �B,B′(v) = v ∩ B ,

making the following diagram commutative:
� �B′

�B

�
�
���

�B

��B′

�
�B,B′ (2)

Proof. 1. We only have to show that, for every ω ∈ �, ω ∩ B is maximal in B. Put ωB = ω ∩ B, and
assume that ωB /∈ �B. Then there is an event e ∈ B such that e /∈ ωB and ωB ∪ {e} is a configuration
of B. Since e ∈ B \ ωB, e is not an event of ω. Since ω is maximal, this implies that e is incompatible
with ω. Two incompatible configurations contain events in immediate conflict (see Lemma 2.5).
Therefore, there are events x ∈ ↓e and y ∈ ω such that x# y . B is # -closed, and since x ∈ B, this
implies that y ∈ B, and thus y ∈ ωB. But then, ωB ∪ {e} contains the events x and y which are in
conflict, contradicting that ωB ∪ {e} is a configuration. This shows that ωB ∈ �B.
2. Point 2 follows from Point 1, applied with E = B′. The diagram (2) is obviously commutative

(by associativity of “∩”). �
Remark. The key point in Lemma 2.4 is that, for every maximal configuration ω, ω ∩ B is maximal
in B. This is not the case in general if B is any prefix. Take for instance the event structure E = {a, b}
with a#b, the prefix P = {a}, and ω = {b}. Then ω ∩ P = ∅ is not maximal in P .

2.4. Concurrent stopping prefixes

Stopping prefixes are defined in such a way that choices performed in a stopping prefix B remains
internal to B. To formalize this, we show first that disjoint stopping prefixes are concurrent. As a
consequence, configurations of disjoint stopping prefixes do not interact with each other. That is to
say, every configuration of some stopping prefix B, seen as a choice made in B, is compatible with
any choice made “beside” B.
We begin by recalling a well-known result.

Lemma 2.5. If v, v′ are two incompatible configurations, then there are events e ∈ v and e′ ∈ v′ such
that e# e′.
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Then the following lemma provides the key step for studying disjoint stopping prefixes.

Lemma 2.6. Let P be a prefix of E , and let B be a stopping prefix of E . Assume that P ∩ B = ∅. Then
(e, f ) holds for every pair of events (e, f) ∈ P × B.

Proof. Let (e, f) ∈ P × B. Since P ∩ B = ∅, and since both P and B are downward closed, e and f

are not causally related. Assume that e#f . Then, according to Lemma 2.5, there are events x ∈ ↓e
and y ∈ ↓f such that x# y . Then y belong to B. Since B is # -closed, x also belongs to B, and
thus x ∈ P ∩ B, a contradiction. Thus, e and f are not causally related and neither in conflict, hence
ecof . �
We can now state the result showing that choices performed in disjoint stopping prefixes do not

interact with each other. Hence, for stopping prefixes, concurrency fits independence.

Proposition 2.7. Let B be a stopping prefix of E , given as a union of distinct stopping prefixes B =⋃
i∈I Bi, where I is some set of indices. Then the sets of configurations VB and of maximal configura-

tions �B of B, respectively, decompose as:
VB =

∏
i∈I

VBi , �B =
∏
i∈I

�Bi . (3)

Proof. Let B =⋃
i∈I Bi , with Bi distinct stopping prefixes. Consider the following mapping:

$ : VB →
∏
i∈I

VBi , v �→ $(v) = (v ∩ Bi)i∈I . (4)

$ is indeed well defined, since it is clear that v ∩ Bi ∈ VBi for each v ∈ VB. Then$ is injective, since
we have the reconstruction formula v =⋃

i∈I v ∩ Bi for all v ∈ VB. $ is also surjective. Indeed, for
every element (vi)i∈I ∈∏

i∈I VBi , the subset:

v =
⋃
i∈I

vi ,

is a prefix of B, and Lemma 2.6 implies that v is conflict-free. Hence v is a configuration of B. Since
the Bi are pairwise disjoint, we get that $(v) = (vi)i∈I , which shows that $ is surjective, and thus
bijective. We equip the product

∏
i∈I VBi with the product order (i.e., (ui)i∈I�(vi)i∈I if ui ⊆ vi for all

i ∈ I ). This makes $ an isomorphism of partial orders, and thus:

VB =
∏
i∈I

VBi .

In particular, $ respects maximal elements. We obtain thus by restriction of $ to �B the identifi-
cation:

�B =
∏
i∈I

�Bi .

This completes the proof of the proposition. �
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2.5. Locally finite event structures

The set of stopping prefixes is obviously a complete lattice, and the event structure E is itself a
stopping prefix. Therefore, for every event e ∈ E , there exists a unique minimal stopping prefix that
contains e, namely the intersection of all stopping prefixes containing e. We denote this stopping
prefix by B(e). A typical difficulty with concurrency models is that, in general, stopping prefixes
B(e) can be infinite. The following restriction is considered:

Definition 2.8. An event structure E is called locallyfinite if for every event e, there exists a finite
stopping prefix of E containing e. The lattice of finite stopping prefixes of E is denoted by B.
Equivalently,B(e) is finite for every event e ∈ E . Equivalently also, for every finite setA ⊆ E , there

is a finite stopping prefix B containing A. The lattice of finite stopping prefixes plays a fundamental
role for locally finite event structures.

Remark (finite and finitely stopped configurations are the same).For a general event structure, if v is a
finite stopped configuration, it is generally not true that v is B-stopped for B a finite stopping prefix.
We should thus distinguish between finite stopped configurations and finitely stopped configurations
(those v ∈ �B for some finite stopping prefix B). However the two notions coincide if E is locally
finite. Indeed, let v be finite and stopped, with v ∈ �C (here, stopping prefix C may not be finite).
Since v is finite, and since we assume that E is locally finite, the smallest finite stopping prefix B that
contains v is finite and satisfies B ⊆ C . According to Lemma 2.4, Point 2, it implies that v ∩ B is
maximal in B, and since v ⊆ B by construction, we finally get: v ∈ �B, what was to be shown. This
justifies that we refer, for locally finite event structures, to finite stopped configurations, without any
further precaution.
To show that local finiteness is stable when taking the future, first observe the following:

Lemma 2.9. If B is a stopping prefix of E , then B ∩ Ev is a stopping prefix of Ev for every configuration
v of E .
Proof. Denote by #v

 the immediate conflict relation in Ev. Then the lemma follows from the fol-
lowing identity:

#v
 = # ∩

(Ev × Ev
)
. (5)

�
From the above result, we immediately deduce:

Proposition 2.10. If E is locally finite, then Ev is locally finite for every configuration v.

Remark. Although the unfolding of a safe finite Petri net is always pre-regular, and even uniformly
pre-regular, it is not true in general that the unfolding of a safe finite Petri net is locally finite.
Fig. 6 depicts a uniformly pre-regular event structure that is not locally finite.

2.6. The particular case of confusion-free event structures

We open a parenthesis to illustrate the notions introduced above in the case of confusion-
free event structures. Confusion-free event structures are defined as those event structures whose
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Fig. 6. An event structure uniformly pre-regular, but non locally finite: the event at right-bottom is in immediate conflict
with infinitely many events.

domain of configurations satisfies the so-called Q-axiom [5,14]. Equivalently, we shall follow [4,
Prop. 2.4] and define an event structure E to be confusion-free as follows: Let F be the binary rela-
tion F = # ∪ D, where D is the diagonal D = {(e, e), e ∈ E}. E is said to be confusion-free if F is
transitive, and if the following holds:

∀e, e′ ∈ E , e# e′ ⇒ ↓e \ {e} = ↓e′ \ {e′}. (6)

It is known from [5] that so-called confusion-freePetri nets unfold to confusion-free event structures.
Let E be a confusion-free event structure. For e ∈ E , define:

G(e) = {e′ ∈ E : e F e′}.
Then it is easy to verify that B(e), the smallest stopping prefix of E that contains an event e ∈ E , is
given by:

B(e) =
⋃

e′∈↓e
G(e′). (7)

Assumemoreover that E is pre-regular. Then it follows from (6) thatG(e) is finite for every e ∈ E . In
turn, B(e) is also finite for every e ∈ E , and thus E is locally finite. We have obtained the following:
Let E be a confusion-free event structure. If E is pre-regular, then E is locally finite. As a corollary:
The unfolding of a confusion-free Petri net is locally finite.
We leave as an exercise to the reader to prove the following, by making use of the form (7) for

stopping prefixes B(e): In a confusion-free event structure, every configuration is stopped.

2.7. Recursive stopping

Next, we analyze the effect of concatenation on stopped configurations. The following example
shows that the class of stopped configurations is not closed under concatenation in general. This
motivates extending this class.

Example. Let E be the event structure depicted in Fig. 7, left. E has two nonempty stopping prefixes,
B1 = {e1, e2} and B2 = E . Let v1 = (e1); v1 is B1-stopped. The future Ev1 is depicted in Fig. 7, right.
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Fig. 7. Left, an event structure E . Right, the future of configuration (e1). All nonempty stopping prefixes are depicted
by dashed frames. The concatenation of two stopped configurations is not stopped: (e1e3) is the concatenation of two
stopped configurations, but (e1e3) is not stopped in E .

Configuration z = (e3) is stopped in Ev1 since {e3} is a stopping prefix of Ev1 . However the concat-
enation v = v1 ⊕ z = (e1e3) is not stopped in E . Indeed, if v was stopped, then v would be maximal
in B2 = E , which is not the case. Hence, the concatenation of two stopped configurations is not a
stopped configuration in general.

Definition 2.11.A configuration v of E is said to be R-stoppedin E (R for Recursively stopped) if for
some integer N > 0 or for N = ∞, there is a non-decreasing sequence (vn)0�n<N of configurations
with v0 = ∅ and v =⋃

0�n<N vn, and such that:

∀n�0, n < N �⇒ vn+1 � vn is finite stopped in Evn .

The sequence (vn)0�n<N is called a valid decompositionof v. If v has a valid decomposition with
N <∞, we say that v is finite R-stopped.
Wedenote byWE , or byW for short if no confusion canoccur, the set ofR-stopped configurations

of E . WE and shortly W denote the set of finite R-stopped configurations.

We use the same conventions as before in denoting byWv andWv
, respectively, the sets of finite

R-stopped configurations and R-stopped configurations of the future Ev.
Proposition 2.13 below relates R-stopped configurations of E with R-stopped configurations in

stopping prefixes of E , and in futures of R-stopped configurations. For this we need the following
lemma:

Lemma 2.12. Let B be a stopping prefix of E , and let v be a configuration of B. Then we have:

(1) D is a stopping prefix of Bv ⇒ D is a stopping prefix of Ev.

(2) D is a stopping prefix of Ev ⇒ D ∩ B is a stopping prefix of Bv.

