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T R U E  M A N Y - P A R T I C L E  S C A T T E R I N G  IN T H E  O S C I L L A T O R  

R E P R E S E N T A T I O N  

S. A.  Z a i t s e v ,  1 Yu.  F. Sra i rnov ,  2 a n d  A.  M.  S h i r o k o v  3 

Scattering theory in the oscillator representation is generalized to true many-particle scattering. 

1. In troduc t ion  

In fond memory  of N. A. Sveshnikov 

We suggest an approach to many-particle scattering theory in the oscillator representation (OR) and 

treat the simplest case, in which the wave function in the asymptot ic  domain has the form of a spherical wave 

in a multidimensional space. This corresponds to the so-called true many-particle scattering (TMS) [1, 2], 

i.e., to inclusion of only those states for which "democracy" is observed in the system and no single pair or 

group of particles is selected in the sense of forming bound states or scattering on an energy surface. 

Constructing a TMS wave function is part  of the problem of finding a wave function for a many-body 

system [1]. However, investigating the TMS approximation is independently worthwhile from the physical 

s tandpoint  because this approximation can adequately describe many processes in the disintegration of light 

nuclei into several fragments (see [3, 4]). Moreover, it ceases to be an approximation and becomes, in fact, an 

exact theory for the "democratic decay" processes [4], i.e., three-particle decay processes A -~ A1 + A2 + Aa 

in which no binary subsystem (AiAj) has a bound state, four-particle decay processes A --+ A1 + A2 + A3 + A4 

in which no binary subsystem (AiAj) or trinary subsystem (AiAjAk) has a bound state, etc. Democratic 

decay processes have recently become very important  because radioactive beams have begun to be used to 

systematically investigate exotic short-lived neutron-excessive nuclei, many of which can only decay over 

"democratic channels" (e.g., nL i  --4 9Li + n + n, 6He --+ 4He + n + n, 14Be --+ 12Be + n + n, and the like) 

under low excitation energies that  are of great interest at the present. The excited states of such nuclei 

have recently been theoretically investigated precisely in the framework of the TMS method (e.g., [5-10]). 

Some other currently central problems (e.g., resonances in two- and three-neutron systems [11]) are also 

studied in the TMS approximation.  

Furthermore, as is shown below, the TMS approximation can also be used to find the S-matrix for 

a many-particle system, and calculation of its poles not only can uniquely determine the parameters of 

resonance states but  also can refine the bonding energy of the system. This refinement proves essential for 

weakly developed systems [8, 10]. The TMS approximation in this approach can probably be very exact 

for studying the ground state and other bound states of a many-particle system. 

It is natural  to use the K-harmonics  method,  related to expanding the system wave function with 

respect to the hyperspherical basis, to calculate TMS characteristics (see [2-4] and references therein). We 

suggest that  the expansion of the wave function with respect to the eigenfunctions of a (3A - 3)-dimensional 

harmonic oscillator (A is the number of particles in the system) in the hyperspherical coordinates p and ~ be 
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used to solve the equations in the K-harmonics method (including the domain of the continuous spectrum). 

As a result, we study the SchrSdinger equation in the hyperspherical OR: the problem reduces to analyzing 

an infinite system of linear algebraic equations instead of solving a system of coupled 2ifferential equation 

of the K-harmonics method. The OR method [12-16] is very efficient in scattering theory and the theory 

of reactions with binary channels [17-21]. Our approach is a natural generalization of this method to the 

TMS case. 

We published some of the results in this paper in [22], and they were used in [23, 8, 10] for concrete 

calculations of nuclear systems. The calculation results show that the suggested approach is very effective; 

its efficiency can be further improved using the analytic results in the present paper that were not published 

earlier. 

2. The Schr5dinger equation in the hyperspherical  OR 

Assuming that the center-of-mass motion has already been separated off, we write the wave function 

of an A-particle system characterized by the total energy E and other quantum numbers denoted by the 

multi-index/3 as the expansion 

[E/3) = E (ngT[Ei3)lnKT), (1) 
nK~[ 

where the basis functions [nK'r) are the eigenfunctions of a (3A - 3)-dimensional harmonic oscillator with 

the frequency hw in the hyperspherical coordinates, 

[nKT) = O,,K(P)gJK.y(s (2) 

Here, K is the hypermomentum, and 7 is the set of the other quantum numbers characterizing the func- 

tions ~g~(~) ,  which are the hyperspherical harmonics Yg.~(f~) of the angular variables gt for a system of 

spinless particles. If the spin and isospin degrees of freedom of the particles are taken into account, then 

the ~g~(gt) are products of hyperspherical harmonics and spin-isospin functions (antisymmetrized or sym- 

metrized combinations of these products if the system involves identical fermions or bosons respectively); 

in this case, 7 includes the spin-isospin quantum numbers as well. The variable p in (2) is the hyperradius, 

p = ( r / -  R) 2, 

where ri is the coordinate of an individual particle, R is the center-of-mass coordinate, and n is the principal 

quantum number characterizing the radial function 

OnK =-- ' ~  (p) = p-(3A-t)/2r 

~ ( p )  = ( _ l ) n  / 2An! ~ L~+�89 
r F(n + E + 3/2) (AP)c+te- (A2p2)" 

V 

(3) 

(4) 

Here, 

3A - 6 
f _ . = K + - -  

2 ' 

L,~(x) m the associated Laguerre polynomial [24], and A -1 = ~ plays the part of the "oscillator 

radius" and is a free parameter whose value is chosen to ensure a sufficiently fast convergence of the 

computational scheme. Basis (2) is orthonormalized, 

(nKTJn'K'7') = 5,~n, Srr,, (5) 
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i.e., 

(the symbol F in (5) denotes the set of the quantum numbers K and "7). 

