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Second-generation sequencing platforms have revolutionized the field of ancient DNA, opening access to complete ge-

nomes of past individuals and extinct species. However, these platforms are dependent on library construction and

amplification steps that may result in sequences that do not reflect the original DNA template composition. This is

particularly true for ancient DNA, where templates have undergone extensive damage post-mortem. Here, we report the

results of the first ‘‘true single molecule sequencing’’ of ancient DNA. We generated 115.9 Mb and 76.9 Mb of DNA

sequences from a permafrost-preserved Pleistocene horse bone using the Helicos HeliScope and Illumina GAIIx platforms,

respectively. We find that the percentage of endogenous DNA sequences derived from the horse is higher among the

Helicos data than Illumina data. This result indicates that the molecular biology tools used to generate sequencing libraries

of ancient DNA molecules, as required for second-generation sequencing, introduce biases into the data that reduce the

efficiency of the sequencing process and limit our ability to fully explore the molecular complexity of ancient DNA

extracts. We demonstrate that simple modifications to the standard Helicos DNA template preparation protocol further

increase the proportion of horse DNA for this sample by threefold. Comparison of Helicos-specific biases and sequence

errors in modern DNA with those in ancient DNA also reveals extensive cytosine deamination damage at the 39 ends of

ancient templates, indicating the presence of 39-sequence overhangs. Our results suggest that paleogenomes could be

sequenced in an unprecedented manner by combining current second- and third-generation sequencing approaches.

[Supplemental material is available for this article.]

Ancient DNA (aDNA) research began in the mid-eighties, when

short mitochondrial DNA (mtDNA) fragments were successfully

cloned and sequenced from museum specimens of the quagga

(Equus quagga)—an equid that became extinct in South Africa at

the end of the 19th century. The findings demonstrated that trace

nucleic acids survive at least over the time frame of human history

(Higuchi et al. 1984). The advent of the polymerase chain reaction

(PCR) (Saiki et al. 1985), which allowed the retrieval of even single

surviving molecules (Paabo et al. 1989), together with the finding

of aDNA molecules preserved in both soft tissues and calcified

material such as bones and teeth (Hagelberg et al. 1989), further

advanced the field. Over the past two decades, aDNA has been

shown to survive for at least a half-million years under frozen

conditions (Willerslev et al. 2004; Johnson et al. 2007) and has

been applied successfully to a range of biological questions, in-

cluding reconstructing past animal population dynamics (e.g.,

Shapiro et al. 2004; de Bruyn et al. 2009; Campos et al. 2010, Stiller

et al. 2010), paleoecosystems (e.g., Kuch et al. 2002;Willerslev et al.

2003, 2007), and prehistoric human migrations (e.g., Gilbert et al.

2008; Bramanti et al. 2009; Malmstrom et al. 2009; Haak et al.

2010), to infer past phenotypic traits and evolutionary relation-

ships (e.g., Rohland et al. 2007, 2010), and even to re-examine the

extinction date of megafaunal species (Haile et al. 2009).

The survival of aDNA in organic material is limited ultimately

by processes of chemical damage that take place post-mortem.

These commonly include hydrolytic and oxidative processes that

fragment theDNAmolecules into short pieces oftennot longer than

50–150 bp and change the biochemical structure of both the nu-

cleotide bases and sugar-phosphate backbone (Paabo 1989; Hoss

et al. 1996). As a result, damage-free modern DNA molecules can

easily outcompete homologous ancient fragments during PCR,

making aDNA studies highly prone to contamination (Paabo et al.

2004; Gilbert et al. 2005;Willerslev andCooper 2005). Additionally,

nucleotides are misincorporated by DNA polymerases while am-

plifying damaged templates, particularly at sites where cytosine has

been deaminated to uracil, as the latter is the chemical analog of

thymine, resulting in artefactual G/C to A/T mutations (so-called

type II damage) (Paabo et al. 1989; Hoss et al. 1996; Hansen et al.

2001; Hofreiter et al. 2001; Gilbert et al. 2003, 2007a; Binladen et al.
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2006; Stiller et al. 2006). Cytosine deamination is therefore a com-

mon feature of all aDNA templates,withmisincorporation rates that

can exceed real biological mutation rates and generate spurious se-

quence results (Ho et al. 2007). In early studies the need for cloning/

sequencing of amplicons to filter out damage (Hofreiter et al. 2001)

coupledwith ‘‘requirements’’ of sequence replication in independent

laboratories (Cooper and Poinar 2000) made the study of large

numbers of samples financially prohibitive.

Since many mtDNA genomes coexist within each cell, any

single mtDNA locus is represented by a much higher number of

templates than are nuclear loci (Poinar et al. 2003). Therefore, the

majority of aDNA research to date has focused on the recovery and

analysis of short mtDNA fragments in order to maximize the

chances of recovery. However, the information gained frommtDNA

can be limited both by its maternal inheritance and its relatively

high mutation rate compared with nuclear DNA.

In the last decade, a series of innovative methods have been

developed in order to improve analysis of aDNA molecules. One of

the first examples was a two-round multiplex PCR approach that

substantially increased the amount of aDNA recovered from ex-

tracts; this approach was used to sequence complete mitogenomes

and nuclear genes from Pleistocene-aged samples, improving phy-

logenetic inference and molecular estimates of species divergence

(Krause et al. 2006) and providing phenotypic information such as

skin color (Rompler et al. 2006). A second examplewas single primer

extension (SPEX), a tool that has provided access to any preserved

fragment at a given locus regardless of its length and, therefore,

considerably improved genotyping accuracy (Brotherton et al.

2007).

However, no single methodological development has had the

enormity of impact as the recent advent of second-generation se-

quencing technologies. These promoted a new era in the field of

aDNA by opening access to complete mtDNA and nuDNA ge-

nomes from past individuals (Rasmussen et al. 2010) and extinct

species (Green et al. 2006, 2008, 2010; Poinar et al. 2006; Gilbert

et al. 2007b, 2008;Miller et al. 2008; Krause et al. 2010a; Reich et al.

2010). Massively parallel sequencing platforms such as 454 Life

Sciences (Roche) GS FLX and Illumina GAIIx outcompete Sanger-

based sequencing by several orders of magnitude (Green et al.

2006; Noonan et al. 2006). These sequencing technologies deliver

millions of sequences per run and make cloning and related gen-

eration of plasmid libraries unnecessary.

Common to all second-generation sequencing approaches,

however, is the need for construction of DNA libraries through

ligation of short adapters, and for these libraries to undergo PCR

amplification prior to sequencing (Shendure and Ji 2008). Library

building is known to introduce substantial levels of nucleotide

misincorporations toward the ends of the reads, most probably as

a result of the presence of single-stranded 59 overhanging ends in

DNA templates, which enhances susceptibility to cytosine de-

amination (Briggs et al. 2007; Brotherton et al. 2007). In addition,

primer extension capture of aDNA libraries has shown a significant

correlation between read depth and nucleotide composition (GC-

rich regions being shorter and over-represented), suggesting that

AT-rich sequences might be preferentially lost during library prep-

aration (Briggs et al. 2009). Furthermore, except for keratinous tis-

sues that provide an environment mostly isolated from micro-

bial contamination (Gilbert et al. 2007b, 2008; Miller et al. 2008;

Willerslev et al. 2009; Rasmussen et al. 2010) and for some notable

exceptions (Poinar et al. 2006; Reich et al. 2010), most aDNA ex-

tracts have shown extremely poor endogenous sequence contents

(at best 1%–5% of all reads generated), making shotgun sequencing

cost ineffective unless DNA capture methods or enzymatic re-

striction of the microbial fraction are implemented (Briggs et al.

2009; Burbano et al. 2010; Green et al. 2010). Such low ratios of

endogenous sequences likely reflect the presence of DNA derived

from microbial communities living within the soil, and thus per-

meating through the fossils; however, as DNA damage and cross-

links could hamper adapter ligation and/or library amplification,

the low fraction of endogenousDNAmay also reflect a bias inflicted

by the preferential PCR amplification of undamaged modern con-

taminant DNA molecules in the steps prior to sequencing.