Proof. 1. Since B is in particular a prefix of E , it is immediate from Definition 2.1 that we have:
Bv = B ∩ Ev. Therefore, by Lemma 2.9, Bv is a stopping prefix of Ev. Point 1 follows then from the
fact that a stopping prefix of a stopping prefix is a stopping prefix.
2. LetD be a stopping prefix of Ev. ThenD ∩ B is obviously a prefix of Bv. The immediate conflict

relation in Bv is the restriction of #v
 (immediate conflict in Ev) to Bv × Bv. Therefore D ∩ B is a

stopping prefix of Bv. �
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Proposition 2.13.

(1)If B is a stopping prefix of E , R-stopped configurations of B are those R-stopped configurations of
E contained in B. Moreover, we have:

v ∈WE ⇒ v ∩ B ∈WB.

(2)For every pair u, v of configurations, we have:

u ∈WE , v ∈Wu ⇒ u⊕ v ∈WE .

Proof.Let B be a stopping prefix of E . Then a configuration v of B is R-stopped in B if and only if v is
R-stopped in E . Indeed, it follows from Lemma 2.12 above that valid decompositions are obtained
from one another by:

(vn)n → (vn ∩ B)n , (vn)n → (vn)n .

This shows point 1. For point 2: the concatenation of valid decompositions is obviously a valid
decomposition. �
Amore precise result than point 2 will be stated below, showing that anyR-stopped configuration

w ∈WE containing u ∈WE has the form w = u⊕ v with v ∈Wu.
Finally, since finite stopped configurations are clearly R-stopped, R-stopped configurations form

the smallest class of configurations containing all finite stopped configurations, and closed un-
der concatenation. It is not clear at this point whether stopped configurations in general are R-
stopped, and in particular if maximal configurations of E are R-stopped. This will be examined in
Section 3.5.

3. Branching cells

So far, we have considered stopped configurations, and R-stopped configurations that are ob-
tained by concatenations of stopped configurations.However, a givenR-stopped configuration shall
certainly have several valid decompositions. Branching cells, we introduce in this section, will allow
decomposing R-stopped configurations in a canonical way.

3.1. Initial stopping prefixes

Definition 3.1.We say that a stopping prefix B is an initial stopping prefix of E if B is nonempty,
and if ∅ is the only stopping prefix strictly included in B.

Hence B is initial if B is minimal among nonempty prefixes of E .
Although we will latter on focus on event structures that are both locally finite and pre-regular,

we state the following result in amore general case. This shows that the foundations of our approach
do not collapse when we relax the local finiteness assumption.



246 S. Abbes, A. Benveniste / Information and Computation 204 (2006) 231–274

Theorem 3.2. If they exist, initial stopping prefixes of E are disjoint. If E satisfies one of the following
two conditions:

(1)E is locally finite, or
(2)E is pre-regular,

then every nonempty stopping prefix of E contains an initial stopping prefix.

Proof. Since stopping prefixes are stable under intersection, distinct minimal nonempty stopping
prefixes, if they exist, are disjoint.
If E is locally finite, any nonempty stopping prefixB contains a finite nonempty stopping prefixC .

Then C contains an initial stopping prefix, and thus the same holds for B.
We now show that the same holds if E is pre-regular. Let B be a nonempty stopping prefix of a

pre-regular event structure E . Let B� be the set of nonempty stopping prefixes included in B. B� is
nonempty. We use Zorn’s Lemma to show that B� has a minimal element. Such a minimal element
will be an initial stopping prefix included in B.
Hence, let (I ,<) be some totally ordered set, and let (Bi)i∈I be a decreasing family in B�, indexed

by I . That is, i > j ⇒ Bi ⊆ Bj . We show that C =⋂
i∈I Bi is a lower bound in B� for the family

(Bi)i∈I . Since C is a stopping prefix, we only have to show that C is nonempty. Assume that C = ∅.
Fix ω a maximal configuration of E . Then ω ∩ B is maximal in B, thanks to Lemma 2.4, and in
particular, ω ∩ B /= ∅. Pick e0 an event minimal in ω ∩ B. By induction, we construct a sequence
of events (en)n�0, and an increasing sequence of indices (in)n�0, such that en is a minimal event of
ω ∩ Bin , and e0, . . . , en−1 /∈ Bin . In particular the events en are pairwise distinct. Since they are all
minimal in E , this contradicts that E is pre-regular. This contradiction shows that C /= ∅, what was
to be shown. �
We leave as an exercise to the reader to construct an event structure that does not have any initial

stopping prefix.
The above result specializes as follows.

Proposition 3.3. If E is locally finite, every initial stopping prefix of E is finite. If E is pre-regular, initial
stopping prefixes of E are finitely many. If E is K-uniformly pre-regular, the number of initial stopping
prefixes of E is lesser than or equal to K.

Proof. It is obvious that initial stopping prefixes of E are finite if E is locally finite. Observe that
each initial stopping prefix of E contains events minimal in E . Pick one of those minimal events ec
for each initial stopping prefix c. Then the ec are pairwise distinct since the initial stopping prefixes
are pairwise disjoint. The remaining of the proposition follows. �

Example. In Fig. 4, the initial stopping prefixes are depicted as follows: the left dashed frame, and
the smallest of the right dashed frames. Remark that:

(1) some minimal event may not belong to any initial stopping prefix;
(2) some events of an initial stopping prefix may not be minimal.
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Since initial stopping prefixes are disjoint, we get, as a particular case of Proposition 2.7:

Proposition 3.4. Let B be a stopping prefix of E given by the union of finite family of initial stopping
prefixes (ci)i∈I . Then �B decomposes as the following product:

�B =
∏
i∈I

�ci .

3.2. Branching cells

We will now exclusively focus on the case of locally finite event structures. Throughout the
remaining of the paper, the following assumption is in force:

Assumption 3.5. Event structure E is locally finite.
According to Proposition 2.10, all futures Ev are then locally finite. In turn, Theorem 3.2 shows

that this is a sufficient condition to guarantee that any Ev has initial stopping prefixes whenever
Ev /= ∅.
Definition 3.6. A branching cell of E is any initial stopping prefix of Ev, where v ranges over WE
(i.e., over finite R-stopped configurations of E). We denote by CE , or by C for short, the set of all
branching cells of E .
The set of branching cells that are initial stopping prefixes of Ev, with v ∈WE , is denoted by �E(v),

or shortly �(v). Branching cells in �(v) are called the branching cells enabled by v.

Hence, �(∅) for example represents the set of initial stopping prefixes of the event structure.
As usual, Cv shall denote the set of branching cells of the future Ev, for any configuration v.

Propositions 2.10 and 3.3 together have the following consequence (recall that we assume E to be
locally finite).

Proposition 3.7. Every branching cell of E is finite.

It is not easy at this point to describe all branching cells of an event structure. This requires to
examine all R-stopped configurations, but the definition that we have given suffers from a large
combinatorial complexity. We will thus present examples only after having provided some more
efficient ways to describe R-stopped configurations.
As a first property of branching cells, we examine how branching cells of E are related to branch-

ing cells in stopping prefixes of E , and in futures of R-stopped configurations.
Proposition 3.8. If B is a stopping prefix of E , then CB ⊆ CE . If v is a finite R-stopped configuration of
E , then Cv ⊆ CE .

Proof. This is an immediate consequence of Proposition 2.13. �

3.3. Covering through branching cells

Lemma 3.9 below is the key of our study of branching cells. It shows that branching cells decom-
pose R-stopped configurations in an intrinsic manner. The proof is postponed in Appendix 6.
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Lemma 3.9. Let v be some R-stopped configuration of E . Then there exists a valid decomposition
(vn)0�n<N of v, N�∞, and a sequence of branching cells (cn)0<n<N such that, for every integer n with
0�n < N − 1 :

(1)cn+1 is a branching cell enabled by vn;
(2)vn+1 � vn is maximal in cn+1.

For any such pair of sequences (vn)0�n<N and (cn)0<n<N , the cn are pairwise disjoint. If (v′n)0�n<N ′ and
(c′n)0<n<N ′ is another pair of such sequences then we have the equality of sets:

{cn, 0 < n < N } = {c′n, 0 < n < N ′}.

In particular, N = N ′.

We may thus define the covering of R-stopped configurations as follows:

Definition 3.10. The covering�E(v) (or�(v) for short) of a R-stopped configuration v is defined as
the set of branching cells:

�E(v) = {cn, 0 < n < N },

where (vn)0�n<N and (cn)0<n<N are two sequences associated with v as in Lemma 3.9.

Example. Let E be the event structure depicted in Fig. 8, top-left, and let ω be the maximal config-
uration given by ω = {e1, . . . , e5}. Since ω is finite stopped, ω is R-stopped in E . To find �(ω), it is
enough to follow any decomposition of ω as described in Lemma 3.9.
The initial stopping prefixes of E are depicted by frames in Fig. 8, top-left. We start the decompo-

sition for example with c1, v1 = ω ∩ c1 = (e1). Then Ev1 is depicted top-right. There is a unique initial
stopping prefix c2 ∈ �(v1), so that the next step is necessarily v2 = (e1e2e3). The two following steps
are depicted in bottom-left and bottom-right, respectively. Each step has a unique initial stopping
prefix (c3 and c4, respectively).

Fig. 8. Decompositionofω = (e1e2e3e4e5) throughbranching cells to determine�(ω). The possible choices of branching
cells at each step are depicted by rectangles.
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Fig. 9. Showing the collection of branching cells �(ω), for ω as in Fig. 8.

We obtain thus �(ω) = {c1, . . . , c4}. The collection of branching cells �(ω) can be represented
as in Fig. 9. Any enumeration of c1, . . . , c4 that stacks all of them in a “tetris-compliant” way cor-
responds to a valid decomposition of ω, namely: (c1, c2, c3, c4), (c2, c1, c3, c4) and (c2, c3, c1, c4). As
an exercise, the reader can verify that each of these enumerations corresponds indeed to a valid
decomposition of ω. Observe the invariance of the branching cells encountered.

Example (branching cells in confusion-free event structures). Let E be a pre-regular and confusion-
free event structure. Then every configuration is stopped, and therefore every finite configuration
is R-stopped. Recall that we have defined in Section 2.6 the relation F on E as the reflexive clo-
sure of # . Then F is an equivalence relation. The following is readily checked: Branching cells
of E are the equivalence classes of F . We recognize thus in the branching cells of E the cells de-
fined in [4] for confusion-free event structures. In particular, branching cells of a confusion-free
event structures globally do not overlap. The following example shows that this is not the case in
general.

Example (branching cells may overlap).Lemma 3.9 states that branching cells involved in the decom-
position of a given configuration are disjoint. However, in general, the whole collection of branching
cells of an event structure may contain branching cells c /= c′ such that c ∩ c′ /= ∅. This is shown by
the following example:
Consider the event structure E depicted in Fig. 7, left. Fig. 7-right depicts two branching cells

c = {e3} and c′ = {e5} of E , obtained by �(e1) = {c, c′}. Consider the stopped configuration (e2). The
future of (e2) is given by E (e2) = {e3, e4, e5}, with an empty causality relation and with e3#e4#e5.
E (e2) has thus a unique branching cell c′′ = {e3, e4, e5}, which intercepts c and c′ without being equal
to c nor to c′.
This example shows that branching cells of an event structure may globally overlap. We inter-

pret this fact by saying that the decomposition through branching cells is dynamic. Indeed, a same
event may belong to different branching cells. Which branching cell is actually selected in an exe-
cution including this event depends on the execution (until a certain extend), not only on the event
itself.