For a two-particle system (A = 2), the theory presented below becomes the ordinary two-particle 

scattering theory. Two-particle scattering is a particular TMS case in which K = Z: = L, where L is 

the orbital angular momentum, the hyperspherical functions YK.~(fl) become the ordinary spherical func- 

tions YLm(tg, ~p), and (3) and (4) become the radial functions of a three-dimensional spherically symmetrical 

oscillator. The indices P play the same formal role as those distinguishing between the channels in the two- 

particle scattering theory. However, we are only interested in the situation in which the threshold energy F 

is the same for all the "channels." In the two-particle case, this corresponds to considering the general 

theory of scattering on a noncentral potential that mixes states with different momenta L or at least with 

different spin projections a. The theory can be easily extended to the general case that includes different 

physical channels corresponding to different types of excitation of the internal degrees of freedom of the 

particles in question and characterized by different threshold energies. Such a generalization can also be 

interesting for systems with A _> 3. 

The Schr6dinger equation becomes 

~_, (nK'7[H - EIn 'K'  "7') (nK''7'lEfl > = 0 (6) 

n'K'~l' 

in the hyperspherical OR, where H = T + V. The kinetic-energy matrix T is diagonal with respect to the 

indices F and F' and tridiagonal with respect to n and n', 

~/ 3 
(nKTmT[n'K'7 ' )= ~22 6 r r , [ -  ( n + l ) ( n + E + ~ ) a ~ + l . n , +  

,I (7) 

In contrast to the kinetic-energy matrix, the potential-energy matrix, which we write as the sum of pairwise 

interaction potentials 

V = ~-~ V(ri  - rj), 
i<j 

is not diagonal with respect to P and [" (except for the case A = 2 with central forces). 

One of the advantages of the oscillator basis in the TMS problem is that it admits an easy transition 

from one set of Jacobi coordinates to another (substantially facilitating the calculation of the potential- 

energy matrix elements [2, 19, 25]). System (6) consists of infinitely many linear algebraic equations for 

the coefficients (nK'71Efl) - (nF[Efl) in expansion (1). However, the situation is simplified because for 

sufficiently large n, the elements of the potential-energy matrix (nF[V[n'[") are small compared with those 

of the kinetic-energy matrix (nF]TIn'F') (as is seen from (7), the latter grow linearly with increasing n 

for n >> 1). Therefore, we can discard the matrix elements of the potential energy V for large values of n 

and retain those of the kinetic energy for n >> 1, i.e., set 

( n r l H I n ' r ' )  = (nr lTIn ' r ' )  if n > n r  or n' > nr, .  (8) 

The specific values of nr chosen for each partial wave F must be so large that the calculation results do not 

substantially change under their increase. 
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In approximation (8), system of equations (6) splits into two parts that correspond to an "interior" 

domain with sufficiently small values of n < n r  and an "exterior" domain with n > nr ,  where only the 

kinetic-energy matrix elements are taken into account and the interaction between particles is neglected. 

Because the kinetic energy is diagonal with respect to the indices F and F I, the equations for the coeffi- 

cients (nFJEj3) corresponding to different partial waves F are separated in the exterior domaii; and can be 

solved independently. The coefficients (nFIE/3} satisfy the three-term recurrence relation (TRR) 

r +1)  n + L : +  ( n - I ,  FIE/3 ) -  2 n + L : + ~ - q 2  (nFJEZ)+ 

= 0  (9) 

in this domain, where q = g /A = x/2E/(hw). Relation (9) should be regarded as a second-order difference 

equation, which has two linearly independent solutions in general. The solution to Eq. (9) can be chosen 

uniquely by imposing the corresponding asymptotic conditions in each partial wave F = K, 7. The matrix 

elements of the Hamiltonian are diagonal with respect to the indices F and F ~ in the thoroughly studied 

case of ordinary potential scattering (A = 2) with central interaction [12-16] (in this case, K coincides with 

the conserved angular momentum L), and the solution can be constructed independently in each partial 

wave. However, in the more general TMS case (A :> 3), the matrix elements of the Hamiltonian H are no 

longer diagonal with respect to F and F ~. Therefore, the solutions for different partial waves F = K, 7 in the 

interior domain are coupled. As a result, the TMS problem becomes similar to the coupled-channel problem. 

We note that in the case of a structureless fragment, the TMS problem is only formally a coupled-channel 

problem because every "channel" under consideration, being associated with the same physical process, 

corresponds to the same physical channel. Nevertheless, we speak of a partial wave F = K, 7 as a channel P 

and introduce various quantities used in multichannel scattering theory, e.g., the S-matrix relating to the 

solutions in different channels, and so on. Different physical channels can also be taken into account using 

our approach. 

3.  S o l u t i o n  o f  t h e  S c h r S d i n g e r  e q u a t i o n  i n  t h e  a s y m p t o t i c  d o m a i n  

3.1. Qualitative analysis of solutions of  d i f f e rence  e q u a t i o n  (9). In the exterior domain 

(i.e., for n > nr) ,  the expansion coefficients (nFJE~3) in (1) satisfy second-order difference equation (9) 

in each channel F. Because the interaction between particles is neglected in this domain, i.e., (9) is the 

free Schr6dinger equation in the hyperspherical OR, exact solutions can be found for it. However, before 

deriving them in explicit form, we discuss the qualitative character of the expected solutions. For this, we 

approximate difference equation (9) with a second-order differential equation. The method for approximat- 

ing second-order difference equations by differential equations was developed in [26, 27], where we obtained 

all the necessary relations, investigated their accuracy and field of applicabihty, etc. For the justification of 

the approach applied below, see those papers. We are only interested in a qualitative analysis of solutions of 

Eq. (9) in this section; we therefore use the simplest version of the approximation of difference equation (9) 

by differential equations without taking the effect of the additional potential (see [27]) into account and 

only include terms of a comparatively low order of smallness. When necessary, the relations obtained below 

can be easily refined by the methods in [27]. 