Unlike second-generation sequencing, the so-called ‘‘true

single-molecule sequencing’’ techniques (tSMS; alternatively

called third-generation sequencing technologies) provide the se-

quence of single, original templatemolecules of DNA, avoiding the

need for library preparation and amplification (Harris et al. 2008).

The HeliScope Sequencer (Helicos BioSciences Corporation) is the

first commercially available third-generation platform and cur-

rently sequences in a 50-channel format that can deliver up to

30,000,000 reads per channel (Metzker 2010; Thompson and

Steinmann 2010). Instead of undergoing the end-repair, ligation,

and amplification process, template material is polyadenylated at

the 39 end and captured on a flow cell coatedwith oligo-dT50. After

capture, the template DNA is sequenced by cyclic extension with

fluorescently labeled nucleotides (Fig. 1; Thompson and Steinmann

2010). This sequencing technology requires far less material than

second-generation technologies and could provide the first mas-

sive, direct, and unbiased access to every single molecule pre-

served in fossils, potentially characterizing the full range of DNA

damage through the analysis of nucleotide misincorporation

and fragmentation patterns (Stiller et al. 2006; Briggs et al. 2007;

Brotherton et al. 2007; Gilbert et al. 2007a; Krause et al. 2010b).

In this study, we explore the potential of tSMS for sequencing

aDNAby contrasting the respective performance of IlluminaGAIIx

and Helicos HeliScope platforms in terms of sequence yield, rela-

tive endogenous sequence content, and DNA damage with the

same aDNA extract. This technique enables us to obtain direct

access to the 39-ends of aDNA templates with no need for prior 39-

exonuclease treatment, revealing a new type of structure in ancient

molecules, namely, the presence of 39-overhanging termini.

Results

Overall sequence yields

We generated 330.3 million sequencing reads in this study, using

seven GAIIx Illumina lanes (173.0 million reads, 7/8 of a full run)

and 12 HeliScope channels (157.3 million reads, ;1/4 of a run)

(Table 1). The majority of the reads did not show any significant

sequence similarity to the horse reference genome, with an average

of only 1.45%–1.54% of the sequences mapping successfully (Table

1). This is characteristic of large-scale shotgun sequencing of other

ancient mammalian bones that have reported ratios ranging from

1% to 5% (Ramirez et al. 2009; Green et al. 2010), with the notable

exception for exceptionally well permafrost-preserved mammoth

bone (>45%) (Poinar et al. 2006; Miller et al. 2008) and one homi-

noid phalanx originating from the Denisova cave in the Altai

mountains, Southern Siberia (;70%) (Reich et al. 2010). A signifi-

cant fraction (17.5%) of the unmapped reads could be identified as

environmental bacteria using MegaBlast. Pseudomonadales,

a gamma-proteobacteria order including many ubiquitous soil spe-

cies, was the main bacterial order with 13.9% of the sequences.

Other bacterial orders with soil representatives could be identified
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(Burkholderiales, 0.8%; Actinomycetales, 0.6%), but most of the

reads did not show any known close representative and were left

unclassified (80.5%). Interestingly, a fraction of sequences showed

significant sequence similarity to human sequences, with 0.2% of

MegaBlast hits assigned as human and 0.4% of the total number of

reads mapping against the genome reference, hg19, suggesting low

human contamination levels from excavation to sequencing. Such

reads with possible human origin were filtered out from further

analyses, even in cases where a higher match against the horse

reference genome (eqCab2) was observed.

One of the most striking findings was that a higher pro-

portion of the data generated using the Helicos tSMS aligned to the

horse genome comparedwith that generated using theGAIIx, with

1.01%–1.12% and 0.67–0.68% of the total number of sequences,

respectively (Table 1). Importantly, these data were generated from

the same extract (TC21c; one-way ANOVAwith repeatedmeasures,

P < 0.0023, excluding data generated at 80°C, which shows even

higher endogenous sequence content; see below). However, one

lane of Illumina reads covered, on average, 11.0 Mb of the horse

genome,whereas only 9.7Mbof coveragewas obtained perHelicos

channel (Tables 1, 2). This is due both to the shorter size of Helicos

reads (Supplemental Fig. 1) and the relative heterogeneity in the

number of reads provided per Helicos channel, but this situation

could be improved using a mild denaturation temperature of 80°C

in the Helicos template preparation procedure (22.1 Mb of unique

horse sequences were recovered per lane at 80°C, in contrast to 5.5

Mb at 95°C; see below).

On average, Helicos and Illumina technologies provided

similar estimates of the number of mitochondria per cell, with, on

average, one mitochondrial read being observed every 4968 and

5254 nuclear reads, respectively, which is in the range of what has

been reported for permafrost-preservedmammoth bones based on

shotgun sequencing (658 in Poinar et al. 2006) or real-time PCR

measurements (245–17,480) (Schwarz et al. 2009). Given the re-

spective sizes of the horse mitochondrial and nuclear genomes

(16,660 bp and 2.37 Gb) and assuming similar size distribution for

nuclear and mitochondrial reads, this indicates that ;54–58 mi-

tochondria per cell (nucleus) are preserved in the bone material

analyzed. The similarity between sequencing approaches suggests

that no bias toward any particular genome type was introduced

during library preparation and amplification required by Illumina

sequencing. This is further supported by the balanced distribution

of reads over the different nuclear chromosomes, with significant

correlation between the number of mapped reads and chromo-

some size (Pearson correlation coefficient >0.935, P < 5.1 3 10�15;

Supplemental Fig. 2).

The higher fraction of endogenous sequences present in Heli-

cos data indicates that the Illumina sequencing recovered propor-

tionally more environmental DNA sequences. This is further re-

flected by MegaBlast results on Helicos reads that show a 2.7-fold

decrease in bacteria hits compared with Illumina reads (10.8% vs.

28.9%), while the fraction of unassigned hits only increases 1.3-

fold (87.3% vs. 69.0%). DNA damage present in aDNA molecules

may interfere with end-repair reactions, ligation, and amplification,

resulting in relatively lower endogenous sequence yieldswhen these

steps are required. Whether this bias is introduced during library

preparation, library amplification, or a combination, remains to be

determined. Of note, the Helicos and Illumina sequence reads show

similar base compositions, with average GC content (44.4% and

44.9%) equally distant to the expected value observed for randomly

sampled genomic fragments of similar size (41.4%) (Fig. 2). Overall,

this suggests that tSMS approaches are able to characterize a larger

fraction of aDNA extracts by accessingmore endogenousmolecules;

however, in contrast to previous reports that have shown under-

representation of AT-rich regions (Hillier et al. 2008; Quail et al.

2008), the procedure followed here for Illumina sequencing has not

introduced substantial bias in read base composition.

Ancient DNA content of different bone fractions

Three independent DNA extracts from the horse bone were se-

quenced on the HeliScope Sequencer. One, TC21c, was generated

from fresh bone powder following complete digestion in an EDTA-

rich decalcifying buffer (see Methods). The other two extracts,

TC21a and TC21b, consisted of re-extraction of undigested pellets

from a previous extraction of some bone powder originating from

the same bone specimen. The latter two are therefore more repre-

sentative of DNA molecules preserved in demineralized and un-

digested bone particles, while the former includes contributions of

the mineralized and collagen-rich fractions.