3.4. Properties of the covering

We shall now study the properties of the covering map. Following our usual method, we study
the relationship between the covering map �E and the analogous �B and �u defined, respectively,
in a stopping prefix B and in the future Eu of some u ∈WE . The proof of the following theorem is
found in Appendix 6.
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Theorem 3.11. Let B be a stopping prefix of E , and let u ∈WE .

(1)The covering �B defined on WB coincides with the restriction of �E to WB. In symbols:

∀v ∈WB, �B(v) = �E(v).

(2)Let �u be the covering associated with Eu, and defined on Wu. Then we have, for any v ∈Wu :

�(u⊕ v) = �(u) ∪�u(v), �(u) ∩�u(v) = ∅ . (8)

(3)The covering map covers R-stopped configurations, i.e.:

∀u ∈W , u =
⋃

c∈�(v)

u ∩ c . (9)

Moreover, u ∩ c ∈ �c for each c ∈ �(u), and:

∀c, c′ ∈ �(v), c /= c′ ⇒ c ∩ c′ = ∅ . (10)

(4)The covering has the following expression, for u a finite R-stopped configuration:

∀u ∈WE , �(u) = {c ∈ �(w) : w ∈W , w ⊆ u} \ �(u) , (11)

and for u any R-stopped configuration:

∀u ∈WE , �(u) =
⋃

w∈W , w⊆u

�(w). (12)

(5)Let w be a configuration of E . The following set of sub-configurations of w :

Fw = {v ∈W : v ⊆ w}

is a lattice. Moreover, if u, v are two R-stopped configurations of E such that u ⊆ v, then v� u is
R-stopped in Eu.

As an application, we derive the following result which is quite intuitive, but not obvious when
inspecting directly Definition 3.10.

Corollary 3.12. Let B =⋃
i∈I ci be a stopping prefix given by a finite union of pairwise distinct initial

stopping prefixes (ci)i∈I . For each i ∈ I , let zi ∈ �ci , and let v =
⋃

i∈I zi. Then v is R-stopped, and the
covering of v is given by �(v) = {ci, i ∈ I}.
Proof. Since B is a finite union of finite prefixes (each ci is finite according to Proposition 3.7), B is
finite. It is easy to check that v is maximal in B. Therefore v is a finite stopped configuration, and in
particular v is R-stopped.
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We determine �(v) as follows. For each i ∈ I , zi is R-stopped, and zi ⊆ v. Therefore, it follows
from point 5 of Theorem 3.11 that v� zi is R-stopped in E zi . Applying (8), we obtain:

�(v) = �(zi) ∪�zi(v� zi).

Since �(zi) = {ci}, we have in particular ci ∈ �(v). Observe that v ∩ ci = zi for each i ∈ I , since
zi is maximal in ci . Therefore v =⋃

i∈I (v ∩ ci). It follows from point 3 in Theorem 3.11 that any
branching cell c ∈ �(v) must be one of the ci, i ∈ I . We conclude that �(v) = {ci, i ∈ I}, what was
to be shown. �

3.5. Max-initial decomposition

So far we have studied R-stopped configurations without knowing “how far” they may go. In
other words, we still do not know whether maximal configurations, for instance, are R-stopped. It
turns out that the answer is “yes.” In getting this answer, wemake a critical use of the local finiteness
assumption. A key step is to introduce some particular decomposition of maximal configurations
that we call the max-initial decomposition. This construction has also useful applications for the
study of Markov nets—this is beyond the scope of the present paper.
For simplicity, we restrict ourselves to the case of a pre-regular event structures E . We still assume

also that E is locally finite.
Definition 3.13. Let E be a pre-regular event structure. The max-initial stopping prefix of E is the
union of all the initial stopping prefixes of E . We denote it by B0(E). We also take the convention
that B0(∅) = ∅.
According to Proposition 3.3, since E is both locally finite and pre-regular, initial stopping pre-

fixes are finite and finitely many. Therefore, B0(E) itself is finite. More generally, B0(Ev) is finite for
every configuration v of E .
Theorem 3.14. Let E be a pre-regular event structure. Every maximal configuration ω is R-stopped. A
valid decomposition of ω ∈ � is given by the sequence (vn)n�0 defined by:

v0 = ∅, ∀n�0, vn+1 = vn ⊕ zn+1, zn+1 = ω ∩ B0(Evn),

where B0(Evn) denotes the max-initial stopping prefix of Evn . The sequence (vn)n�0 is called the
max-initial decompositionof ω.

Proof.We have vn ⊆ ω for each n�0. Moreover, for each n�0, we have zn+1 = (ω \ vn) ∩ B0(Evn).
Since ω is maximal in E , ω \ vn is maximal in Evn , and therefore, by Lemma 2.4, zn+1 is maximal in
B0(Evn), which is a finite stopping prefix of Evn . To get that (vn)n�0 is a valid decomposition of ω, it
remains thus only to show the following:

ω ⊆
⋃
n�0

vn. (13)

The proof of (13) decomposes in three steps. Let v denote the configuration v =⋃
n�0 vn.

Step 1.We claim that (13) holds if E is finite. Indeed, assume that E is finite. Since (vn)n�0 is non-
decreasing, there is an integer N�0 such that v = vN = vN+1. Then zN+1 = vN+1 � vN = ∅. Since



252 S. Abbes, A. Benveniste / Information and Computation 204 (2006) 231–274

zN+1 is maximal in B0(EvN ), this implies that B0(EvN ) = ∅, which in turns implies that Evn = ∅, i.e.,
vN is maximal in E . Since ω ⊇ vN , we get that v = vN = ω.
Step 2. Let B be a finite stopping prefix of E , and let ωB = ω ∩ B. Then we claim that the

max-initial decomposition (v′n)n�0 of ωB is given by v′n = vn ∩ B. Indeed, this is a consequence of
Proposition 2.13.
Step 3. Let B be a finite stopping prefix of E , and let (v′n)n�0 be the max-initial decomposition of

ωB = ω ∩ B. Then we have, according to Step 2:

v =
⋃
n�0

vn ⊇
⋃
n�0

(vn ∩ B) =
⋃
n�0

v′n = ωB,

the latter equality by Step 1. Since this holds for any finite stopping prefix B of E , we have:

v ⊇
⋃
B∈B

ω ∩ B, (14)

where B ranges over the lattice of finite stopping prefixes of E . Now let e ∈ ω. Since E is locally finite,
there is a finite stopping prefix D such that e ∈ D. We have ω ∩ D " e, and thus, from (14), e ∈ v.
Since this holds for any e ∈ ω, we conclude that ω ⊆ v, which is (13). This completes the proof. �
Corollary 3.15. Every stopped configuration of a pre-regular (and locally finite) event structure is
R-stopped.

We illustrate the theorem on two examples.

Example. Consider the event structure depicted in Fig. 8. We have already examined the decom-
positions of ω = (e1 . . . e5) through branching cells. The max-initial decomposition of ω is given
by: v0 = ∅, z1 = (e1e2e3), v1 = z1, involving branching cells c1 and c2, then z2 = (e4), v2 = z1 ⊕ z2,
involving branching cell c3, and finally z3 = e5, v3 = z1 ⊕ z2 ⊕ z3 = ω, involving branching cell c4.

Example (decomposition in trees of events). If E is a tree of events, and if ω = (e1, e2, . . .), the max-
initial decomposition (vn)n�0 of ω is given by vn = (e1, . . . , en), for n�0.

4. Probabilistic event structures

In this section, we define probabilistic event structures. Then, we develop the key tool that al-
lows us reducing the construction of locally finite probabilistic event structures to that of finite
probabilistic event structures. We list in Table 2 the notations used throughout Sections 4–5.

4.1. Definition of probabilistic event structures

We first recall some basic definitions from probability theory (see for example [15]). Then, we
apply these definitions to the case of event structures.

Probability spaces. A .-algebra F on a set � is a collection of subsets of �, such that ∅ ∈ F, F
is stable under complement, and F is stable under countable union. A measurable space is a pair
(�,F), where F is a .-algebra on�. The elements of F are called the F-measurable subsets of�, or
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Table 2
Notations for probabilistic event structures and distributed probabilities

Symbol Meaning

Probabilistic event structures
(E ,�) Probabilistic event structures
p Likelihood of �, p(v) = �(S(v))

S(v) Shadow of configuration v

Probabilistic future
(Eu,�u) Probabilistice future of u, if p(u) > 0
pu Likelihood of �u, pu(v) = 1

p(u) p(u⊕ v)

Distributed products
(E , (qc)c∈C) Locally randomized event structure
p Likelihood associated with (E , (qc)c∈C)
� Distributed product associated with (E , (qc)c∈C)
Zc : �→ �c Random variable defined for c ∈ �(∅)
Z = (Zc)c∈�(∅) Product random variable
Zv
c : S(v)→ �c Conditional random variable, for c ∈ �(v)

Zv = (Zv
c )c∈�(v) Product random variable

shortly themeasurable subsets if no confusion can occur on the .-algebra. Ameasure on a measur-
able space (�,F) is a real valued function � : F→ R such that �(∅) = 0, �(A) is nonnegative for
every A ∈ F, and such that for every sequence of pairwise disjoint sets An ∈ F:

�
(⋃
n�0

An

) =
∑
n�0

�(An) .

Finally, � is said to be a probability measure if �(�) = 1, and in this case (�,F,�) is called a
probability space. If the singletons {x} are measurable, we simply note �(x) for �({x}). If � is finite,
we usually consider the discrete .-algebra on �, which is just the powerset ℘(�) of �. In this case,
the singletons are measurable, and � is entirely determined by the values �(x), for x ranging over
�. We shortly say that � is a finite probability.
Let (�,F) and (�′,F′) be two measurable spaces. Following the traditional terminology from

Probability theory, we say that a mapping f : �→ �′ is a random variable if it is F/F′-measur-
able, i.e., if f−1(A) ∈ F for every A ∈ F′. If (�,F) is equipped with a probability �, the set function
� : F′ → R defined by �(A) = �

(
f−1(A)

)
is a probability on (�′,F′), which is called the image

probability of � under f . � is also called the law of f under �, and is denoted by � = f �. This is
indeed a left action on measures, i.e., (f ◦ g)� = f(g�).

Probabilistic event etructures. Let E be an event structure, and denote as in Section 2 by �

the set of maximal configurations of E . Let 2 be the restriction to � of the Scott topology on V ,
with (V ,⊆) seen as a Dcpo [5,16]. We denote by F the Borel .-algebra on � associated with 2.
That is, F is the smallest .-algebra on � that contains the (countable) collection of subsets of the
form:

S(v) =
[def ]

{ω ∈ � : ω ⊇ v}, (15)
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where v ranges over the set of finite configurations of E . Hence an event structure E naturally de-
fines a measurable space (�,F). For every configuration v—not necessarily finite—, the subset S(v)

defined by (15) is then measurable (write S(v) as the countable intersection of S(u), with u finite and
contained in v). S(v) is called the shadow of v.