We introduce the expression 

z = 2  

which is regarded as a continuous variable. The function X(z) = zt/2(nI'lE~) is used instead of the 

expansion coefficients in (1). Expanding the left-hand side of Eq. (9) as a series in powers of 1/z and 
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retaining only the terms up to and including the second order with respect to 1/z, we obtain the differential 

equation 
,, + 1) 

+ q2 X = 0, (10) 
X z2 

which approximates TRR (9) sufficieni~iy accurately for z >> 1. 

The solutions of one-dimensional Schr5dinger equation (10) with a centrifugal potential corresponding 

to the "momentum" s (we recall that the "monmntum" E is integer for an even number of particles 

A and half-integer for an odd A) can be expressed via linear combinations of the Bessel and Neumann 

functions Jc+l/2(qz) and Ns which we define in accordance with [28]. As a result, we find that 

the expansion coefficients in (1) have the asymptotic behavior for n >> 1 

(riFlE/3) ) ~vf~Jt:+�89 (qz) +/3v'~zNf~+�89 (qz) 
n --..r o o  n --+ o o  

n__+oo) ~/~ [a sin (qz ? ) - / 3 c o s ( q z - - ~ - ) ] ,  (11) 

where a and/3 are constants not depending on n. The numerical values of a and/3 are determined by the 

behavior of (nF[E/3) at small values of n, for which asymptotic equation (9) can no longer be used and the 

potential energy of particle interaction should be taken into account (see Sec. 4). 

The quasi-classical considerations in [14] show that for large values of n, the oscillator basis functions 

behave like the delta function at the classical turning point Pturn ----- z/A (for more details, see Appendix A) 

and lead to the conclusion (see expression (A.2)) that 

(12) 

where ~ ( p )  is the wave function of the system in the coordinate representation. It follows that in the 

coordinate representation, the functions (nF[E/3) with asymptotic behavior (11) correspond to the radial 

functions with the asymptotic expression 

n - - +  OO ~ - - ~  OO 

n 

(13) 

where G is a normalization constant and x = qA is the wave number. Thus, ~ = tan-l(/3/a) represents 

the TMS phase in the given partial wave F. If one of the coefficients a or /3 is imaginary, then (13) 

corresponds to converging or diverging waves in the partial wave F. As can be seen from (11)-(13), in order 

to obtain the solution of TRR (9) leading to the asymptotic expression x/%--fi JL+l/2(>cp) for the coordinate 

wave function, we should require that 

(riFlE/3> Js189 (qz); 

in order to obtain the solution with the coordinate asymptotic expression x/-~Nt:+l/2(>cp), we should 

require that 

(nF[E/3) '~~176 > v/~ Nn+�89 (qz). 

We now derive explicit solutions of TRR (9) with this asymptotic behavior (and also solutions of the type 

,r(1,2) , , where HO'2)(z) are the Hankel functions [24, 28]). of converging and diverging waves v/-~-fine+l/2(qz), 

1295 



3.2. F u n d a m e n t a l  s y s t e m s  of  so lu t ions  for t h e  free S c h r h d i n g e r  e q u a t i o n  in t h e  hype r -  
~s 

spher ica l  OR.  We consider the functions SL,(q), C,C(q), and C n (q) given by the expressions 

SO(q) = AF(n+E+3/2)qC_+%-~L +~(q2), 

2q fo ~176 S~ dq', 
C ~ ( q )  - ~Sg(q-----~ ~ q~ - q,~ 

foOO s t s t ~c(+) 2q S O (q )S,, (q ) 
G'n (q) - rrSoC(q) q2 _ q,~ + ie dq', 

fo S~ (q )SLn (q ) 
('~ (q) -- 7rSoC(q) q2 _ q,2 _ ie dq'. 

(14) 

(15) 

(16) 

(17) 

The additional term +ie in (16) and (17) indicates the direction in which the contours going around the 

poles are described; T' means that the integral must be calculated in the sense of the principal value. We 

show that S~(q), C~,(q), and C~ r (q) are solutions to difference equation (9). 

That SL,(q) satisfies (9) follows directly from the recurrence relation for the Laguerre polynomials [24]. 

Using this, we substitute (15)-(17) directly in (9) to ensure that C~(q), C~ (+) (q), and C~ (-' (q) also satisfy 

Eq. (9) for n > 0 or, more precisely, the inhomogeneous second-order difference equation 

( n + l )  n + s  An_ ~ -  2 n + s  2 a , +  n + s  A n + l =  ArrSoC(q) Jno, (18) 

where n _> 0 and A~ denotes C~(q), C~ ̀ +) (q), or C~ (-, (q). 

Using the Sochozki formula 

1 - T i ~ ( x )  + p l -  
x + i 6  x '  

we find the relationship between solutions (15)-(17), 

(19) 

C•s (q) =C~(q):hiS~(q) ,  (20) 

i .e . ,  

(c.  + cL"(q) = -i 

Any two of solutions (14)-(17) to Eq. (9) are linearly independent and form a fundamental system of 

solutions. To show this, it suffices to calculate the so-called Casorati determinant [29] playing the part of 

the Wronskian in the theory of difference equations and show that  it is not identically zero for any n. The 

Casorati determinant of two solutions u ,  and v, of a second-order difference equation is defined by the 
relation 

C,(u, v) = un+lvn - UnVn+l. (22) 

To calculate C.(C z:, SO), the Christoffel-Darboux sum for the Laguerre polynomials [24], 

(n + 1)! [L~(x)L,~+l(y ) _ L,~+l(x)L,~(y)] 
r (~  + ~ + 1)(x - v) E F(m + a + 1) Lm(x)Lm(Y)' (23) 

rn,~0 

and the orthogonality property of S~(q) expressed by the relation 

/0 ~ s s 
S,~ (q)Sn,(q) dq = A-15n,v (24) 
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should be used. This results in 