The three types of extracts delivered substantial amounts of

horse sequence data, confirming that some, but not all aDNA

molecules were released in the first extraction round, confirming

previous reports (e.g., see Schwarz et al. 2009). Of note, extracts

Figure 1. Helicos tSMS: an overview (adapted from Hart et al. 2010
and reprinted with permission from Elsevier Ltd. � 2010). Ancient DNA
molecules are denatured into single strands (step 1), tailed with poly(A)
(step 2), and captured by oligo-dT-50 oligonucleotide probes covalently
linked onto the surface of 25-channels flow-cell (step 3). A fill-in reaction is
elicited with dTTP in order to fill any remaining nucleotide complementary
to the poly(A) tail (step 4). Nucleic acid templates are then locked in place
by the addition of dCTP, dGTP, and dATP virtual terminator (VT, here
labeled B) nucleotides that inhibit extension prior to terminator cleavage
(step 5). Sequencing-by-synthesis is initiated through the addition of
one of the four one-color Cy-5 labeled VT nucleotide (step 6). The in-
corporation of fluorescence to the elongated DNA strand is measured
using laser illumination and a CCD camera after unincorporated nucleo-
tides have been rinsed. The fluorescent label is further cleaved and the
incorporation of another labeled VT nucleotide is challenged. Standard
sequencing runs complete 120 cycles of nucleotide additions. Ancient
DNA, which is extremely fragmented, does not require further shearing
before poly(A) tailing.

Single-molecule sequencing of ancient DNA
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TC21a and TC21b also show relatively longer read length with

median sizes superior to TC21c regardless of the template prepa-

ration protocol used for Helicos sequencing (denaturation at 80°C

or 95°C) (Fig. 3, left). The size distribution of Helicos reads does not

correspond to the size distribution of aDNA templates as most se-

quencing-by-synthesis reactions do not reach the end of the

molecules. However, it is likely that many of the sequence reads

are full length, as standard read length observed on fresh DNA is

longer than observed with aDNA. This observation is compatible

with the presence of longer molecules in extracts coming from

undigested bone particles (TC21a and TC21b). This is further

confirmed by the purine content of Helicos reads (e.g., the class of

reads showing a %GA > 60.0%), which decreases as a function of

sequence length. This suggests that for a fraction of the reads

(Supplemental Fig. 3), the sequencing-by-synthesis reaction stops

at depurinated sites, in agreement with models of DNA fragmen-

tation through depurination (Briggs et al. 2007). Longer DNA

templates appear to have been conserved in the demineralized and

undigested pellets after the first round of extraction, confirming

previous hypotheses that the enrichment in short fragments re-

sulting frombone demineralization could be due to size filtration of

DNA templates through the collagen matrix, releasing preferen-

tially short molecules in decalcifying buffers (Schwarz et al. 2009).

Importantly, the three types of extracts differed in endoge-

nous sequence contents. Compared with TC21c, the re-extracts,

TC21a andTC21b, were enriched in horse sequences relative to the

overall number of reads (3.3-fold to 6.6-fold) (Table 1). Whether

this observation is specific to the specimen analyzed or charac-

teristic of ancient mineralized tissues in general needs further in-

vestigation. However, this effect was replicated in an additional

extraction and re-extraction experiment performed on different

pieces of the same horse bone as well as on another permafrost-

preserved horse fossil bone (data not shown). These results suggest

that the first extraction round may preferentially wash out exog-

enous environmental DNA, while leaving substantial amounts of

endogenous DNA molecules entrapped in the undigested pellets.

These pellets will therefore represent relatively contamination-free

niches for DNA preservation, similar to the crystal aggregate hy-

pothesis of Salamon et al. (2005).

Improving endogenous sequence yields

Post-mortem chemical alterations result in extensive fragmenta-

tion and modification of DNA molecules (Paabo 1989). The stan-

dard Helicos sequencing protocol is initiated with a DNA de-

naturation step at 95°C in order to generate single-stranded DNA

for terminal transferase tailing. As ancient DNA fragments are

short, damaged, and exhibit substantial levels of overhanging ends

Table 1. Illumina versus Helicos tSMS: Overall sequence yields

Number of reads mapping against

Extract Number Tdenat. Read Number eqCab2 Numbern bp mtDNA Numberm bp Ratio1 Ratio2

Helicos TC21c 5 95°C 61,172,917 600,350 541,666 16,850,349 252 97 3,160 0.98% 0.89%
TC21c 1 80°C 5,774,970 149,194 136,211 4,135,738 185 30 960 2.59% 2.36%
TC21a 2 95°C 46,308,973 885,140 831,525 26,254,941 239 166 5,304 1.91% 1.80%
TC21a 1 80°C 27,828,706 1,829,663 1,724,734 56,104,698 363 357 11,636 6.58% 6.20%
TC21b 1 95°C 1,147,364 40,060 36,515 1,120,596 92 11 356 3.50% 3.18%
TC21b 1 80°C 2,350,963 212,551 198,127 6,142,937 53 32 991 9.04% 8.43%
TC21b+TC21c 1 95°C 12,715,093 185,848 172,663 5,290,061 52 40 1,328 1.46% 1.36%
TC21c 6 - 66,947,887 749,544 677,877 20,986,087 437 127 4,120 1.12% 1.01%
TC21a 3 - 74,137,679 2,714,803 2,556,259 82,359,639 602 523 16,940 3.66% 3.45%
TC21b 2 - 3,498,327 252,611 234,642 7,263,533 145 43 1,347 7.23% 6.71%
Total 80°C 3 80°C 35,954,639 2,191,408 2,059,072 66,383,373 601 419 13,587 6.10% 5.73%
Total 95°C 9 95°C 121,344,347 1,711,398 1,582,369 49,515,947 635 314 10,148 1.41% 1.30%
Total 12 - 157,298,986 3,902,806 3,641,441 115,899,320 1,236 733 23,735 2.48% 2.32%

Illumina TC21c 7 - 172,991,377 1,174,879 1,161,087 76,952,509 306 221 14,656 0.68% 0.67%
Total all 19 - 330,290,363 5,077,685 4,802,528 192,851,829 1,542 954 38,391 1.54% 1.45%

Read Number refers to the total number of reads analyzed after filtering (see Methods). The total number of reads mapping against eqCab2 (filtered for
the mitochondrial genome and chromosome Un) and the horse and donkey mitogenomes (removing duplets) are reported. The number from these that
map at a unique position and that do not align to the human reference genome (numbern and numberm for the nuclear and mitochondrial genomes,
respectively), as well as the total sequence length (bp), are indicated. The proportion of endogenous reads is estimated either from the total number of
reads that map against the horse reference genome (eqCab2) and equine mitogenomes (mtDNA) (Ratio1) or the number of reads that map uniquely
against the same genomes, and which show no similarity to the human genome (Ratio2). (N) total number of channels (Helicos)/lanes (Illumina).

Table 2. Contrasting lllumina and Helicos performance and costs
for sequencing bone DNA extracts from the Pleistocene

Illumina Helicos

Library building Yes No
tSMS No Yes
Access to 39 overhangs No Yes
Running timea 5 d 8 d
Template preparation costsb 290$ 5$
Sequencing costsa,b 650$ 360$
Number raw readsa,c 24.7 M 13.1 M
Number horse readsa,c 165.9 K 303.5 K
Number horse genome coveragea,d 11.0 Mb 9.7 Mb
Max number raw readsa,d 25.9 M 27.8 M
Max number horse readsa,d 176.5 K 1725.1 K
Max number horse genome coveragea,d 11.7 Mb 56.1 Mb
Mapping sensitivity to DNA damagee Marginal Significant

For Illumina, the overall performance of sequencing and related costs are
reported assuming single end sequencing with 76 cycles on a GAIIx
platform. Higher throughput, albeit at higher costs, could have been re-
covered loading more library templates per lane and/or using paired-end
sequencing and/or a larger number of sequencing cycles.
aPer lane (Illumina GAIIx platform) or per channel (Heliscope Sequencer).
bBased on estimated list prices for reagents from the manufacturer dis-
regarding possible discounts.
cAverage estimates.
dOver the different extracts processed in this study.
eSee Supplemental text.
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(Briggs et al. 2007), they may be more prone to denaturation at

mild temperatures (80°C) than modern contaminant DNA tem-

plates. Hence, mild denaturation temperatures could improve en-

dogenous sequence yields. In addition, high denaturation temper-

atures might further increase fragmentation and/or deamination in

aDNA templates, leading to shorter reads and/or higher levels of

nucleotide misincorporations. To investigate this, we compared the

results from the same sequencing runon theHeliScope Sequencer of

two preparations of each the three extracts (TC21a, TC21b, and

TC21c), in which similar volumes of each extract were denatured at

different temperatures (80°C and 95°C).