Definition 4.1. A probabilistic event structure is a pair (E ,�), where � is a probability measure on
the measurable space (�,F).

With this definition, the space (�,F) is interpreted as the sample space associated with event
structure E . � represents indeed the set of histories of the system modeled by E .
The intuitive interpretation of a probabilistic event structure (E ,�) is as follows: if v is any con-

figuration of E , the probability that v occurs in an execution of E is given by the number �
(S(v)

)
.

Whence the following definition:

Definition 4.2. If (E ,�) is a probabilistic event structure, we define the likelihoodassociated with
� as the nonnegative function p : V → R given by:

∀v ∈ V , p(v) = �
(S(v)

)
.

LetB be a stopping prefix of an event structure, and recall themapping�B : �→ �B,ω→ ω ∩ B,
given by Lemma 2.4, point 1. Then �B is measurable w.r.t. the Borel .-algebras F and FB on
� and �B, respectively. Assume that (E ,�) is a probabilistic event structure. Then the image prob-
ability �B� defines a probabilistic event structure (B,�B�). It follows from the very definition of
the image probability �B� that, if pB denotes the likelihood on VB associated with �B�, we have:

∀v ∈ VB, pB(v) = p(v) . (16)

Finally, note that if E is a finite event structure, the Borel .-algebra on � is simply the powerset
℘(�).

4.2. Prerequisites on projective systems of probabilities

We introduce some background material on projective systems of probabilities. Next subsection
will show how to apply this material to the case of probabilistic event structures.
Our goal is to state a simplified version of Prokhorov’s extension theorem, adapted to our needs.

We first recall some definitions. Let (I ,�) be a directed poset, atmost countable. For each i ∈ I , letAi

be a finite set, and for each i, j ∈ I with i�j, let 3i,j : Aj → Ai be amapping such that 3i,k = 3i,j ◦ 3j,k
for all i, j, k ∈ I with i�j�k , and 3i,i = IdAi for all i ∈ I . The data (Ai)i∈I together with the collection
of mappings 3i,j is called a projective system. Let Y denote the product space Y =∏

i∈I Ai . The
projective limit X of the projective system is defined as the following subset of Y :

X = {(ai)i∈I : i�j ⇒ ai = 3i,j(aj)}.
X is denoted by X = lim← i∈I

Ai . X is equipped with the topology 2, called projective topology, restric-

tion to X of the product topology on Y . The Borel .-algebra F on X is defined as the .-algebra
generated by the projective topology. Finally, we denote by 3i : X → Ai the natural projection.
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Assume moreover that each set Ai is equipped with a finite probability �i . The collection (�i)i∈I
is said to be a projective system of probabilities if �i = 3i,j�j for all i, j ∈ I with i�j.

Theorem 4.3 (Prokhorov, [17, Th. 2 p. 53]).Within the above framework, there is a unique probability
measure � on (X ,F) such that �i = 3i� for all i ∈ I.

4.3. Extension of probabilistic event structures

In this section, we show how to reduce the construction of locally finite probabilistic event struc-
tures to that of finite probabilistic event structures. This is achieved by using Prokhorov’s extension
theorem recalled above.
Any event structure E gives rise to a projective system in the above sense, as follows: take I = B,

the lattice of finite stopping prefixes of E . B is indeed directed and at most countable. Consider then
the sets (�B)B∈B, together with the collection of mappings �B,B′ : �B′ → �B, defined for B,B′ ∈ B
with B ⊆ B′ as in Lemma 2.4, point 2. It is obvious that �B,B′′ = �B,B′ ◦ �B′,B′′ for any B ⊆ B′ ⊆ B′′,
and that �B,B = Id�B for all B ∈= B. Hence, (�B)B∈B is a projective system. According to the fol-
lowing result, its projective limit is closely related to the space �. A (sketch of) proof is found in
Appendix B.1. The reader is referred to [3, Ch. 2] for more details.

Lemma 4.4. Let E be a locally finite event structure, and let X be the projective limit X = lim← B∈B
�B.

The mapping $ : �→ X , defined by $(ω) = (�B(ω))B∈B, is a homeomorphism. Moreover, for each
B ∈ B, the projection 3B : X → �B and the mapping �B : �→ �B are conjugated through $, i.e.,
�B = 3B ◦$.

In particular, the Borel .-algebra on � corresponds through $ to the Borel .-algebra of X (i.e.,
$ and $−1 send measurable sets to measurable sets).
Since (�B)B∈B is a projective system, we say that a collection (�B)B∈B of probabilities, with �B a

finite probability on �B for each B ∈ B, is a projective system of probabilities if we have:

∀B,B′ ∈ B, B ⊆ B′ ⇒ �B = �B,B′�B′ .

Combining Lemma 4.4 and Prokhorov’s theorem (Theorem 4.3), we obtain the following:

Theorem 4.5.Let E be a locally finite event structure. If (�B)B∈B is a projective system of probabilities,
there is a unique probabilistic event structure (E ,�) such that �B = �B� for every B ∈ B. � is called
the extension of (�B)B∈B.

The theorem can be seen as a probabilistic interpretation of the commutative diagram (2). We
have indeed for B ⊆ B′ the following new commutative diagram of probability spaces, where the
.-algebras are understood:

(�,�) (�B′ ,�B′)

(�B,�B)

�
�
�
���

�B

��B′

�
�B,B′
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5. Distributed probabilities

It follows from Theorem 4.5 of previous section, that, if E is locally finite, the construction of
a probabilistic event structure (E ,�) reduces to the construction of a projective system of finite
probabilistic event structures (B,�B)B∈B . This is our next objective. We shall in fact construct spe-
cial classes of probabilistic event structure that are adequate models of probabilistic distributed
concurrent systems: corresponding probabilities are called distributed, their construction is tightly
bound to branching cells.
In Section 3, we have introduced branching cells as supports for exercising choice in event struc-

tures: choice is internal to branching cells and branching cells are minimal subsets of events having
this property. It is therefore natural to use branching cells in constructing probabilities on event
structures, based on the following policy:

(1) attach to each branching cell c an agent 3c, responsible for the choices made within branching
cell c. Agent 3c has a dice to take random decisions according to probability distribution qc
on �c ;

(2) different agents throw their dice independently.

Recall that branching cells are dynamic, hence so are the agents. The followingprocedure is therefore
recursively applied:

(1) assume that finite configuration v has been given some likelihood p(v);
(2) for each branching cell c enabled by v (i.e., c ∈ �(v)), and for each ωc ∈ �c, the likelihood of

v⊕ ωc is equal to p(v⊕ ωc) = p(v)qc(ωc).

The properties of branching cells play a fundamental role in the construction of the probabilities.
Indeed, consider two different branching cells c and c′ continuing the same v. As a property of
branching cells, we have that c′ ∈ �(v⊕ ωc). Therefore:

p(v⊕ ωc ⊕ ωc′) = p(v⊕ ωc)qc′(ωc′) = p(v)qc(ωc)qc(ωc′). (17)

Formula (17) has been established by selecting c′ to act first; but selecting c to act first would have
brought the same result. Hence, the consistency of decompositions using branching cells makes the
above construction meaningful.
Since c and c′ are concurrent, formula (17) expresses that “concurrency matches probabilistic

independence”, at the granularity of branching cells, reflecting point 2 of the above policy. We shall
see in Section 5.3 that it is not possible in general to have the same property at a finer granularity
than branching cells. Probability distributions over � that are constructed in this way are called
distributed, since they result from chaining distributed agents throwing their dice independently.

5.1. Local transitions probabilities and distributed products

Let E be a locally finite event structure. Recall that C denotes the set of branching cells of E .
We shall define a probabilistic event structure from the new notion of locally randomized event
structure.
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Definition 5.1. Let E be a locally finite event structure. For every branching cell c of E , we say that a
finite probability qc on �c is a local transition probabilityon c. We say that E is locally randomized
if each c ∈ C is equipped with a local transition probability qc.

We fix a locally randomized event structure (E , (qc)c∈C), and we proceed with the construction
of a projective system of probabilities (�B)B∈B . We define a real-valued function p :W → R as
follows:

∀v ∈W , p(v) =
∏

c∈�(v)

qc(v ∩ c), (18)

where�(v) denotes the covering of v in E . The function p is well defined since, on the one hand, the
product in (18) is finite, and on the other hand v ∩ c ∈ �c for every c ∈ �(v). For each B ∈ B, we
define the function �B : �B → R by:

∀v ∈ �B, �B(v) = p(v).

The construction of the so-called distributed product breaks down into two steps, summarized in
the following results. The proofs are found in Appendix B.2.

Lemma 5.2 (and definition). The collection (�B)B∈B is a projective system of probabilities. The ex-
tension � of the projective system (�B)B∈B (see Theorem 4.5) is called thedistributed product of the
collection (qc)c∈C .

For � the distributed product thus constructed, the likelihood of some finite stopped configura-
tion is given by formula (18). According to the following result, this formula also holds for finite
R-stopped configurations.

Theorem 5.3. Let (E , (qc)c∈C) be a locally randomized event structure, and let � be the associated
distributed product. Then (E ,�) is the unique probabilistic event structure such that the likelihood
function p : V → R associated with � is given by (18) on finite R-stopped configurations.

5.2. Compositional properties of distributed products

In this section, we study how distributed products behave when we restrict them to stopping
prefixes and to futures of configurations. We reuse the techniques we developed to manipulate
branching cells and extend them to dealing with probabilities.

Universal property of distributed product w.r.t. the past. Let (E , (qc)c∈C) be a locally randomized
event structure. According to Proposition 3.8, CB ⊆ C holds for every stopping prefix B of E . Hence
the pair (B, (qc)c∈CB) defines a locally randomized event structure. By construction, we have the
following relationship between the distributed product on B and on E :
Proposition 5.4. Let � denote the distributed product of (E , (qc)c∈C), and let �B denote the distributed
product of (B, (qc)c∈CB). � and �B are related by:

�B = �B�,

where �B : �→ �B is the mapping defined in Lemma 2.4.
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This result is obvious. Yet, it has the following interesting consequence:

Corollary 5.5. For each initial branching cell c ∈ �(∅), let Zc : �→ �c be the random variable defined
by Zc(ω) = ω ∩ c, ω ∈ �. Then the family (Zc)c∈�(∅) is a family of independent random variables, and
Zc has law qc in �c, for each c ∈ �(∅). Equivalently:

∀(zc)c∈�(∅) ∈
∏

c∈�(∅)
�c, �

{
ω ∈ � : ∀c ∈ �(∅), ω ∩ c = zc

} =
∏

c∈�(∅)
qc(zc) . (19)

Proof. Let B0 be the max-initial stopping prefix of E , defined by B0 =⋃
c∈�(∅) c. Let Z : �→∏

c∈�(∅) �c be the product random variable Z = (Zc)c∈�(∅). According to Proposition 3.4, Z identifies
with the random variable ωB0 = ω ∩ B0. Applying Proposition 5.4 to B0, the law of Z is given by
the distributed product constructed in B0. It follows from Corollary 3.12 that �(ωB0) = �(∅) holds
for every ω ∈ �. Therefore, formula (18) yields (19) and proves the corollary. �

Conditional probability and probabilistic future. Recall the notion of conditional probability: Let
(�,F,�) be a probability space, and let A be a measurable subset of � such that �(A) > 0. The
.-algebra induced by F on A is the .-algebra FA on A which elements are those B ⊆ A such that
B ∈ F. We define a probability �A on (A,FA) by putting:

∀B ∈ FA, �A(B) = �(B)

�(A)
.