2q (25) 
c~(c~ 's~)  : ~ v / ( n  + 2)(n + L + 3 / 2 )  

Using (20), we can now easily calculate the Casorati determinant for the other pairs of solutions as well, 

namely, 

i (CL(+I,CL(-I) c~(c~ '~ ' ,s  ~) = T ic~(c~ '~ ' ,c  ~) = ~c .  = c . ( c ~ , s ~ ) .  (26) 

Solutions (14)-(17) are treated in detail in Appendix B: various properties are considered, their ex- 

pressions in terms of special functions are found, the asymptotic behavior as n --4 oo is studied, the analytic 

continuation is investigated, and problems in numerically calculating S~(q), C~ (q), and C~ (• (q) (which is 

important for applications) are discussed. We now proceed to the asymptotic representations corresponding 

to (14)-(17) in the coordinate space. 

3.2.1. The solution S~(q). Difference equation (9), for which S~(q) is a solution, plays the part of 

the free Schrbdinger equation in the OR for the partial wave with hypermomentum K. The free radial 

Schrbdinger equation has the form 

[ d 2 s 1 6 3  + 1) ] 
- -  XK'y kP) = 0 (27) p2 + p2 x2 _ free[_~ 

in the coordinate representation. The regular (normalized to the delta function of x) solution of Eq. (27) 
. free / -~ is ) ( .g . , l [p  } : v~gE+l/2(xp) .  The oscillator functions in the momentum representation S~(q) are the 

expansion coefficients for - free[_~ XK',I  [P} with respect to radial oscillator function (4), i.e., 

s ~ ( q )  ~ ( p )  = fr~ -- . (28) XK.y(P) = V/-x-PJs189 --+ sin xp  
p-..+ oo 

n.-~O 

To prove (28), it suffices to calculate the integral 

/? S~(q) = v/-~-pJs189 (~P)~o~(p) dp, (29) 

which can be easily done using formulas in standard reference books (e.g., [30, 31]) and verifying that the 

resulting expressions coincide with (14). 

3.2.2. The solutions C~(q) and C~ (+) (q). The functions C~(q) and C~ (~)(q) satisfy inhomogeneous 

second-order difference equation (18). It is easy to show that the inhomogeneous Schrbdinger equation 

[ d 2 s 1 6 3  -{- 1) ] 2~ 
- ~ + p~ >~ xK~(p) - ,~So~(q) ~o(p) (30) 

in the coordinate representation corresponds to (18). We use Green's functions to solve Eq. (30). Because 
the functions free X K ' y  ( f l )  defined by (28) form a complete system of solutions for free Schrbdinger equation (27) 

and are normalized to the delta function of x, the Green's functions can be written as 

~o c~ t v/-~ Js189 (tp) Js189 (tp') 
G(+) (P' P') = - -~ ---~-:t:-~ dt. 

Computing the integral in (31) with standard formulas (see [30, 31]), we find 

iN .,(1) "X 
O(+)(p,p ') = -~- v/P-PTJs189 z1s189 P>], 

a(F)(p,p,)_ iF v / -~ jc+~( .p<) . . c+~(~o>)  ' 
2 

(31) 

(32) 

(33) 
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where p> (p<) is the greatest (smallest) of the parameters p and p'. 

We consider the partial solutions of Eq. (30) 

X~(P)-- 2~ fo~176 
.~o~(q) 

(34) 

Using (29), (32), and (33), we can easily calculate the asymptotic expressions for (34) 

X(K+)~(p) ~ ix/'-~-fiH(t:l: (~p) ~ V~fe'(• -) 
p.-.-~ o o  �89 p-..~ o o  ' 

(-) ~ - i 4 - ~  H(Z)+�89 (~p) o_,oo 

(35) 

(36) 

We now find the coefficients B(~)(q) for X~:(P) in the expansion 

Oo 

X(+)(P) = E B(+)(q)~~ (37) K3, �9 
n = 0  

For this, the integral 

/5 B(+)(q) (+) = XKv(p) v~(p)dp (38) 

should be calculated. Substituting (34) in (38) and taking (31) and (29) into account, we obtain expressions 

for B(+)(q) that exactly coincide with (16) and (17). 

Hence, the physical meaning of C~ r (q) is that the series 

E ~ s 1 7 7  
c ~  (q)~.L(o) 

n 

converges to functions with an asymptotic representation of the type of converging or diverging waves 
for p -~ o0, i.e., 

Ct'(~:' s > e :k'(~p ~ ) (39) 
" (q)~"(P)p-+oo v ~  

n = 0  

Using the Green's function 

we can similarly show that 

(40) 

X~ , cos ~ p -  . (41) n=oC~(qlcP~(P) p__,oo 

3.2.3. Bound states and resonances. Up to now, we have investigated solutions in the exterior domain 

for states with positive energies E. In the case of bound states E < 0, we should study Eq. (9) in the 

exterior domain with q2 < 0, i.e., q should be assumed to be purely imaginary. To investigate resonance 

states of an A-particle system, the solutions of the SchrSdinger equation must be sought for complex values 
of energy E and momentum q. 

We consider the analytic continuation of wave functions obtained in the suggested formalism to the 

complex plane with respect to the argument q. The asymptotic expressions in the coordinate space for 
wave functions as p --+ cx~ are determined by series of the form 

n n 

1298 



Studying the analytic continuation of wave functions to the complex plane with respect to the argument q 
.....,s / \ 

reduces to studying that of the functions S~(q), C~(q), and tJ n (q), which is done in Appendix B. It 

follows from the results in Appendix B that for bound states with q = ilq], only the series 

Z C r / + )  . ( iM) ~o~ (p) 

contains no exponentially growing terms for p ~ 0o. Precisely the solutions C~(+)(i]ql) shou}d be "sewn" 

to the solutions in the interior domain for bound states of the system. (See (B.13) for an explicit formula 

for their calculation.) For resonance states, it is most natural to write asymptotic expressions for the wave 

function as a linear combination of the series 

~ g ( + )  

Z ("~ (q) s and Z C~(-)(q) ~o~(p), 

which results in asymptotic representations of the type of diverging and converging spherical waves for 
~ s  

p -~ co. Hence, in this case, the solutions in the interior domain should be "sewn" to the solutions U n (q) 
~ g ( - )  

and (-;n (q) in the exterior domain. 