Strikingly, for all pairs, the fraction of endogenous horse se-

quences was higher (2.6-fold to 3.4-fold) after initial denaturation at

80°C than at 95°C, with no apparent reduction in the total number

of sequences recovered per channel (Table 1). Overall, 49.5 Mb of

horse sequences were identified using nine channels and 95°C as

a denaturation temperature, while 66.4 Mb were generated out of

only three channels when denaturation was performed at 80°C

(Table 1). In addition, read size distributions were shifted upward at

the lower denaturation temperature (Fig. 3, left), suggesting that

higher denaturation temperatures, even for short incubation steps,

may enhance DNA fragmentation through the formation of single-

strand breaks.

For all extracts, horse reads recovered from 80°C denaturation

treatments exhibited lowerGC contents than reads recovered from

the 95°C treatment (Fig. 3, middle). In addition, higher guanine to

adenine misincorporation rates were observed within the double-

stranded part of aDNA molecules (see below), with cumulative

rates over nucleotide positions 4–25 ranging from 39.3% to 41.0%

at 80°C vs. 33.6% to 38.8% at 95°C (Fig. 3, right). As the de-

amination of cytosine to uracil results in the loss of one hydrogen

bond in every deaminated GC pair, we believe that mild temper-

atures slightly favored the denaturation of ancient deaminated

templates, both reducing read GC contents (uracils are analogs of

thymines) and increasing the fraction of endogenous (damaged)

sequences recovered (hence, the rate of guanine to adenine mis-

incorporation).

Interestingly, in TC21a and TC21b extracts, the level of nu-

cleotide misincorporation observed at the 39-ends of aDNA tem-

plates was found to increase in reads generated from the 80°C

denaturation procedure, with cumulative G-to-A substitution rates

of 29.3% and 25.6% along the first three nucleotides sequenced

(compared with 23.1% and 21.4% at 95°C, respectively). The re-

verse was found for extract TC21c with G-to-A substitution rates of

25.5% and 32.9%, respectively (Fig. 3, right). This suggests that in

addition to mild denaturation temperatures that deliver higher pro-

portions of endogenous sequences, complete bone demineralization

and digestion provide access to a fraction of aDNA templates with

relatively lower deamination at 39-ends. In such extracts, aDNA

templates with shorter overhanging ends and higher cytosine de-

amination in double-stranded regions were made preferentially

available for tSMS by denaturing at 80°C; reversely, denaturation at

95°C provided preferential access to templates with longer 39-over-

hang termini (Fig. 3, right), but lower cytosine deamination in dou-

ble-stranded regions, as shownbyhigherGCcontent (Fig. 3,middle).

In contrast, undigested bone pellets represent a relatively contami-

nation-free niche of relatively longer DNA molecules; for such mol-

ecules, the energy provided by amild temperature is compatible with

preferential denaturation of templates with longer single-stranded

overhangs and higher cytosine deamination levels; high de-

naturation temperatures (here, 95°C) provide access to most of

aDNA templates, including those with shorter overhangs and

lower deamination levels (Fig. 3, right).

The observation that endogenous sequence yields can be in-

creased using mild denaturation temperatures has important con-

sequences for genome-wide surveys of ancient organisms, as it

makes it feasible to recover more ancient sequence reads both from

fewer sequencing runs and less DNA extract. As most extraction

procedures are destructive, the latter could be critical whenmaterial

sources are scarce. tSMS of ssDNA templates denatured at mild

temperatures therefore provides an alternative to library-en-

richment procedures such as in-solution DNA capture (Briggs

et al. 2009; Maricic et al. 2010), micro-array capture (Burbano et al.

2010), and enzymatic restriction of bacterial DNA (Green et al.

2010).

DNA damage

Illumina sequencing

Ancient DNA sequence reads typically show increased levels of

nucleotide misincorporation at both ends (Briggs et al. 2007). In

particular, cytosine-to-thymine and guanine-to-adenine nucleo-

tide misincorporations appear preferentially at the 59- and 39-ter-

mini of sequences, respectively (Briggs et al. 2007; Brotherton et al.

2007; Krause et al. 2010b). This ismost likely due to the presence of

59-overhanging ends, as single-stranded DNA exhibits faster rates

of cytosine deamination than does double-stranded DNA (Lindahl

1993). Furthermore, the base composition of the nucleotide pre-

ceding the first nucleotide sequenced at the 59-end of the aDNA

Figure 2. GC composition of Illumina and Helicos horse reads. For
comparison, we considered only the reads generated from the same ex-
tract (TC21c) and denaturation temperatures of 80°C and 95°C. Similar
distributions were recovered when considering the total number of He-
licos reads generated for other extracts. (Left) Helicos; (right) Illumina. Full
lines refer to the observed average read GC content. The expected aver-
age GC content of genomic fragments of 31 bp (Helicos read median) is
estimated using 361,379 randomly sampled fragments of the horse ref-
erence genome (see Supplemental text) and is reported in dashed lines
(41.41%). A similar estimate (41.38%) is provided for Illumina sequencing
reads using 299,256 randomly sampled fragments of 67 bp, in agreement
with the median of Illumina sequences.
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reads shows elevated levels of purines; a symmetric excess in py-

rimidines has been found at 39-ends (Briggs et al. 2007), suggesting

that depurination is a key component of post-mortem fragmen-

tation of aDNA molecules.

The Illumina reads identified as endogenous exhibit both

DNA degradation features; of note, modern human reads showed

neither the nucleotide misincorporation nor the DNA fragmenta-

tion patterns observed in the horse reads (Supplemental Fig. 4),

confirming that overall patterns of DNA degradation can be used

to distinguish genuine endogenous DNA sequences from modern

contaminants (Krause et al. 2010ab). Cytosine to thymine mis-

incorporation rates are highest (;30.7%) at the first position of the

sequences and decrease by approximately twofold per position as

the read progresses (Fig. 4, bottom). This rate was reduced to 3.2%

at the fifth nucleotide. A symmetric situation was observed at the

39-end, except that guanine-to-adenine transitions, instead of cy-

tosine-to-thymine, are detected. In addition, this misincorpora-

tion occurred at lower rates (;25.1% for the last nucleotide posi-

tion in sequence reads), suggesting that a substantial fraction of

the sequences did not reach the end of the aDNA template, and

that further sequence information could have been gained by

extending the number of sequencing cycles from 76 to 100 or by

performing paired-end sequencing. We

note that ;4000-yr-old human hairs pre-

served in the permafrost exhibited a 9.2-

fold decrease in cytosine-to-thymine mis-

incorporation rate at the first position of

Illumina reads (;3.3%) (Ginolhac et al.

2011). With deamination levels superior

to the one observed from ;40-KY-old ne-

andertal bone specimens excavated from

a temperate cave (;22% at the first posi-

tion of sequencing reads) (Briggs et al.

2007), the permafrost-preserved horse

specimen analyzed here could be much

older than 40 KY, in agreement with its

infinite radiocarbon age.

Excessive proportions of purines (or

pyrimidines, respectively) were detected

in the genomic region located 59 (or 39) of

sequence reads, but these were limited

to the nucleotide position preceding (fol-

lowing) sequencing starts (ends), con-

firming the model of DNA fragmenta-

tion through depurination (Fig. 4, top and

middle). Interestingly, between purines,

guanines were the most affected, suggest-

ing that abasic sites appeared at higher

rates post-mortem at guanine relative to

adenine sites. The excess in pyrimidines

observed at the 39-end of the sequences

(from 21.7% to 36.1% and from 19.6% to

31.8% for cytosine and thymine residues

at the last position sequenced and the

following nucleotide position in the ref-

erence genome) (Fig. 4, top andmiddle) is

not equal to the excess in purines detected

at the 59-end (from 16.6% to 38.2% and

from 16.9% to 46.6% for adenine and

guanine residues, respectively) (Fig. 4, top

and middle). This is reminiscent of the

nucleotide misincorporation pattern and

again indicates that a substantial fraction of the sequences did not

reach the end of the aDNA template.