�A is called the probability � conditionally on A.
Assume that (E ,�) is a probabilistic event structure. Let p be the likelihood associated with �,

and assume that u is a configuration of E satisfying: p(u) > 0. In other words, the shadow S(u) has
positive probability, andwe define thus the conditional probability�S(u) onS(u). Remark thatS(u)

is isomorphic, as a measurable space, with the space�u of maximal configurations of Eu, equipped
with its Borel .-algebra. Therefore �S(u) is equivalently defined on �u. Denote for short �S(u) by
�u. Denote also by Su(v) the shadow in Eu of a configuration v ∈ Vu

. Then we have:

u⊕ Su(v) = S(u⊕ v). (20)

Denote by pu the likelihood of probability �u. It follows from (20) that pu, defined on Vu
, is given

by:

∀v ∈ Vu
, pu(v) = p(u⊕ v)

p(u)
. (21)

We have obtained:

Lemma 5.6 (and definition). If (E ,�) is a probabilistic event structure, then for every configuration u

such that p(u) > 0, the future Eu inherits the structure of a probabilistic event structure (Eu,�u), that
we call the probabilistic futureof u, and which likelihood pu is given by formula (21).

Universal property of distributed products w.r.t. the future.Let (E , (qc)c∈C) be a locally randomized
event structure. Fix u a finite R-stopped configuration of E . According to Proposition 3.8, Cu ⊆ C,
so that (Eu, (qc)c∈Cu) is a well-defined locally randomized event structure. Consider the probabilistic
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event structure (E ,�) constructed from the distributed product of (qc)c∈C , and assume that p(u) > 0.
We have two ways to construct a probabilistic event structure on Eu: first, we have the probabilis-
tic future defined in Lemma 5.6, and second, the distributed product of the family (qc)c∈Cu . They
actually coincide:

Proposition 5.7. Let (E ,�) be a probabilistic event structure, such that � is the distributed product
arising from a locally randomized event structure (E , (qc)c∈C). Let u ∈W , and assume that u has
positive likelihood. Then the probabilistic future (Eu,�u) coincides with the distributed product of
(Eu, (qc)c∈Cu).

The proof of the proposition is found in Appendix B.2. We can then sharpen Corollary 5.5 as
follows:

Corollary 5.8. Let u be a finite R-stopped configuration of a locally randomized event structure
(E , (qc)c∈C), with distributed product �. For each c ∈ �(u), let Zu

c : S(u)→ �c be the random var-
iable defined by Zu

c (ω) = ω ∩ c for ω ∈ S(u). Then, conditionally on S(u), the collection (Zu
c )c∈�(u) is

a family of independent random variables and the law of Zu
c is qc. Equivalently:

∀(zc)c∈�(u) ∈
∏

c∈�(u)
�c, �u

{
ω ∈ S(u) : ∀c ∈ �(u), ω ∩ c = zc

} =
∏

c∈�(u)
qc(zc). (22)

Proof.According toProposition5.7, (Eu,�u) is thedistributedproduct associatedwith (Eu, (qc)c∈Cu).
Applying Corollary 5.5 brings the result. �

5.3. Concurrency and probabilistic independence

This section analyzes two questions: First, in which extend the construction of distributed prod-
ucts achieves the goal that “concurrent processes are independent in probability”? The answer is
that the matching concurrency/independence holds for processes bound to R-stopped configura-
tions, and thus, implicitly, bound to branching cells. Second, would it be possible to have the same
property at a finer grain than branching cells? The answer is no in general.
The probabilistic independence of concurrent processes can be expressed in the following form:

If p denotes the likelihood of a distributed product, and if u and v are two disjoint and compatible
R-stopped configurations, then we have:

p(u ∪ v) = p(u)p(v). (23)

Indeed, this follows from the likelihood formula (18), combined with the facts that �(u ∪ v) =
�(u) ∪�(v) and�(u) ∩�(v) = ∅. Note that (23) also holds if we only assume that u and v are not
necessarily R-stopped, but are sub-configurations respectively of u′ and v′, where u′ and v′ are finite,
R-stopped and compatible.
Can we further relax the assumption about R-stopped configurations? What about disjoint and

compatible configurations inside a same branching cell ? In other words, can we have a matching be-
tween concurrency and probabilistic independence at a finer grain than branching cells? In general,
the answer is “no,” except for trivial probabilities.
Here is a simple example to illustrate this claim. Let E = {e1, e2, e3}, with an empty causality rela-

tion, and with conflict defined by e1#e2, e2#e3. Consider the two compatible configurations u = (e1)



260 S. Abbes, A. Benveniste / Information and Computation 204 (2006) 231–274

and v = (e3). Assume that the formula p(u ∪ v) = p(u)p(v) holds. Remark that we have, for every
ω ∈ �: ω ⊇ u ⇐⇒ ω ⊇ v. In other words: S(u) = S(v) = S(u ∪ v), and therefore:

p(u) = p(u ∪ v) = p(u)p(v) = p(u)2.

Hence p(u) = p(u)2, and thus p(u) = 0 or p(u) = 1. That is, for this example, any probability � on
� such that p(u ∪ v) = p(u)p(v) is trivial.

The conclusion is thus the following:

(1) distributed products allow concurrent processes to be independent in the probabilistic sense,
at the grain of branching cells;

(2) it is not possible, in general and for any probability, to have the same property at a finer grain
than branching cells.

Conditional matching of concurrency and probabilistic independence.Wegive below the condition-
al formulationofEq. (23), still for distributed products. Let ube somefiniteR-stopped configuration,
with p(u) > 0. Since the probabilistic future (Ev,�v) is given by a distributed product (Proposition
5.7), the likelihood pu satisfies the above property (23). Namely, if v,w are any two finite config-
urations of Eu, that we assume disjoint and R-stopped, we have pu(v ∪ w) = pu(v)pu(w). Equiva-
lently, since pu( · ) = p(u⊕ · )/p(u) according to (21), we get p(u)p(u⊕ (v ∪ w)) = p(u⊕ v)p(u⊕ w).
Remark that the latter also holds even if p(u) = 0.
This can be re-expressed as follows. Let v,w be two finite and R-stopped compatible configura-

tions of E . According to point 5 of Theorem 3.11, the intersection u = v ∩ w is R-stopped in E , and
moreover v� u and w � u are R-stopped and disjoint in Eu. Therefore, p(u)p(v ∪ w) = p(v)p(w).
Hence we get, for any two R-stopped compatible configurations v,w of E :

p(v ∩ w)p(v ∪ w) = p(v)p(w). (24)

If v ∩ w = ∅, (24) reduces to (23) since p(∅) = 1.
The case of confusion-free event structures. In a confusion-free event structures every configura-

tion is stopped, and thus R-stopped. Hence, for a distributed product defined on a confusion-free
event structure, formula (24) above holds for any finite configurations u and v. This particular result
for confusion-free event structures is stated in [4], in the framework of so-called “non-leaking val-
uations with independence”. These valuations for confusion-free event structures correspond 1–1
with distributed products.

5.4. Distributed probabilities and distributed products

In this subsection, we give a characterization of those probabilities that can be obtained as a
distributed product. For this, we sharpen the condition (23) discussed above and define by this
way distributed probabilities. We obtain then an equivalence between distributed probabilities and
distributed products. As a corollary, we get that the local transition probabilities that give rise to a
given distributed product are unique.
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Induced local transition probabilities. Let (E ,�) be a probabilistic event structure. To check
whether � is a distributed product, we first need candidates for the branching probabilities (qc)c∈C .
For this, we proceed as follows (proofs are found in Appendix B.3).
Let c ∈ C, and consider the following subset of �:

Hc = {
ω ∈ � : c ∈ �(ω)

}
.

In other words, ω ∈ Hc if there exists a finite R-stopped configuration u ⊆ ω such that c ∈ �(u).
We call Hc the thick shadowof c.

Exercise : Show that, if E is confusion-free, Hc coincides with the shadow S(v) of some finite
configuration. Why is Hc called a thick shadow in general?

Lemma 5.9. For each c ∈ C, Hc is a measurable subset of �. We equip Hc with the .-algebra FHc

induced from the Borel .-algebra on�.The function Y c defined by Y c(ω) = ω ∩ c is a random variable
Y c : Hc → �c.

Assume that c is a branching cell of E such that �(Hc) > 0. Then, since Hc is measurable, we
equipHc with the conditional probability�Hc

. Thismakes (Hc,FHc
,�Hc

) a probability space. Since
Y c is a random variable with values in�c, the law of Y c is a probability on�c, i.e., a local transition
probability on c. We define thus:

Definition 5.10. Let (E ,�) be a probabilistic event structure, and let c be a branching cell such that
�(Hc) > 0. We define the local transition probability on c induced by � as the probability rc on �c,
image of �Hc

under Y c:

rc = Y c�Hc
, i.e., ∀ωc ∈ �c, rc(ωc) = �Hc{

ω ∈ Hc : ω ∩ c = ωc

}
.

The induced local transition probability rc is indeed a good candidate, as shown by the following
result:

Lemma 5.11. Let � be the distributed product of a locally randomized event structure (E , (qc)c∈C), and
let c be a branching cell of E such that �(Hc) > 0. Then the induced local transition probability rc is
given by rc = qc.

Distributed probabilities. For each branching cell c, the random variable Y c and the induced
local transition probability rc are defined in a way intrinsic to c. There is also an alternative way
of defining a random variable with values in �c. Recall that we have defined in Corollary 5.8 for
v ∈W and c ∈ �(v), the random variable:

Zv
c : S(v)→ �c, Zv

c (ω) = ω ∩ c.

Fixing v ∈W , and letting c range over �(v), we define the joint random variable Zv as follows:

Zv = (Zv
c )c∈�(v), Zv : S(v)→

∏
c∈�(v)

�c. (25)
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Since, according to Lemma 5.11, qc = rc for distributed products, we equivalently reformulate
Corollary 5.8 by saying that the law of Zv is given by the product probability

⊗
c∈�(v) rc. This sug-

gests the following definition. (The requirement below that “p(v) > 0 for every finite configuration
v” is stated for the sake of simplicity—it can be removed with some more technical effort, see [3]
for details.)