4.  C o n s t r u c t i n g  t h e  c o m p l e t e  T M S  w a v e  f u n c t i o n  

4.1. " S e w i n g "  c o n d i t i o n s  for so lu t ions  in t h e  i n t e r io r  a n d  e x t e r i o r  doma ins .  We have 

constructed the fundamental system of solutions in the exterior domain, i.e. for n > hr .  We should now 

consider the relationship between these solutions and those in the interior domain. For this, we generalize 

the results in [12, 32] to the TMS case where the solutions in the interior and exterior domains for the 

multichannel case are "sewn" together. 

The SchrSdinger equation in the hyperspherical OR reduces to system of linear algebraic equations (6). 

Taking (7) and (8) into account, we can write those equations in this system for which n <_ nr  in the form 

<nr[H - Etn'r '>(u ' r ' iEr  = - ( n r r I T I n r  + 1, r>(nr + 1, 

F',n<_n r, 

(42) 

We assume that system of homogeneous equations (42) has already been solved, i.e., the eigenvalues E~ 

and the eigenvectors (nrFIA) of the truncated matrix of the Hamiltonian (nF]H[n'F'), n <_ nr, n' <_ mr,, 
have been found. The coefficients (nFIE/3) for the interior domain can then be easily expressed using the 

set of the coefficients (nr  + 1, F[E/~), namely, 

where 

( rlE ) =  - JnrlPlnr, + 1,r')(nr, + 1, r'lEfi), 

F' 

(43) 

<nqPlnr, + 1,r') = (nrl 31, r,r'>(nr, r'lTInr, + 1,r '>.  (44) 

It is convenient to calculate the matrix elements (n r l~[n 'F ' )  (n _< nr ,  n' __ nr,)  of ~3 = (H - E) -1 in the 

truncated oscillator space using the expressions 

<nqA><AIn'r'> (45) 
( rl ln'r') . 

A 

Formulas (43)-(45) permit the wave function in the interior domain (for n <_ nr )  to be calculated if the 

solution in the exterior domain is known. On the other hand, the coefficient (nrF[Efl) is related to all the 

coefficients (nF[Efl) in the exterior domain (for n > nr)  by (9) and can consequently be similarly expressed 

via the fundamental system of solutions for Eq. (9). Therefore, setting n = n r  in (43), we obtain a system 

of equations for solutions in the exterior domain. In Secs. 4.2 and 4.3, we more thoroughly investigate the 

procedure for constructing the wave functions separately in the discrete and the continuous spectra. 
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4.2. D i sc r e t e  s p e c t r u m .  The wave function for discrete-spectrum states must decay exponentially 

as p --+ oo. Therefore, the expansion coefficients (riFlE3) in (1) are proportional to C~ (+) (ilql) for each 

channel in the exterior domain (see (B.13)). Letting - [ S t r r / v ~  denote the proportio,al i ty factor in the 

channel F, we obtain 

1 [S]rrCf(+)(i[q[) (46) 

for n _> nr.  Substituting (46) in (43), where we set n --- n r  and assume for simplicity that x = ]q[A is the 

same in all the channels, results in 

s . 

[ S ] r r C ~  (z[q[)= } - - : J n r r l P l n r  ' + 1, r ' ) [S] r ' r  'r~c'`+' ~ . r , + l  (ilq[) �9 
F ~ 

(47) 

Relations (47) form a system of linear algebraic equations for the coefficients [S]rr. The solvability condition 

for this system has the form 

det A = 0, (48) 

where the matrix elements of A are given by 

. ~s 
[A]rr, = (nvF[P{nr, + 1,r ')C~l+)t(ztq{)-6rr '(-, '~,r (ilq[). (49) 

Condition (48) should be regarded as an equation for determining the energy levels of the system (not only 

the expressions C~(+)(i[ql) but also the matrix elements (nrFIPInr, + 1, F') depend on the energy; see (44) 

and (45)). The set of discrete-spectrum energy levels found by solving Eq. (48) refines the values of E~ 

obtained for the bound states by diagonalizing the truncated matrix of the Hamiltonian. 

Solving system of equations (47) for each energy level in the discrete spectrum, we find the coeffi- 

cients [S]rr and then use (46) and (43) to calculate the wave function. Because the set of the coeffi- 

cients [S]rr can only be determined to within a common factor, the wave function should be normalized. 

4.3. C o n t i n u o u s  s p e c t r u m .  We construct the solution for the continuous spectrum in the exterior 

domain in the form of a superposition of diverging and converging waves (i.e., solutions to (16) and (17) 

respectively). Let a converging wave be present only in the channel F ~, and let all the other channels contain 

diverging waves. Then we have 

( r i f lE3)  - 2v"-~ ~rr, C'~ (q) - (q) [S]rr, (50) 

for n _> nr,  where the meaning of [S]rr, is similar to that of the elements of the S-matrix. The equation 

for determining the S-matrix is derived in the same way as (47) to obtain 

A s S = B ~, 

where the matrices A s and B s have the elements 

(51) 

We thus find 

/2(+) --s 
[A' ] r , r  = (nr, r ' l P l n r  + 1, r)C.~r+l(q) - ~rr, G'-r (q), 

s  _ s  
[W]r , r  = (nr,  r ' l P l n r  + 1 , r ) c . r + , ( q )  - ~rr, c ' .  r (q). 