Helicos sequencing

During Helicos sequencing template preparation, DNA molecules

undergo denaturation, poly(A) tailing, blocking, and oligo-dT

capture (Fig. 1). These steps could introduce bias in the population

ofmolecules sequenced andmay affect both patterns of nucleotide

misincorporation and DNA fragmentation. We therefore charac-

terized these possible sources of bias using available Helicos se-

quence data generated from modern human genomic sequences

(Pushkarev et al. 2009). We identified three typical features in the

nucleotide composition of the genomic regions sequenced (see

Supplemental text). First, post-sequencing trimming of the reads

when starting with thymine residues resulted in the absence of

thymine in the first position of sequence reads (Supplemental Fig.

5). Second, dGTP virtual terminator residues are preferentially in-

corporated during the locking reaction (Fig. 1), resulting in gua-

nine enrichment in the genomic coordinate located just before the

sequencing start (Supplemental Fig. 5). One consequence of post-

sequencing read trimming and preferential locking efficiency with

dGTP virtual terminators is that the first nucleotide sequenced is

Figure 3. The distribution of Helicos reads is dependent on the initial denaturation temperature.
Three different extracts (top: TC21c;middle: TC21b; bottom: TC21a) have been sequenced on the same
Helicos run (six channels) following identical procedures, except that either mild (80°C, black) or high
(95°C, gray) temperatures were used for denaturation. (Left) Read length distribution. For extracts
TC21c, TC21b, and TC21a, the median read size was 29, 30, and 32 bp when DNA denaturation was
performed at 80°C (black dashed lines) in contrast to 27, 29, and 29 bp at 95°C (gray dashed lines).
(Middle) ReadGC contents.White full lines refer to average read GC contents; the expected genomic GC
content (41.4%) is reported with dashed lines. (Right) Cumulative guanine to adeninemisincorporation
rates as a function of the distance from sequencing start.
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not necessarily the next to last nucleotide of the aDNA strand (the

last corresponding to the site locked) (Supplemental Fig. 6), but

might be located a few nucleotides further into the preserved mol-

ecule. The third deviation to the average nucleotide composition

consisted of a progressive excess in thymine residues in the genomic

region preceding the blocking site (Supplemental Fig. 5), suggesting

that adenine-rich templates outcompete other genomic regions

during the oligo-dT capture step (Fig. 1).

Interestingly, all three biases, except the excess in guanine

residues at the locking sites, are observed on the human reads

generated from the ancient horse extracts (Supplemental Fig. 7). Of

note, the first nucleotide sequenced showed extremely low, but

not null frequencies in thymine residues, as sequences starting

with a minimum of two (and not one) thymine residues were

trimmed post-sequencing (Supplemental Fig. 6).

The deficit in thymine residues detected at the first position

within sequence reads also affected the frequency of nucleotide

misincorporation (Supplemental Fig. 8). At that position, thymine

residues are trimmed unless a misincorporation is observed, result-

ing in rate estimates ranging from 26.1% to 45.5% per base for

thymine-to-guanine and adenine misincorporations, respectively

(Supplemental Fig. 8). This patternwas found to be less pronounced

on the human reads generated from the ancient horse extracts

(Supplemental Fig. 9) due to the less strict rules used for trimming.

Except deletions that dominate error types with average rates of

2.1% per base (range: 0%–3.7%), all other misincorporation types

were observed at much lower rates all along the sequence position

both in the published human reads (Supplemental Fig. 8) and the

human reads generated from the ancient horse extracts (Supple-

mental Fig. 9). Such high occurrence of deletions most likely reflect

Figure 4. Illumina sequencing: DNA fragmentation and nucleotide misincorporation patterns on ancient horse reads. (Top, middle) The base com-
position of the reads is reported for the first 10 nucleotides sequenced (left: 1–10) as well as for the five nucleotides located upstream of the genomic region
aligned to the reads (left: �5 to�1). In addition, the base composition of the last 10 nucleotides sequenced (right:�10 to�1) and of the five nucleotides
located downstream from the reads (right: 1–5) in the genome equCab2 is provided. Nucleotide positions located within reads are reported with a gray
frame. Each dot reports the average base composition per position as estimated from reads mapping against chromosomes 1–31 and X. The range of the
base composition per individual chromosome is also reported. (Bottom) The frequencies of all possible mismatches and indels observed between the horse
genome and the reads are reported in gray as a function of distance for 59- to 39-ends (first 25 nucleotides sequenced) and 39- to 59- (last 25 nucleotides),
except for C!T and G!A, which are reported in red and blue, respectively. The latter variations range from 0.6% to 30.7% per site (59- to 39- end) or
0.7%–25.1% per site (39- to 59- end) and exceed the variations observed for other misincorporation types that are consequently mostly hidden in the
figures (<0.1%–0.9%per site). Themisincorporation frequencies are calculated by dividing the total number of occurrences of themodified base at a given
position in a read by the total number of the unmodified base at the same position in the horse genome.
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nucleotide incorporation without detection in the course of Helicos

sequencing, which is characteristic to tSMS (Bowers et al. 2009;

Thomson and Steinmann 2010).

We next investigated the DNA fragmentation and nucleotide

misincorporation patterns for aDNA using the ancient horse reads

(Fig. 5, top and middle). As Helicos sequencing starts from the 39-

end of the aDNA strands, this gave us a unique opportunity to

document the chemical nature of the 39-termini in aDNA mole-

cules. As expected from the post-sequencing trimming procedure,

we observed a deficit in thymine residues and parallel excess in

adenine and cytosine residues at the first position of sequence reads;

no excess in guanine residues was observed due to the high rates of

guanine-to-adenine misincorporation at the first nucleotide posi-

tion of Helicos reads (see below). Additionally, the blocking site

showed preference for guanine residues, as observed in modern

human sequence reads. Furthermore, we found the expected pro-

gressive increase in thymine residues in the genomic region pre-

ceding the blocking site.On freshDNA templates, however, this was

paralleled by a progressive decline in adenine as well as cytosine and

guanine residues (Supplemental Fig. 5).While we found evidence of

a similar decline in adenine residues, cytosine and guanine com-

position showed subtle differences, with a slight enrichment in

cytosine residues, which slightly enhances the expected deficit in

guanine residues (Fig. 5, top and middle; Supplemental Fig. 5).

Although high occurrences of deletions were observed as

expected for tSMS (on average 3.2% per base; range: 0%–5.4% per

base), the nucleotide misincorporation pattern observed in the

ancient horse reads was strikingly different from that observed

with modern DNA (Fig. 5). In particular, the most frequent sub-

stitution was from guanine to adenine residues, confirming that

Figure 5. Helicos sequencing: DNA fragmentation and nucleotide misincorporation patterns on ancient horse reads. (Top, middle) The base com-
position of the reads is reported for the first 10 nucleotides sequenced (left: 1–10) as well as for the five nucleotides located upstream of the genomic region
aligned to the reads (left: �5 to�1). In addition, the base composition of the last 10 nucleotides sequenced (right:�10 to�1) and of the five nucleotides
located downstream from the reads (right: 1–5) in the genome equCab2 is provided. Nucleotide positions located within reads are reported with a gray
frame. Each dot reports the average base composition per position as estimated from reads mapping against chromosomes 1–31 and X. The range of the
base composition per individual chromosome is also reported. (Bottom) The frequencies of all possible mismatches and indels observed between the horse
genome and the reads are reported in gray as a function of distance for 59- to 39-ends (first 25 nucleotides sequenced) and 39- to 59- (last 25 nucleotides),
except for C!T, G!A, deletions, and insertions that are reported in red, blue, green, and pink, respectively. These frequencies are calculated by dividing
the total number of occurrences of the modified base at a given position in a read by the total number of the unmodified base at the same position in the
horse genome. For indels, the latter corresponds to the total number of bases observed at the considered position.
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cytosine deamination to uracil is the most important driver for

nucleotide misincorporation (Paabo 1989; Hansen et al. 2001;