Definition 5.12. Let (E ,�) be a probabilistic event structure, with likelihood p , such that p(v) > 0
for every finite configuration v. We say that (E ,�), or shortly that the probability �, is distributed, if
for any finite and R-stopped configuration v of E , the law of Zv in

∏
c∈�(v) �c is given by the product⊗

c∈�(v) rc of local transition probabilities rc induced by �. Equivalently:

∀(zc)c∈�(v) ∈
∏

c∈�(v)
�c, �v

{
ω ∈ S(v) : ∀c ∈ �(v), ω ∩ c = zc

} =
∏

c∈�(v)
rc(zc). (26)

In this definition, not only we require the variables Zv
c to be independent, when c ranges over �(v),

we also require that the law of Zv
c , for c fixed, is independent of v. Hence, we require a little bit more

than the independence form (23) that we obtained in Section 5.3 when discussing the matching of
concurrency and independence.
Remark that, if � originates from a distributed product (E , (qc)c∈C), and according to formula

(18), the requirement that “p(v) > 0 for every finite configuration v” in Definition 5.12 is fulfilled if
and only if the branching probabilities qc satisfy:

∀c ∈ C, ∀z ∈ �c, qc(z) > 0 .

A distributed product gives rise to a distributed probability (compare (26) with (22)). The fol-
lowing theorem addresses the converse problem:

Theorem 5.13. Let (E ,�) be a probabilistic event structure, with likelihood p , such that p(v) > 0 for
every finite configuration v. Then � is a distributed product if and only if � is distributed. In this case
� is the distributed product of the family (rc)c∈C of local transition probabilities induced by �. The
decomposition of � as a distributed product is unique.

Without the positivity assumption, the result of Theorem 5.13 remains valid, except that unique-
ness is not guaranteed anymore.
Remark that, in general, not every probabilistic event structure is distributed. Consider for exam-

ple two discrete random variables X ∈ {a, b}, Y ∈ {c, d}, non independent, and the event structure
{a, b, c, d} without causality relations, and with a#b and c#d . The probability law of the pair (X , Y)
is not given by a distributed product, since the independence condition between X and Y is not
fulfilled.

6. Conclusion

In this paper, we have proposed locally finite event structures, a new class of event structures that
support an explicit construction of probabilistic event structures, i.e., of models where partial orders
are randomized, not interleavings.
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Our construction relies on a dynamic decomposition of configurations by means of branching
cells. Branching cells decompose maximal configurations in a recursive and dynamic way, such that
a maximal configuration can be seen as a stack of choices performed inside branching cells. The
distributed probabilities we construct are such that, at the granularity of branching cells, parallel
local processes are made independent in the probabilistic sense, conditionally on their common
past: informally, “concurrency matches probabilistic independence.” In general, no finer grain is
possible for concurrency matching probabilistic independence.
Branching cells and distributed probabilities are the two main contributions of this work. Their

use is illustrated in [18,12], where the tools developed here are applied to the particular case of event
structures arising from unfoldings of safe Petri nets. This yields the model ofMarkov nets, and a
first sample of probabilistic and statistical results are stated in these references. Besides their appli-
cation to probabilistic event structures, we believe that branching cells are of interest per se, as they
adequately capture some notion of choice.
A challenging direction for future work deals with further relaxing local finiteness in the con-

struction of probabilistic event structures. This can be tackled by handling infinite branching
cells directly—the difficulty is that the max-initial decomposition of a maximal configuration
ω is not anymore guaranteed to converge to ω. Alternatively, considering products in the cat-
egory of event structures is a second approach, allowing to reach event structures that are not
locally finite.

Appendix A. Proof of Lemma 3.9 and of Theorem 3.11

We state first some intermediate results.

Lemma A.1. Let v be a R-stopped configuration, and let c be an initial stopping prefix of E . Then either
v ∩ c = ∅ or v ∩ c ∈ �c.

Proof. It follows from Proposition 2.13 that u = v ∩ B is R-stopped in B for every stopping prefixB,
and in particular for B = c. Now, since c is an initial stopping prefix, it is clear that v ∩ c is either
empty or maximal in c, as claimed. �
Lemma A.2. Let u be a configuration of E , and let c be an initial stopping prefix of E . If u ∩ c = ∅,
then c is an initial stopping prefix of Eu.

Proof.We first prove that c ⊆ Eu. Let e ∈ c, and assume that e /∈ Eu. e does not belong to u since
u ∩ c = ∅, hence e is incompatible with u. It follows from Lemma 2.5 that there are events e′ � e

and e′′ ∈ u such that e′# e′′. Then e′ ∈ c, and since c is # -closed, this implies that e′′ ∈ c. This
contradicts that u ∩ c = ∅. Hence we have shown that c ⊆ Eu.
According to Lemma 2.9, this implies that c ∩ Eu = c is a stopping prefix of Eu. Since c /= ∅, to

show that c is an initial stopping prefix of Eu, it remains only to show that c is minimal among non-
empty stopping prefixes of Eu. For this, let 8 be a nonempty stopping prefix of Eu, and assume that
8 ⊆ c. Then we claim that 8 is a stopping prefix of E . Denote by #u

 the minimal conflict relation in
Eu. First, it is clear that 8 is a prefix of E , since 8 ⊆ c and since c is a prefix of E . Second, we show that
8 is # -closed in E . Let e ∈ 8 , and let e′ ∈ E with e# e′. Then e′ belongs to c since c is # -closed
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in E , and therefore e′ ∈ Eu. According to Eq. (5), this implies that e and e′ are in minimal conflict
in Eu. Since 8 is chosen to be #u

-closed, this implies that e
′ ∈ 8 . This shows that 8 is # -closed in

E . Finally, 8 is a stopping prefix of E as claimed. Since c is initial in E , we get that c = 8 . We have
thus shown that c is minimal in Ev, which completes the proof. �
It will be convenient to use the following terminology:

Definition A.3.We say that a configuration z of E is a germ of E if there is an initial stopping prefix
c such that z ∈ �c. A valid decomposition of some R-stopped configuration v satisfying conditions
1 and 2 of Lemma 3.9 is said to be a germ-decompositionof v.

Lemma A.4. Every R-stopped configuration v has a germ decomposition.

Proof.We first show the result when v is a finite stopped configuration, i.e., v ∈ �B with B a finite
stopping prefix of E . According to point 1 in Proposition 2.13, there is no loss of generality if we
assume that B = E , and E is a finite event structure.
Consider the following inductive construction: set v0 = ∅. Assume that the sequence (vj)0�j�n

has been constructed, such that (vj)0�j�n is a germ decomposition of vn, for n�0, with vn ⊆ v.
Then:

Case (a): If vn = v, stop the construction.
Case (b): Otherwise, consider w = v� vn. Then w is maximal in Evn since v is maximal in E . Pick

c any initial stopping prefix of Evn , and put: z = c ∩ v = c ∩ w. Then, since w is maxi
mal in Evn , Lemma 2.4 implies that z ∈ �c. Define vn+1 = vn ⊕ z. Then (vj)0�j�n+1 is a
germ decomposition of vn+1. Repeat the procedure.

We claim that this construction eventually enters in case (a). Indeed, each time we are in case (b),
the branching cell c is nonempty; therefore z ∈ �c is nonempty, and therefore the cardinal |vn+1|
satisfies |vn+1|�|vn| + 1. Since v is finite, and since vn ⊆ v for all n�0, case (b) can only be reached
finitely many times. When case (a) is reached, say at step n, (vj)0�j�n is a germ decomposition
of v.
For the general case, let v be some R-stopped configuration with (vn)0�n<N a valid decomposition

of v, N�∞. We apply the above construction to each finite configuration vn+1 � vn, stopped in Evn .
We get a finite germ decomposition (vn,j)0�j�Nn for each n < N . The concatenation of these germ
decomposition yields a germ decomposition of v. �
The following lemma is illustrated in Fig. A.1.

Lemma A.5 (First exchange lemma). Let v0 be a finite R-stopped configuration of E , let 9 be a germ
of Ev0 , and let : be a germ of E . Assume that : and v0 ⊕ 9 are compatible and set:

v =
[def ]

v0 ∪ :, v′ =
[def ]

(v0 ⊕ 9) ∪ :, 9′ =
[def ]

v′ \ v . (A.1)

Then 9′ is stopped in Ev.

Proof. Let c be the (unique) initial stopping prefix of E such that : ∈ �c. We distinguish two
cases.
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Fig. A.1. Illustrating Lemma A.5. The first diagram shows v0 ⊕ 9, with two possible positions for 9. The other diagrams
show the possible situations for :, corresponding to “ first case,” “second case (a),” and “second case (b)” of the proof,
which yield 9′ = 9, 9′ = ∅, and 9′ = 9 , respectively.

First case : v0 ∩ : /= ∅. Then v0 ∩ c /= ∅. According to Lemma A.1, this implies that v0 ∩ c ∈ �c.
Since v0 ∩ c and : are two maximal compatible configurations of c, they coincide. Hence, by (A.1),
: ⊆ v0, v = v0 and 9′ = 9. So 9′ is a germ of Ev = Ev0 , and thus 9′ is stopped in Ev, as requested.

Second case : v0 ∩ : = ∅. We claim that we have: v0 ∩ c = ∅. Indeed, v0 ∩ c is either empty or
maximal in c according to LemmaA.1. In the latter case, since : is alsomaximal in c, and compatible
with v0, both coincide, which contradicts v0 ∩ : = ∅. Hence, v0 ∩ c = ∅, as claimed.
Applying Lemma A.2 with u = v0, we get that c is an initial stopping prefix of Ev0 . Hence 9 and :

are two compatible germs of Ev0 . Let c′ be the initial stopping prefix of Ev0 such that 9 ∈ �c′ . Since
distinct initial stopping prefixes are disjoint by Theorem 3.2, we either have c = c′ or c ∩ c′ = ∅.

(a) c = c′. Then : and 9 are compatible and maximal in c, so : = 9. Then, from (A.1), 9′ = ∅ is
trivially stopped in Ev.

(b) c ∩ c′ = ∅. This implies that : ∩ c′ = ∅. Hence, by Lemma A.2, c′ is an initial stopping prefix
of (Ev0): = Ev0⊕: = Ev . We also have 9 ∩ : = ∅, whence 9′ = 9 by (A.1). Therefore, 9′ ∈ �c′ ,
and thus 9′ is a germ of Ev. In particular, 9′ is stopped in Ev, what was to be shown. �

Lemma A.6 (Second exchange lemma). Let u, u′ be two finite R-stopped configurations of E . Assume
that u and u′ are compatible. Then (u ∪ u′)� u′ is R-stopped in Eu′ .

Proof. Assume first that u′ is a germ of E . According to Lemma A.4, we can choose a germ decom-
position (un)0�n�N of u. Set u′0 = ∅, and for each integer 1�n�N :

u′n = u′ ∪ un, zn = un � un−1, z′n = u′n � u′n−1 .

Then we have, for all integers 1�n�N :

z′n = (un−1 ∪ u′ ∪ zn) \ (un−1 ∪ u′).