(52) 

(53) 

S=(AS)-IB 8. 

Here, as in (47), we have assumed that the momenta x are the same in all the channels. 

the S-matrix for a given energy E using (54)~ we use solutions (16) and (17) to construct the wave function 

with the required asymptotic behavior first in the exterior domain with (50) and then in the interior domain 

(54) 

Calculating 
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with (43). In this case, we recall that solutions (16) and (17) correspond to the normalization of the wave 

function to the delta function of the momentum a = qA. 

From the standpoint of .-.umerical calculations, it is more efficient to first determine the so-called K- 

matrix instead of directly calculating the S-matrix (which involves complex matrices (52) and (53)) using 

formula (54). The K-matrix is real; it corresponds to representing the solution for the channel F in the 

form 
1 eiSr (Srr, C~(q) - S~(q) [K]rr,) (55) 

instead of (50), where the TMS phase br is given by the expression e 2~r = [S]rr. Introducing the matrices 

[ A g ] r ,  r = (nr, r ' lPInr + 1, r)S.Lr+,(q) - 5rr, SL.r(q), (56) 
L s 

[Bg]r ,  r = (nr, F'lPinr + 1, F>C~,r+l(q)- 5rr, C2~(q), (57) 

we obtain 

K = (AK) -1 B g.  (58) 

We now use the relation 

S = (I + i K ) ( i K -  I) -1 (59) 

to calculate the S-matrix, where I is the identity matrix. We can separate the real and imaginary parts 

in (59), 

ReS = I -  2(I + K2) -1, (60) 

ImS  = - 2 K ( I  + K2) -1 (61) 

We note that (54) implies that  the poles of the S-matrix in the complex plane can be found by solving 

the equations 

det A s = 0, (62) 

where A" is determined by (52). In this situation, Eq. (48) defining the energy of the bound states of the 

system is obviously a special case of (62) for the S-matrix poles on the imaginary axis. 

It is possible to construct the wave function in the suggested TMS approximation approach and include 

a great many components with different values of the hypermomentum K. However, because of the high 

centrifugal barrier 

including channels with large values of K in the exterior domain is probably insignificant for limited system 

energies E. Therefore, as a simple "minimal" approximation, we can take only one channel with K = Kmin 

in the exterior domain into account (in this connection, see, for instance, [23], where monopole excitations of 

a 12C nucleus were investigated with regard to its decomposition into three alpha particles). The minimal 

approximation includes coupling between the open channel with K = g m i  n and the artificially closed 

channels with K > Kmin  if components with K > g r o i n  a r e  included in the expansion of the wave function 

in the interior domain. The calculation of many parameters is simplified in this case. In particular, the 

expansion coefficient (nFIEj3) in (1) for the exterior domain can be found using the expression 

(nFIEZ> = [cos 60 S~ ~ (q) + sin 60 C~ ~ (q)] bgKm,., (63) 

where 

/~0 ---- K m i n  ~- - -  

3A - 6 

1301 



and (f0 is the TMS phase in the channel corresponding to K = g r o i n .  In this case, the "sewing" conditions 

yield the following relation for calculating the phase 50: 

s o(q) 
- S~,+l(q)  Po (64) 

tanS0--  C~O(q)_Cf_~l(q)p o, 

where v -- nro, Po = (uFo[P[v + 1,F0), and F0 --- { K m i n , ' ) ' } .  

Instead of one channel in the exterior domain, two or more channels corresponding to minimal values 

of the hypermomentum K can be taken into account. In this case, a much greater number of components 

corresponding to different values of K can be left in the exterior domain. Physically, this means that only 

significant components of the wave function are included and those with large K,  which are suppressed 

at large distances by the centrifugal barrier, are discarded; this does not, however, spoil the description 

of the wave function at small distances, where the account for components with large K is important for 

describing short-range correlations. This flexibility makes it possible to elaborate highly efficient and exact 

approaches for describing many-particle systems. 

5. Conclus ion 

We have presented all the expressions required for constructing the wave function of a many-particle 

system for the discrete or the continuous spectrum in the TMS approximation. An important advantage 

of the suggested approach is that the most laborious part---constructing and diagonalizing the truncated 

matrix of the Hamiltonian--must be performed only once, after which the wave functions can be calculated 

for any given energy. The energy dependence of the S-matrix, the wave functions, and the other observables 

is only determined by the energy difference E - Ex in the denominator in Eq. (45) and by the dependence 

of the free solutions in the OR on the energy, i.e., of the functions S~(q), C~(q), and C~ (+, (q), which 

have analytic expressions. This makes it possible to perform detailed calculations in a broad energy range 

with small energy steps, to use the extension to the complex energy plane to calculate the poles of the 

many-particle S-matrix, etc. 

Undoubtedly, an advantage of the formalism for applications in nuclear physics is the representation 

of the wave function as a superposition of oscillator functions, which permits the resulting solution to be 

clearly interpreted in terms of the shell model. 
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A p p e n d i x  A: Delta  funct ion  as the  l imit of  the  oscil lator funct ion  

for large values of  the  principal q u a n t u m  n u m b e r  

The assertion that the oscillator function ~a~(p) behaves like the Dirac delta function for large values 

of the principal quantum number seems to first appear in [14]. However, so far as we know, no explicit 

expression for the delta function as the limit of ~a~(p) for n --4 oc has been published. Because this 

expression is very useful for analyzing asymptotic representations of wave functions in the OR, we present 
it here. 