Hofreiter et al. 2001; Gilbert et al. 2003, 2007a; Stiller et al. 2006;

Briggs et al. 2007; Brotherton et al. 2007). In the sequencing-by-

synthesis reaction, the uracil in the aDNA strand is recognized as

a thymine residue, giving rise to the incorporation of an adenine

instead of the guanine expected if the cytosine was not de-

aminated (Supplemental Fig. 10). More importantly, while it was

more common than all other substitution types at all nucleotide po-

sitions within the read, the rate of guanine-to-cytosine deamination

showed amarked increase in the first three nucleotides sequenced,

with a nearly twofold increase (1.83) from the third position to the

second (from 4.5% to 8.3% per base), and 1.73 from the second to

the first (from8.3% to 14.0%per base). Identical patterns are found

even if indels are allowed in the first five positions ofmapped reads

(Supplemental Fig. 11A) or disallowed in the first 10 positions

(Supplemental Fig. 11B), suggesting that the detected pattern is not

a misalignment by-product. Reminiscent of what has been ob-

served at the 59-end of Illumina reads, the pattern of guanine-to-

adeninemisincorporations is most probably due to the presence of

39-overhanging ends in aDNA templates, as single-stranded DNA

exhibits faster rates of cytosine deamination than double-stranded

DNA. Bearing in mind that the first nucleotide sequenced in

Helicos reads is not the last, but at best the penultimate nucleo-

tide of the aDNA strand (Supplemental Figs. 6, 10), Illumina and

Helicos reads provided rather similar cytosine deamination rates

in 59- and 39-overhanging ends, as expected for single-stranded

regions (at the second position of Illumina reads cytosine to thy-

mine misincorporation rates of 16.2% per base were observed,

which is similar to the 14.0%observed at the first positionofHelicos

reads for complementary guanine-to-adenine misincorporations).

Interestingly, we found similar cytosine deamination rates

in the mitochondrial and nuclear genomes, suggesting that both

genomes exhibit similar deamination trajectories post-mortem (x2

test, P = 0.9105 and 0.0659 considering either the first position of

sequencing reads or all positions).

Discussion

Post-mortem DNA damage

The occurrence of post-mortem damage in DNA extracted from

fossil remains has been recognized as a longstanding problem for

analyzing aDNA molecules (Paabo 1989). Oxidative derivatives of

pyrimidines, abasic sites, and intermolecular cross-links have been

shown to preclude molecular cloning, restricting its efficiency to

exceptional cases only (Paabo et al. 1989; Lindahl 1993), unless

end-repair reactions with DNA polymerase and PNK activities were

performed (Noonan et al. 2005, 2006). While still sensitive to

polymerase blocking lesions, such as abasic sites, single-strand

breaks and intermolecular cross-links, PCR has opened access to

a wide variety of aDNA templates coming from different preser-

vation environments (e.g., Antarctic coast [de Bruyn et al. 2009] or

Balearic islands [Ramirez et al. 2009]), source material (e.g., bones

[Green et al. 2010] or egg shells [Oskam et al. 2010]) and time pe-

riods (10,000–500,000 yr ago) (Willerslev et al. 2004). However,

another type of damage, namely miscoding lesions, promotes

nucleotide misincorporation during PCR amplification of DNA

fragments extracted from ancient organisms (Paabo et al. 1989),

themost important consisting of the deamination of cytosine into

uracil, which leads to G/C to A/T misincorporation (Hansen et al.

2001). Amplicons showing substantial levels of misincorporation

have even been shown to represent a significant proportion of PCR

productswhenonly a few templates are available for amplification,

generating false sequence information, and, hence, requiring in-

dependent sequence validation from multiple PCR products and

clones (Hofreiter et al. 2001).

Massively parallel sequencing approaches have prompted

a revolution in the characterization of aDNAby providing access to

the nuclear genome (Poinar et al. 2006; Miller et al. 2008; Green

et al. 2010; Rasmussen et al. 2010; Reich et al. 2010). In addition,

these second-generation technologies have lead to a better un-

derstanding of the process of post-mortem DNA damage by de-

livering hundreds of millions of sequences (Stiller et al. 2006;

Gilbert et al. 2007a). This revealed that depurination was a driving

force of DNA fragmentation post-mortem, as an excess of purines

has been detected in the genomic position preceding the starts of

reads generated using 454 sequencing (Briggs et al. 2007). Fur-

thermore, the 59-termini of reads are found to be enriched in cyto-

sine-to-thymine misincorporations. This suggested the existence of

59-overhanging ends in a substantial fraction of aDNAmolecules, as

the rate of cytosine deamination into uracil is much faster in single-

strand DNA than double-strand DNA (Lindahl 1993). At 39-ends,

complementary misincorporations (guanine-to-adenine) are found

as a result of the fill-in reaction during library construction,with the

incorporation of adenine, and not guanine residues at sites showing

cytosine deamination (Briggs et al. 2007). These patterns have been

later confirmed using larger Illumina sequence data sets and ancient

human extracts from the late Pleistocene (Briggs et al. 2009; Krause

et al. 2010a,b). The permafrost-preserved horse specimen analyzed

here shows similar nucleotide misincorporation and DNA frag-

mentation patterns. The fact that none of these patterns could be

found in contaminating human (Supplemental Fig. 4) and Pseu-

domonales-related sequence reads (data not shown) confirms that

DNA damage could be used as a proxy for aDNA authenticity, es-

pecially in cases when results are at a particular risk from contami-

nation (e.g., ancient human extracts) (Wall and Kim 2007; Krause

et al. 2010a,b).

The Helicos tSMS reads generated in this study, which do not

require DNA copying prior to sequencing, have confirmed that

adenine residues aremost oftenmisincorporated instead of guanine

residues when sequencing aDNA templates, most probably as a re-

sult of cytosine deamination in the original aDNA strand. Further-

more, as the poly(A) tailing reaction starts from the 39-termini of the

ancient template, Helicos tSMS provides a unique opportunity to

characterize the 39-end of aDNA templates, with no need for end-

repair beforehand (Fig. 1). With library-dependent sequencing ap-

proaches, including Illumina, any 39-overhang possibly present in

aDNA templates is processed by the 39 to 59 exonuclease activity of

the T4 DNA polymerase, and therefore remains inaccessible to se-

quencing. Yet, in Helicos reads, guanine-to-adenine misincorpora-

tions decrease progressively as the distance from the 39-end in-

creases (Fig. 5). This is reminiscent of the cytosine-to-thymine

misincorporation pattern observed in Illumina reads at the 59-ends

and suggests the existence of 39-overhanging ends in aDNA tem-

plates. Although terminal transferase has shown reduced affinity for

adding tails to modified bases (data not shown), the high cytosine-

to-thymine misincoporation rates observed here suggest that ter-

minal transferase activity is not particularly sensitive to deaminated

nucleotidic bases found at the 39-ends of aDNA templates, and that

the tailing does not bias the available pool ofmolecules available for

sequencing through preferential tailing of unmodified templates.