We apply Lemma A.5 with v0 = un−1, 9 = zn and : = u′ to get that z′n is stopped in Eun−1∪u′ = Eu′n−1 .
This defines (u′n)0�n�N as a valid decomposition of u′N = u ∪ u′ in E , such that u′n ⊇ u′ for all n�1.
Therefore, (u′n+1 � u′)0�n�N−1 is a valid decomposition of (u ∪ u′)� u′ in Eu′ . This completes the
proof for the case where u′ is a germ of E .
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For the general case, let (vn)0�n�K be a germ decomposition of u, such a decomposition exists ac-
cording toLemmaA.4. Then, applying the first part of the proof shows that (u ∪ v′1) \ v′1 isR-stopped
in Ev′1 . Since v′2 is a germ of Ev′1 , we apply again the first part of the proof to get that (u ∪ v′2) \ v′2 is
R-stopped in Ev′2 , and so on. After K steps, we obtain that (u ∪ u′) \ u′ is R-stopped in Eu′ . �
Corollary A.7. If (un)n�0 is a nondecreasing sequence of finite R-stopped configurations, then u =⋃

n�0 un is R-stopped.

Proof. It follows from Lemma A.6 that, for each n�1, un � un−1 is finite R-stopped in Eun . The
sequence (un � un−1)n�1 brings thus, after decomposition of each term, a valid decomposition of⋃

n�0 un. �
We still need two more lemmas before we can complete the proof of Lemma 3.9.

Lemma A.8.Let v, v′ be two compatible and finiteR-stopped configurations.Let c ∈ �(v) and c′ ∈ �(v′).
If c ∩ c′ /= ∅, then c = c′.

Proof. Thanks to Lemma A.6, it is enough to show the result for v′ = ∅. Assume that c ∩ c′ /= ∅.
Since c′ is an initial stopping prefix of E , and since v is R-stopped in E , by Lemma A.1, v ∩ c′ is either
empty or maximal in c′. The latter case cannot occur: otherwise, since c ∈ �(v), this would imply
that c ⊆ Ev∩c′ , and then c ∩ c′ = ∅. It follows therefore that v ∩ c′ = ∅. According to Lemma A.2,
this implies that c′ ∈ �(v). Hence c and c′ are two initial stopping prefixes of Ev satisfying c ∩ c′ /= ∅.
Since distinct initial stopping prefixes are disjoint (Theorem 3.2), this implies that c = c′. �
Lemma A.9. Let v be a finite R-stopped configuration of E . Define:

�(v) = {c ∈ �(w), w ∈W ,w ⊆ v}. (A.2)

Then we have, for any germ-decomposition (vn)0�n�N of v :

�(v) =
N⋃

n=0
�(vn). (A.3)

Proof. It follows from the definition (A.2) of� that
⋃

n �(vn) ⊆ �(v). Conversely, let c ∈ �(v), and
let u ⊆ v be a finite R-stopped configuration such that c ∈ �(u). On the one hand, c is an initial
stopping prefix of Eu. On the other hand, it follows from Lemma A.6 that v� u is R-stopped in
Eu. Hence, applying Lemma A.1 in the event structure Eu implies that (v� u) ∩ c is either empty or
maximal in �c. We analyze the two cases:

a) (v� u) ∩ c = ∅.
ApplyingLemmaA.2 in event structureEu shows that c is an initial stoppingprefixof (Eu)v�u =
Ev. Therefore c ∈ �(v) = �(vN ), so that c ∈⋃

n �(vn).
b) (v� u) ∩ c ∈ �c.

Let k be the greatest integer such that vk ∩ c = ∅; k is well defined since v0 ∩ c = ∅. And k < N

since v ∩ c /= ∅. Thus, vk+1 is defined. Let c′ be the initial stopping prefix of Evk such that
vk+1 � vk ∈ �c′ . Then c′ ∩ c /= ∅ by construction. Since u and vk are compatible, it follows
from Lemma A.8 that c = c′. Hence c ∈⋃

n �(vn). �
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Proof of Lemma 3.9. Let v be a R-stopped configuration of E . The existence of a germ decom-
position of v is stated by Lemma A.4. Let (vn)n be such a germ decomposition, and let (cn)n be the
associated sequence of branching cells, so that cn ∈ �(vn) for all n. It follows from Lemma A.8 that
the branching cells (cn)n are pairwise disjoint.
We now show the invariance of the set of branching cells C = {c1, c2, . . .}. We first assume that

v is finite, so that in the decomposition (vn)n, n ranges over the finite set n = 0, . . . ,N for some
integer N . Consider the set of branching cells�(v) defined by (A.2) in Lemma A.9. Then C ⊆ �(v).
Conversely, it follows from Eq. (A.3) that a branching cell c ∈ �(v) satisfies c ∈ C if and only if
c ∩ v /= ∅. Therefore:

C = �(v) \ �(v).

The right member of the latter expression does not depend on the germ decomposition (vn)n. This
completes the proof of the invariance of C if v is finite, and we also get in that case:

�(v) = �(v) \ �(v). (A.4)

It remains only to show that C is invariant for any R-stopped configuration v. For this, we show
the following expression for C:

C =
⋃

w∈W , w⊆v

�(w). (A.5)

Let (cn)n∈I be the sequence of branching cells associated with the germ decomposition (vn)n of v.
We have:

C = {cn, n ∈ I}
=

⋃
n∈I
{cj , 1�j�n}

=
⋃
n∈I

�(vn), by the above result.

This implies the “⊆” inclusion in Eq. (A.5). Conversely, let c ∈ �(w) for some w ∈W such that
w ⊆ v. Then there is an integer n such that w ⊆ vn. According to the above result for finite config-
urations, applied to vn, there is an integer k�n such that c = ck . Thus c ∈ C , which shows the “⊇”
inclusion in Eq. (A.5), and completes the equality. Hence C is independent of the germ decomposi-
tion chosen. We have also shown:

∀v ∈WE , �(v) =
⋃

w∈W , w⊆v

�(w). (A.6)

�
Proof of Theorem 3.11. 1. Given the definition of the covering, this is a simple consequence of

Proposition 2.13.
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2. Choose (un)0�n�N a germ decomposition of u, N <∞, and (vk)0�k�K a germ decomposition of
v in Eu, K�∞. Then the concatenation:

u0, u1, . . . , uN = u, u⊕ v1, u⊕ v2, . . . ,

is a germ decomposition of u⊕ v. This shows that �(u⊕ v) = �(u) ∪�u(v). Since any c ∈ �u(v)

satisfies c ⊆ Eu, we also have �(u) ∩�u(v) = ∅.
3. This is a re-writing of Lemma 3.9 using the notion of covering.
4. Eqs. (11) and (12) have been shown above in the proof of Lemma 3.9, in Eqs. (A.4) and (A.6),

respectively.
5. The fact that v� u is R-stopped in Eu, whenever u and v are two R-stopped configurations with

u ⊆ v, is a direct consequence of Lemma A.6 and its Corollary A.7.
We now show that Fw is a lattice. Let u, v ∈ Fw, we prove that u ∩ v ∈ Fw . We only have to show

that u ∩ v is R-stopped. Thanks to Corollary A.7, we assume without loss of generality that u and
v are finite. Let (un)0�n�N , N <∞, be a germ decomposition of u, with (cn)0<nleqN the associated
branching cells. Put :n = v ∩ un for n = 0, . . . ,N . According to Lemma A.1, v ∩ c1 is either empty or
maximal in c1. Therefore v ∩ c1 = v ∩ u1 = :1, and thus :1 is stopped, and in particular R-stopped.
Moreover v� :1 is R-stopped in E:1 . For the same reasons, :2 is R-stopped in E , and v� :2 is R-
stopped in E:2 . Continuing N times, we find that :N = u ∩ v is R-stopped in E , what was to be
shown.
Finally, we show that u ∪ v is R-stopped in E . Again, thanks to Corollary A.7, we assume without

loss of generality that u and v are finite. We have just seen that u ∩ v is R-stopped. We know from
Lemma A.6 that (u ∪ v)� (u ∩ v) is R-stopped in Eu∩v. By concatenation, we find that (u ∩ v)⊕(
(u ∪ v)� (u ∩ v)

) = u ∪ v is R-stopped in E , which completes the proof. �

Appendix B. Proofs of main theorems for probabilistic event structures

B.1. Extension of probabilities

Proof of Lemma 4.4. First, themapping$ is well-defined. Indeed, letω ∈ �, and letωB =
def

�B(ω)

for each B ∈ B. Then, for B ⊆ B′, we have �B = �B,B′ ◦ �B′ , and therefore ωB = �B,B′(ωB′). Hence
(ωB)B∈B ∈ X , and $ : �→ X is well defined.

$ is 1–1: Indeed, since E is locally finite, we have the reconstruction formula:

∀ω ∈ �, ω =
⋃
B∈B

ωB.

Let us show that$ is onto. For this, let : = (:B)B∈B be an element of X . Let v =⋃
B∈B :B. Then v is

a prefix of E . Assume, if possible, that v contains two events e and e′ in conflict. Then there are two
finite stopping prefixes B and B′ such that e ∈ :B and e′ ∈ :B′ . Let B′′ = B ∪ B′. Then :B′′ contains
:B and :B′ , and therefore :B′′ is a configuration containing both events in conflict e and e′, a con-
tradiction. This shows that v is conflict-free, and thus a configuration of E . Now pick any maximal
configuration ω that contains v. Then ω ∩ B ⊇ :B for each B ∈ B, and since :B is maximal in B, this
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implies that ω ∩ B = :B. Hence$(ω) = :, and this shows that$ is a bijection. By construction, the
formula �B = 3B ◦$ holds.
Furthermore, routine verifications show that$ is both continuous and open when X is equipped

with the projective topology and � is equipped with the restricted Scott topology. Hence $ is a
homeomorphism. �

B.2. Construction and compositional properties of the distributed product

We consider a locally randomized event structure (E , (qc)c∈C). Before we proceed with the proofs
of Lemma 5.2 and Theorem 5.3, we need to extend the range of definition of the function p , origi-
nally defined by (18) onWE . Say that a sub-event structure F ⊆ E is well-formed if the collection CF

of branching cells of F satisfies: CF ⊆ CE . For any well-formed event structure F , denoting by �F

the covering map in F , we define the real-valued function pF :WF → R by:

∀v ∈WF , pF (v) =
∏

c∈�F (v)

qc(v ∩ c). (B.1)

The function pF is well defined for the same reasons making p well defined. If F is finite and well-
formed, we define�F on�F by�F (ωF ) = pF (ωF ) for ωF ∈ �F . From Proposition 3.8, we have that
every B ∈ B is well-formed. Moreover, since�B = � onWB, we have pB = p onWB. In particular,
if B is finite, the new definition of �B coincides with the original definition.

Lemma B.1. Let B be any stopping prefix of E given as a union of disjoint initial stopping prefixes:
B = c1 ∪ . . . ∪ cn, ci ∈ �(∅). Then �B is a probability on �B.