For the Schr6dinger equation of a harmonic oscillator, the eigenstate with the characteristic en- 

ergy E ,  = hw(2n + E + 3/2) has the classical turning point 

i 3 3 2 2 

Pturn : - -  2n + E -t- § 2n + L + - L(/: + 1) 

11( ~ ~ 2 2 n + s  . (A.1) 

1 3 0 2  



Formula (A.1) is accurate to second-order terms with respect to 1/n. The function ~ ( p )  oscillates suffi- 

ciently fast for n >> 1 on the interval 0 < p < Pturn- Hence. the integration interval 0 < p < Pturn does not 

contribute to an integral of the type 

I f(p) ~(p)dp 

with sufficiently slowly varying functions f(p). At the same time, the integration interval p > Pturn does 

not contribute to the integral either, because the function T~(p) rapidly decreases with the damping fac- 

tor e -~2p2/2 in (4). Therefore, only a sufficiently small neighbourhood of the turning point contributes to 

the integral, i.e., 

/ f ( p l ~ ( p ) d p ~  f(Pturn), 

or, in other words, ~ ( p )  = g S ( p -  Pturn) for n >> 1, where the factor g generally depends on n. 

To calculate the factor g, we use (29) with the free OR wave function S~(q) in the left-hand side 

replaced by its asymptotic expression (B.18). This results in 

( 2 
~ ( P )  .~oo>A-�89 n + ~ +  5 P - X  n + ~ - + ~  . (A.2) 

Appendix B: Properties of the functions S~(q), C~(q), 
and C~ (+) (q) 

s177 
B.1. Exp re s s ions  for t h e  func t ions  C~(q) and C n (q) in t e r m s  of  spec ia l  func t ions .  We 

find the expression for the solutions C~ (• (q) via the known special functions. For this, we modify the 

integral in (16) somewhat by introducing the notation s = q,2 and a = s + 1/2 and using the Rodrigues 

formula for the Laguerre polynomials [33], 

L~(x) = -~e*x -~ dn 
�9 

(B.I) 

Then, n-fold integration by parts leads to 

1 
__L(+) 1 / 2n! ) / 2  q 2 (+) 

- e2 q - s  (q) 
C~ ( q ) =  r A F ( E + n + 3 / 2  

(B.2) 

where 

~a (+) ~0 ~176 e - S 8  ~+n 
~s,~ (q) = (s - (q2 + ie)),,+l ds. (B.3) 

To calculate the integral in (B.3) for q2 > 0, we define the variable z = _(q2 + iE) with the condition that 

arg z = r = -Tr + 8, /3 --+ +0 (i.e., r > - r ) .  After the change of variable t = s/z in (B.3), we obtain 

= f0 ~176 1)-n-1 ~(+) (q) z ~ e-tZt'~+'~(t + dt, (B.4) 

where ~ = - r  < r .  We compare (B.4) with the integral representation 

�9 (a,c;x) 1 --./~e'* t) c-a-1 
- -  e -zt ta-l(1 + dt, 

r (a)  

R e a > 0 ,  - ~ < ~ < T r ,  - ~ < ~ + a r g x < ~ ,  

(B.5) 
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for the Tricomi confluent hypergeometric function kO(a, c; x) [34], where the principal branches of the func- 

tions t a-1 and (1 +t )  c-a-1 are taken. As a result, we clearly see that the integral ~c+~ (q) can be expressed 

in terms of the principal value of the Tricomi function ~(a, c; x) on the lower edge of the cut along the 

negative real axis, i.e., at the point z = e-i~q 2, where a = n + s + 3/2 and c = s + 3/2. A similar argument 

can also be used for C~ ~-~ (q). Thus, the final expression for C~ ~• (q) becomes 

zcv~ n!r n + s + e4qr+'e:~i"(c+�89 n + s + 2' -~; e~:'~q 2 . (B.6) 

The function C~(q) can be expressed via the Laguerre function of the second kind Q'~(z)/33, 351: 

1 2n! qs e-~  Qnc+�89 ( B . 7 )  

C~(q)= ; A r ( n + s  

Z Formula (B.7) follows from comparing (15) with the integral representation for Q , (  ) [33, 35] 

1 fo ~ tOe-tL~(t) dt. (B.8) 
Q (z) - t - z 

Furthermore, (21) and (B.6) can be applied to express C~(q) as the sum of the Tricomi functions ~(n + 

s + 3/2, s + 3/2; _q2) on the upper and lower edges of the cut along the negative real axis. 

All the above expressions can be used for a system of arbitrarily many particles. We note that s is 

an integer if the number of particles A is even, and the parameters of the Tricomi functions (n + / :  + 3/2) 

and (s + 3/2) are accordingly half-integer. In this situation, the expressions for the solutions C~(q) 

and C~(• can be simplified because in this case, the function kO(a, c ; - x )  can be expressed via the 

confluent hypergeometric functions 1Fl(c-  a, c; x) and 1F1(1 - a, 2 - c; x) (e.g., see [34D; moreover, 1Fl(c - 
a, c; x) can be written in terms of the associated Laguerre polynomials because c - a -- - n .  As a result, 
the desired expressions become 

C ~ ( q ) =  A r ( E + n + _ 3 )  -- e - ~ q - s 1 6 3  ~ , _ s  
2 71" 

(B.9) 

1 

+ iqs189 (q2)]. (B.10) 

Formula (B.9) for ordinary two-particle scattering (A = 2) was derived in [15]. 