Furthermore, comparison of Helicos reads generated from

modernhumanDNA,with the results from the horse aDNA, shows
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no major differences in the base composition of the genomic re-

gion preceding sequencing reads, suggesting that 39-ends in aDNA

templates are mainly generated through single-strand breaks oc-

curring at all possible bases (Fig. 6). However, the composition of

guanine residues was slightly decreased, suggesting that aminority

of the 39-termini consists of abasic sites formed through loss-of-

guanines. At sites of base loss, the DNA chain is weakened and

undergoes further cleavage through a b-elimination reaction, leav-

ing DNA fragments with phosphorylated 59-ends and modified 39-

ends (Lindahl 1993;Mitchell et al. 2005). Helicos tSMS is dependent

on efficient poly(A) tailing of free 39-hydroxyl termini through

terminal transferase. Because we see high depurination rates at 59-

ends, we believe that the apparent poor depurination levels ob-

served at 39-ends of aDNA templates is a by-product of terminal

transferase activity, which is unable to tail modified (e.g., phos-

phorylated) 39 ends. We believe that both single-strand breaks and

depurination at guanine residues appear as themain drivers of DNA

fragmentation post-mortem, even though the latter are less com-

patible with tailing as used in standard Helicos tSMS. This issue

could be overcome by further enzymatic treatments (e.g., phos-

phatase), but at the price of further loss of some of the DNA sub-

strate, a significant problem with trace samples such as these.

Sequencing ancient genomes

In this study, we used seven Illumina GAIIx lanes to generate 76.9

Mb of sequence information that could be mapped to a unique

region in the horse reference genome.With 11.0Mbper lane (Table

2), a minimum number of 215 GAIIx lanes (;27 runs) would be

required for covering the 2.37 Gb horse reference genome at 13. In

contrast, 12 Helicos channels provided 115.9 Mb (Table 1), which

represents an average performance of 9.7 Mb of horse sequence per

channel. However, we demonstrated that at mild denaturation

temperatures (here, 80°C), higher endogenous sequence yields

could be recovered, yielding up to 56.1 Mb of horse sequence in-

formation per single Helicos channel (Tables 1, 2). In this optimal

situation, no more than 42 Helicos channels, i.e., less than a full

sequencing run, would be needed to generate a draft of the ancient

horse genome at 13 coverage.

Moderate denaturation temperatures (here, 80°C) most likely

improve the ratio of endogenous to contaminating sequences gen-

erated in Helicos sequencing, as aDNA molecules are more prone

to denaturation than fresh environmental DNA that derives from

microbial communities living in the soil and fossil. Furthermore,

moderate denaturation temperatures could limit further DNA deg-

radation as read length slightly decreased after denaturation at 95°C

(Fig. 3, left). Since the class of GA-rich sequences was under-repre-

sented for longer reads comparedwith shorter reads, we suggest that

the further fragmentation at 95°C could result from depurination

(Supplemental Fig. 3), in agreement with rapid DNA depurination

rates measured in vitro (Lindahl 1993). This suggests that in addi-

tion to the storage conditions of fossil specimens after excavation

(Pruvost et al. 2007), experimental procedures associated with DNA

sequencing and manipulation could further increase the levels of

damage present in aDNA molecules.

Importantly, the extracts analyzed in this study show high

levels of depurination and deamination, potentiating even further

the damage that could result from high denaturation temperature

treatments. Likewise, we could expect the recovery of endogenous

sequences to be significantly improved for aDNA extracts showing

a similar extent of DNA damage, e.g., material beyond the limits of

radiocarbon dating and/or coming from poor preservation envi-

ronments. However, it is unlikely that DNA denaturation at mild

temperatures would improve the ratio of endogenous to exogenous

sequences recovered in cases where only moderate DNA damage is

present. In addition, we note that themain environmental microbe

identified in the extract is closely related to Pseudomomas, a bacteria

whose genome exhibits high GC content (e.g., 60.5%–63.4% for P.

fluorescens Pfo-1 and Pf-5) (Kimbrel et al. 2010). Mild temperatures

would favor the denaturation of horse fragments over Pseudomonas,

as the former exhibit much lower GC content (Fig. 2). Again, we

could anticipate that DNAdenaturation atmild temperatureswould

not provide higher endogenous sequence yields in cases where the

environmental microbial contaminant fraction consists of AT-rich

metagenomes and/or the ancient genomeunder studywasGC-rich.

Our finding that endogenous sequence yields can be in-

creased using mild denaturation temperatures might have impor-

tant consequences for the most widely used method in aDNA

analysis, namely the PCR, as repeated denaturation cycles at high

temperature could increase DNA fragmentation and reduce the

number of templates available in the initial stages of amplification.

The probability of jumping-PCR could be expected to increase at

the same time as the increasing number of fragments could prime

the amplification reaction and generate spurious amplification

products (Paabo 1989). For aDNA fragments showing extensive

Figure 6. Ancient DNA damage: a profile. After depurination (step 1),
internal AP-sites are subject to b-elimination (arrow, step 2), which opens
the phosphodiester bond mainly for 39 of AP-sites. In addition, DNA
strands are subject to single-strand breaks. As a result of terminal trans-
ferase preference for 39-hydroxy ends, most abasic sites located 39 of the
aDNA fragment will not be poly(A) tailed, unless the nucleotidic sugar is
further degraded. Such termini are not represented, albeit they are likely
to represent a significant fraction of aDNA templates. Cytosine deami-
nation in uracils occurs much faster on single-stranded parts of DNA
(step 3) and results in increased G!A misincorporation rates at the be-
ginning of Helicos sequence reads. Other types of damages, such as in-
terstrand cross-links, which affect aDNA molecules (and hamper further
sequence characterization), are not reported.
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levels of DNA damage, optimal PCR efficiency should therefore be

achieved by lowering denaturation temperatures; this would pre-

clude using hot-start DNA polymerases but should not affect PCR

specificity unless the reactions are performed under nonstringent

conditions.

One aDNA extract, TC21c, was used to generate shotgun

sequences on both Illumina GAIIx and HeliScope Sequencer.

Interestingly, different ratios of endogenous sequences were re-

covered, with higher performance observed for tSMS (Table 1). This

demonstrates that the overall molecular complexity present in

second-generation DNA libraries does not provide an unbiased

representation of the sequence complexity originally present in

ancient extracts. Whether this difference is introduced during li-

brary construction and/or amplification still needs further in-

vestigation.However, clonal expansion affectedhere 10.6%of horse

reads, suggesting that a significant bias is introduced during Illu-

mina library amplification. Additional sources of bias have been

reported, e.g., due to the size selection step after library amplifica-

tion as melting gel slice by heating in chaotropic buffer tends to

enrich for GC rich sequences (Quail et al. 2008). In the case of the

horse genome that shows overall 41.4% of GC content (Fig. 2), this

could have resulted in under-representation of endogenous frag-

ments; however, the overall GC content of Helicos and Illumina

reads are virtually identical, suggesting that no significant bias in

base composition has been introduced during gel purification of the

amplified Illumina library, most likely because gel slices have been

melted at a moderate temperature (37°C).

Our data suggest that under optimal conditions, on this sam-

ple, nomore than twoHelicos channels (out of 50 per run) would be

needed to generate the same amount of horse sequence information

as a complete Illumina GAIIx run. We note, however, that a large

variation was observed among the different DNA extracts analyzed,

both in the overall number of sequences generated per Helicos

channel, and in the ratio of endogenous horse sequences (Table 1).

This first confirms that the process of DNA preservation is de-

pendent on micro-environmental conditions within fossilized

bones, but additionally that large differences in sequence outcomes

can occur with tSMS, making global predictions of the amount of

material needed difficult. Additional experimental procedures such

as extract concentration and oligonucleotide spiking of DNA ex-

tracts have been shown to normalize and improveHelicos sequence

yields. In fact, on the Helicos Genetic Analysis System, cameras re-

cord images of each field of view, which are then aligned to each

other in order to determine which spots correspond to the same

sequence template. The process is efficient but still requires enough

spots to align images. Even in cases where samples have sufficient

DNA to potentially generate millions of bases of sequences, tem-

plate molecules could hybridize so sparsely that images cannot be

aligned properly, resulting in poor sequencing results. In such cases,

oligonucleotides of known sequence can be spiked into the samples

at low quantity (typically at 40 pM) in order to provide a sufficiently

high background level of spots to enable straightforward alignment

of images, so that both the spiked and real samples can be read. The

spiked sequences can then be filtered out from the resultant reads

during the mapping procedure. A supplemental advantage of spik-

ing is to provide a run-specific estimate of sequencing error rates by

comparing the sequences of the reads to the known sequence of

each spiked oligonucleotide.