Proof. We have the identification given in Proposition 3.4: �B =∏n
i=1�ci . Hence we recognize

in formula (B.1) for �B the product probability: �B = qc1 ⊗ . . .⊗ qcn . In particular, �B is a proba-
bility. �
Lemma B.2. For every finite and well-formed sub-event structure F ⊆ E ,�F is a probability on�F .

Proof. Since �F : �F → R is a nonnegative function, we only have to show:
∑
u∈�F

�F (u) = 1 . (B.2)

For each finite and well-formed event structure F , we set

NF = max
v∈�F

(
Card(�F (v)

)
<∞,

and we proceed by induction on NF . Eq. (B.2) is trivial for NF = 0 (i.e., if F = ∅), assume that it
holds for all F finite and well-formed with NF �n, and let F be a finite and well-formed sub-event
structure of E with NF �n+ 1. Set B the max-initial stopping prefix of F (Definition 3.13), and let
�B : �F → �B be the mapping defined in Lemma 2.4. Since �B is onto �B, �F decomposes as the
following (disjoint) union of sets:

�F =
⋃
v∈�B

{v⊕ w, w ∈ �F v} , (B.3)
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where�F v denotes the set of maximal configurations of the future F v. For v ∈ �B and w ∈ �F v , we
have the decomposition from point 2 in Theorem 3.11:

�F (v⊕ w) = �F (v) ∪�F v(w), �F (v) ∩�F v(w) = ∅. (B.4)

We have �F (v) = �B(v) from point 1 of Theorem 3.11. Moreover, the future F v is well-formed
thanks to Proposition 3.8. Hence the decomposition (B.4) brings, with formula (B.1):

pF (v⊕ w) = pB(v)pF v(w) = �B(v)�F v(w) . (B.5)

The decomposition of �F in (B.3) is a union of disjoint sets. This, together with (B.5), brings:
∑
u∈�F

�F (u) =
∑
v∈�B

∑
w∈�F v

pF (v⊕ w) =
∑
v∈�B

�B(v)
( ∑
w∈�F v

�F v(w)
)
. (B.6)

We claim that NF v�n for each v ∈ �B. Indeed, without loss of generality we can assume that NF �1,
and therefore Card

(
�B(v)

)
�1 since B /= ∅. We get thus from (B.4), for each w ∈ �F v :

Card
(
�F v(w)

)
�Card

(
�F (v⊕ w)

)− 1�NF − 1�n,

as we claimed. Therefore, the induction hypothesis implies:
∑

w∈�F v

�F (w) = 1. (B.7)

From Lemma B.1., we also have:
∑
v∈�B

�B(v) = 1. (B.8)

From (B.6), (B.7) and (B.8) together, we get (B.2), what was to be shown. �
Proof of Lemma 5.2. Let B,B′ ∈ B with B ⊆ B′. We have to show that �B = �B,B′�B′ , or equiv-

alently:

∀v ∈ �B, �B(v) =
∑

u∈�B′ , u⊇v

�B′(u) . (B.9)

Fix v ∈ �B. For each u ∈ �B′ with u ⊇ v, we set w = u� v, and w ranges over�Bv . And we still have
the multiplicative formula (B.5):

�B′(u) = �B(v)�B′v(w). (B.10)

Summing (B.10) over u brings:
∑

u∈�B′ , u⊇v

�B′(u) = �B(v)
∑

w∈�B′v
�B′v(w). (B.11)
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It follows from Lemma B.2. that the sum in the right member of (B.11) equals 1. This gives (B.9).
�
Proof of Theorem 5.3. If � exists, then the likelihood of � is determined on finite R-stopped

configurations, and thus on finite stopped configurations. In other words, �B� is determined for
each B ∈ B. According to Theorem 4.5, this implies the uniqueness of �.
Now we show that � has the required property. Let q be the likelihood of �. By construction, p

and q coincide on finite stopped configurations. It remains to show that q and p also coincide on
finite R-stopped configurations. For this, let v be finite and R-stopped in E . Since E is locally finite,
there is a finite stopping prefix B such that v ⊆ B. We have then, as in (16):

q(v) = �B�
(SB(v)

)
,

where SB(v) denotes the shadow of v in �B. Hence:

q(v) =
∑

u∈�B, u⊇v

�B�(u) =
∑

u∈�B, u⊇v

p(u) =
∑

u∈�B, u⊇v

pB(u).

Reasoning as in the proof of Lemma 5.2, we get by factorization:

∑
u∈�B, u⊇v

pB(u) = pB(v) = p(v).

Therefore q(v) = p(v), and this completes the proof. �
Proof of Proposition 5.7. Let � be the distributed product of (E , (qc)c∈C), with likelihood p . We

fix u ∈W , and we assume that p(u) > 0. Let �u be the probabilistic future defined according to
Lemma 5.6, with pu the associated likelihood. For any v ∈Wu, the followingmultiplicative formula
holds true, and is shown in the same way than (B.5):

p(u⊕ v) =
∏

c∈�(u)

qc(u ∩ c) ·
∏

c∈�u(v)

qc(v ∩ c) = p(u)
∏

c∈�u(v)

qc(v ∩ c) .

Therefore, from the formula (21) for the likelihood pu, we get:

∀v ∈Wu, pu(v) =
∏

c∈�u(v)

qc(v ∩ c) . (B.12)

We recognize in the right member of (B.12) the formula analogous to (18), that defines the likelihood
of the distributed product of (Eu, (qc)c∈Cu). It follows from the uniqueness stated in Theorem 5.3
that �u is the distributed product of (Eu, (qc)c∈Cu), which completes the proof. �
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B.3. Characterization of distributed probabilities

Before we proceed with the proof of Lemma 5.11, we need to introduce some material. Fix c a
branching cell of E . For each ω ∈ Hc, consider the following set of compatible R-stopped configu-
rations:

F c(ω) = {v ∈W : v ⊆ ω, c ∈ �(v)}.
We claim that F c(ω) is stable under finite intersections. Indeed, let v, v′ ∈ F c(ω). It follows from
point 5 of Theorem 3.11 that v ∩ v′ ∈W . Clearly, v ∩ v′ ⊆ ω, and finally c ∈ �(v ∩ v′) is a conse-
quence of point 3 in Theorem 3.11. Hence v ∩ v′ ∈ F c(ω), and this shows that F c(ω) is stable under
finite intersections, as we claimed. Since F c(ω) consists of finite configurations, it follows that F c(ω)

has a unique minimal element. We denote it by:

Rc(ω) = min
(
F c(ω)

)
.

It is a consequence of Theorem 3.11 that Rc satisfies the two following properties:

(1) For all pairs ω,ω′ ∈ �, we have:

ω ∈ Hc, ω′ ⊇ Rc(ω) �⇒ ω′ ∈ Hc, Rc(ω′) = Rc(ω).

(2) For any stopping prefix B of E such that c ⊆ B, denote by Hc
B, F

c
B and Rc

B the objects Hc, F c

and Rc defined in event structure B. Then Rc = Rc
B ◦ �B.

Fix B a finite stopping prefix such that c ⊆ B—such a B exists since c is finite by Proposition 3.7,
and since E is locally finite. Then Rc

B has obviously finitely many values, say {v1, . . . , vn}. It follows
from Point 2 above that Rc takes the same values than Rc

B. We have thus the following decomposi-
tion ofHc into a disjoint unionHc =⋃n

i=1 Hc ∩ {ω ∈ � : Rc(ω) = vi}. From Point 1 above, we get
that each of these subsets is actually a shadow, as follows:

∀i = 1, . . . , n, Hc ∩ {ω ∈ � : Rc(ω) = vi} = S(vi) .

Therefore, Hc decomposes through a disjoint union of shadows:

Hc =
n⋃

i=1
S(vi). (B.13)

We are now ready for the proofs of Lemma 5.9 and 5.11.

Proof of Lemma 5.9. Since Hc has the form (B.13) of a finite union of shadows, it is clear that
Hc is measurable. It follows from point 3 of Theorem 3.11 that Y c(ω) = ω ∩ c is maximal in c for
every ω ∈ Hc. Therefore Y c is defined as a mapping Y c : Hc → �c. To show that Y c is a random
variable, fix z ∈ �c. Clearly, the set {ω ∈ � : ω ⊇ z} is measurable. Therefore, the set:

{ω ∈ Hc : Y c(ω) = z} = Hc ∩ {ω ∈ � : ω ⊇ z}
is measurable. This shows that Y c is a random variable. �
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Proof of Lemma 5.11. Let c be a branching cell of E , and let rc be the branching probability
induced by the distributed product � of (E , (qc)c∈C). We have seen that Rc has finitely many values
{v1, . . . , vn}, leading to the decomposition (B.13) ofHc. As a consequence, we get this decomposition
through a disjoint union:

{ω ∈ Hc : Y c(ω) = z} =
n⋃

i=1
S(vi ⊕ z).

Therefore, with p the likelihood of �:

�
(
ω ∈ Hc, Y c(ω) = z

) =∑n
i=1 �

(S(vi ⊕ z)
) =∑n

i=1 p(vi ⊕ z)

= qc(z)
∑n

i=1 p(vi) = qc(z)�
(Hc

)
.

Since �
(Hc

)
> 0, we get:

rc(z) = 1

�
(Hc

)�
(
ω ∈ Hc, Y c = z

) = qc(z).

This completes the proof. �
Proof of Theorem 5.13. We have seen that every distributed product is distributed in the sense

of Definition 5.12. Conversely, let � be a distributed probability. For each finite stopping prefix B of
E , let�B denote the image probability�B = �B� on�B, where �B : �→ �B is the mapping defined
in Lemma 2.4. We have already seen that � and �B have the same likelihood on VB, we denote it
by p . A simple computation shows that for each c ∈ CB, � and �B induce the same local transition
probabilityrc, from which follows that �B is distributed. Consider ωB ∈ �B, and let (vn)n�0 be the
max-initial decomposition of ωB given by Theorem 3.14. Let n�0. Using the random variable ZB,vn
defined by (25) in B, we apply the chain rule to get:

p(vn+1) = p(vn)�B

(
ZB,vn(ωB) = vn+1 � vn |S(vn)

)
.

Since �B is distributed, the law of ZB,vn is the product
⊗

c∈�(vn) rc. Hence:

p(vn+1) = p(vn)
∏

c∈�(vn)
rc(ωB ∩ c) = by induction

∏
c∈�(vn+1)

rc(ωB ∩ c). (B.14)

Since (vn)n is eventually constant equals to ωB according to Theorem 3.14, letting n grow to∞ in
(B.14) brings:

p(ωB) =
∏

c∈�(ωB)

rc(ωB ∩ c). (B.15)

Now let�be the distributed product of the locally randomized event structure (E , (rc)c∈C). Eq. (B.15)
shows that � and � have the same likelihoods on finite stopped configurations. The uniqueness in
Theorem 4.5 implies that � = �. This shows that � is indeed a distributed product.
We finally show the uniqueness of the decomposition of � as a distributed product. Indeed, if �

is the distributed product of a family of local transition probabilities(sc)c∈C , then it follows from
Lemma 5.11 that sc is the local transition probability induced by� in c (note the use of the positivity
assumption). This completes the proof. �
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