B.2. Ana ly t i c  c o n t i n u a t i o n  of t h e  func t ions  C~(q)  a n d  C'~ '+ ' (q)  to  t h e  c o m p l e x  p lane  

wi th  r e spec t  to  t he  a r g u m e n t  q. The analytic continuation of the OR oscillator function S~(q) (which 

can be expressed in terms of the Laguerre polynomial) to the complex plane with respect to the argument q 

is trivial (see (14)). Therefore, we only discuss the analytic continuation of C~ c~+) (q) and COn(q). 
We note that to derive (B.6) for positive real values of q2, we used the change of variable _(q2 + ie) --+ 

e:~i~(q 2 4- ie), which made it possible to express C~ ~+) (q) via the principal branch of the Tricomi function 

~(a,c;x).  Formula (B.6) can be regarded as the definition of C~ '+'(q) (C~'-' (q)) in the upper (lower) 

complex half-plane for the momenta q, where 0 < argq < lr (-Tr < argq _< 0). The function C~+~(q) 

(C~ ~-~ (q)) can be analytically continued to the lower (upper) half-plane q using the formulas for the analytic 

continuation of the function ~(a, c; x) (e.g., see [34]). The resulting expressions are 

C~ '+, (q) = C~ (-, (q) + 2iSCn(q) (B.11) 
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and 
cO. '-'  (q) = cO. '+' (q) - 2 i S ~ ( q ) .  (B.12) 

In view of (21), defining the functions C~ cc• (q) in the entire complex plane q with analytic continuation 

formulas (B.11) and (B.12), we thus define C~(q) throughout this plane. 

Analytic continuation formulas (B.11) and (B.12) are of practical interest for calculating the S-matrix 

poles. In the resonance case, we are first interested in the functions C~ C*~(q) in the lower complex half- 

plane q; for bound states, the function C~ r (q) of the purely imaginary argument q = ilq] is most interesting. 

Because this is a very important case, we present the integral representation of C~ r (ilq]) in the explicit 

form involving no singularities 

C,(+, (i,q,)= 2 ~ 2n' 2 foco t~+2e-t2LLn+�89 ) 
7 Ar(n + Z; + ~) Iql%-q~- iq12 + t2 dt. (B.13) 

B.3.  A s y m p t o t i c  fo rmulas  for t h e  func t ions  S~(q), C~(q), a n d  C ~  (+' (q) as n ~ o0. We find 

the asymptotic expression for C~ c+) (q) (see (16) and (17)) at large values of the index n (and bounded q). 

For this, we use the asymptotic representation of the Tricomi function ~ (a , c ;x )  in [36], which can be 

written in the following form with an obvious renaming of the variables: 

(1 ) =2 22-bu b-1 
lb b;z  2 > e-rz 1-b gb-l(uz), (B.14) 

+ 2 ' r + 

where b and z 2 are assumed to be bounded and K,(x) is the modified Hankel function. Passing to the 

functions HO)(x) and H(2)(x), we obtain the asymptotic expression for C~ '• (q), 

C n  ( + )  (q) 

Cns  - }  (q) 

1 1 

,-.co> ~-A n + ~ +  exp i 2 n + ~ - +  q -  

~ - * O O  . * - b O O  

1 

(B.15) 

(B.16) 

Thus, resulting expressions (B.6) for the solutions C~ (+~ (q) of TRR (9)) have an asymptotic representation 

in the form of diverging and converging waves in the OR. 

The asymptotic expression for C~(q) can be easily found from (21) and asymptotic formulas (B.15) 

and (B.16), namely, 

C~(q) > - NL: +} 2 n + ~ - +  q ) 
n " ' ~  OO n - - + O O  

l _L 

, -*co>  n + ~ +  cos 2 n + ~ +  . (B.17) 

Finally, the asymptotic representation for S~(q) can be readily found from (20) and asymptotic rela- 

tions (B.15)-(B.17) or directly from asymptotic expansions for the Laguerre polynomials (e.g., see [24]), 

1 

q . (B.19) 

Sg(q) ) ~ 2 n +  /2 
? 2 - ' + O O  

I 

n - ~  ~-A n + - ~ +  sin 2 n + ~ +  

1 3 0 5  



B.4.  F i n d i n g  t h e  n u m e r i c a l  va lues  o f  S ~ ( q ) ,  C ~ ( q ) ,  a n d  C ~  (+' (q).  The most  efficient method 

for computing the numerical values of solutions (14)-(17) for arbitrary n is the direct application of recur- 

rence relations (9) (for S~(q)) and (18) (for (15)-(17)). In this case, the recursion can be performed both 

from top to bo t tom (from large values to small of n) and from bot tom to top (from small to large n). In 

the first case, we can choose some m >> 1 and calculate a pair of seed values ALto(q) and A~+l(q) (A~(q) is 

understood as one of the functions Sf(q) ,  C~(q), and C~ (• (q)) that  are needed for start ing calculations 

according to recurrence relation (9) or (18) with the help of asymptot ic  expressions (B.15)-(B.18). Real- 

ization of this algorithm is very simple but can, in some conditions, lead to numerical instability for small 

values of n. 

The bot tom-to- top recursion is more stable. To determine the initial values of the functions in this 

algorithm, the relations 

L~_l(x) = O, L'~(x) = 1 (B.19) 

should be used. This results in S_El(q) = C~l(q) = C_L(1 +) (q) = 0. The value of So~(q) is obtained directly 

from (14) using (B.19); to find CoL(q) and Co L(~) (q), the integrals entering (15)-(17)should first be calculated 

taking (B.19) into account. We note that  integral (15) for n = 0 can be easily expressed via the exponential 

integral for odd A and via the error function for even A (the corresponding expressions for A = 2 are 

presented in [15]). 

Solution (B.13) for bound states and also the functions Cf(• for complex values of q can be 

calculated similarly. 

Instead of the numerical calculation of integrals to find seed values Co ~(+) (q) and CoL(q), it is possible to 

use analytic expressions (B.6) and (B.7) or (B.9) and (B.10) for these functions via the Tricomi function or 

the confluent hypergeometric functions and also various relations for these special functions. In particular, 

it is possible to use continued fractious, which provide one of the most stable and exact methods for 

calculating various hypergeometric functions [37]. However, in applying different relations for the Tricomi 

functions, caution is required when dealing with an odd number  of particles A (a half-integer s in this 

situation, the functions 

_ _ o  n + s  2, e~"~q 2 

relate to the so-called special logarithmic case, and they should be calculated using only expressions that  

are valid for the case. 
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