In contrast to Helicos, standard Illumina sequencing is char-

acterized by high reproducibility among lanes (Tables 1, 2). Fur-

thermore, Illumina libraries could be reamplified and sequenced

until exhaustion of the sequence complexity. NoDNAamplification

is performed in tSMS approaches, and overloaded and/or under-

loaded channels cannot be rerun. Asmost aDNAextractionmethods

are destructive, and as the source material is most often limited,

projects that aim to achieve a complete draft of ancient genomes

would be best served by using a combination of sequencing tech-

niques and determining sample characteristics (DNA length and

amounts, contamination, degree of modification) which are best

suited to each technology (Table 2). That re-extracted undigested

pellets (TC21a and TC21b) showed better performance than fresh

extracts (TC21c) in recovering horse sequence information, sug-

gests that optimizing extraction procedures, possibly focusing on

putative preservation niches within the bones (Salamon et al.

2005), will be beneficial to all platforms.

The substantial levels of DNA damage that we identified to-

ward the ends of both Illumina and Helicos sequence reads render

alignment, and related SNP calling, challenging. The high rates of

insertion and deletion (indel) sequencing errors that are specific to

tSMS will complicate mapping even further, precluding accurate

identification of indel variants unless large sequencing depth could

be generated, which, in the case of ancient material, might be

problematic and limited to a few exceptionally well-preserved spec-

imens. Thus far, we have used both indexDP and BWA for aligning

reads, because both are tolerant of indels (Li andDurbin 2009; Giladi

et al. 2010). Mapping results showed good, albeit not complete

overlap against the horse reference genome (;70.0% of the reads

uniquely mapped to the eqCab2 reference genome were found

common to both aligners; data not shown). We therefore recom-

mend using several mapping approaches when mapping aDNA se-

quence reads to reference genomes. Trimming sequence ends could

improve mapping quality, as nucleotide misincorporations are

mainly clustered at read termini. This conservative approach would

result in loss of sequence information and would be more difficult

with the short length of Helicos reads (here, median 31 bp). Illu-

mina reads should be less problematic (here, median 67 bp), except

in cases where aDNA templates have been highly fragmented. In-

tegrating the nucleotide misincorporation and DNA fragmentation

patterns in the mapping procedure would also improve mapping

quality with less loss of sequence information. Indel-tolerant map-

ping softwares, like MIA (Mapping Iterative Assembler), which use

position-specific scoring matrixes to estimate the mapping quality,

could be advantageously used for that purpose. For now, we provide

a preliminary estimate of the fraction of the endogenous reads that

do not map against eqCab2 as a result of nucleotide misincorpora-

tion (Supplemental Text). Our estimate suggests that endogenous

sequence yields reported here underestimate the overall Helicos

performance, as 5.0% of the endogenous reads would not be map-

ped at all as long as one of the first two nucleotides of the reads

corresponded to one deaminatedCytosine. Themapping of Illumina

reads was found to be less sensitive to nucleotide misincorporation

(0.8%), because of the longer sequence length.

In summary, we report the first in-depth analysis of tSMS of

aDNA templates using the Helicos HeliScope Sequencer. We char-

acterize the respective pros and cons in comparisonwith Illumina’s

GAIIx platform (Table 2).We show that a substantial fraction of the

aDNA templates harbor 39-overhanging termini, which are de-

graded during library preparation, and, hence, remain inaccessible

to second-generation sequencing approaches. A series of other third-

generation platforms are currently under development (Shendure

and Ji 2008; Eid et al. 2009), but these approaches are likely to be

challenged by the very short fragment sizes and low DNA con-

centrations found in aDNA. The data presented here is the first step

toward using a combination of new sequencing tools tailored to
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individual sample properties, which will allow sequencing of

paleogenomes in an unprecedented manner.

Methods

aDNA extraction and amplification

The horse fossil bone analyzed (TC21) originates from Pleistocene

permafrost deposits at Thistle Creek, Yukon, and is associated with

an infinite radiocarbon date (OxA-23933 > 50,300BP; UBA-16493

andUBA-17013> 50,505BP). This fossil bonewas extracted in aDNA

facilities at the Center for GeoGenetics, using a combination of two

silica-based methods. Briefly, a 3.6-g piece of bone was crushed to

finepowderusing amicrodismembrator and first digested for 24h at

55°C in30mLof 0.5MEDTA. The undigestedpelletswere recovered

the next day by spinning at 4000 rpm for 5 min and stored at

�20°C, while the supernatant was further concentrated down to

250 mL using two 30-kDa Amicon centrifugal filter units (Millipore)

and purified in 60 mL (30 mL from each of the two Amicon filters) of

elution buffer. The data resulting from shotgun sequencing of this

first extract are not presented in this study, but the remaining un-

digested pellets (UP) and 1.8 g of fine powder drilled at low speed

from the same bone specimen (sample TC21c) were further ex-

tracted using a 48-h digestion in 5 and 7.5 ml of extraction buffer,

respectively (0.5 M EDTA, 0.5% N-lauryl-Sarcosyl, 1 mg/mL Pro-

teinase K at pH 8.0). The supernatant of TC21c and UP, recovered

after spinning the solution at 2000 rpm for 2min, were respectively

transferred into 20 and 30ml of binding solution with 100 and 200

mL of a fresh silica suspension prepared as described in Rohland and

Hofreiter (2007). The final pH was adjusted to 4.0–5.0 using pH

paper. DNA binding to silica surfaces was performed for 3 h at 37°C

with agitation. After incubation, the volume of the UP solution was

split into two equal parts (referred to as TC21a and TC21b). Silica

particles were retrieved through spinning for 2 min at 12,000 rpm,

washed twice with 80% ethanol before being eluted in 90 mL of

elution buffer (QIAGEN), and stored at +4°C. The presence of DNA

in the bone extracts was checked on a high-sensitivity lab-chip

(Agilent; Supplemental Fig. 12) before being aliquoted and prepared

either for second-generation sequencing or shipped to the Helicos

BioSciences Corporation facilities for tSMS. In addition, horse-spe-

cific PCR amplification products of a 72-bp long mtDNA fragment

were recovered (forward primer 59-GATTTCCCGCGGCTTGGT;

Reverse 59-TCATTTCCAGYCAACA), suggesting: (1) that no DNA

polymerase inhibitor that could have interfered with downstream

library building and template preparation protocols was present in

the extract, and (2) that the extract was not comprised solely of

microbial environmental metagenomes, but contained a sufficient

number of endogenoushorseDNA fragments for further processing.

Illumina sequencing

DNA libraries were built in aDNA laboratory facilities in order to

limit possible contamination issues. A DNA library was created as

described in Meyer and Kircher (2010) without DNA fragmenta-

tion. A total of 15 mL of DNA extract (TC21c) was incubated for 15

min at 25°C, followed by 5 min at 12°C in buffer Tango supple-

mented with deoxynucleotide (final concentration: 100mM), ATP

(final concentration: 1 mM), and 35 U of T4 polynucleotide kinase

and 7 U of T4 DNA polymerase. This step generated the 59-phos-

phorylated blunt ends required for subsequent adapter liga-

tion. DNA was purified using the MinElute PCR purification kit

(QIAGEN) using 10 mL as elution volume. P5 and P7 adaptors (PE

adaptor oligo mix) were further ligated by incubating the DNA

eluate for 30 min at 22°C with an equal volume of a master mix

consisting of a 23 T4 ligase buffer, 10% PEG-4000, 5 U of T4 ligase,

and 5 mM of each adapter mix. DNA was purified (MinElute PCR

purification kit; QIAGEN), and the adapter fill-in reaction was

performed for 20min at 37°C in a Thermopol buffer supplemented

with 250 mM of each dNTP and 12 U of Bst Polymerase.

After a last column purification, the whole 10 mL of the DNA

library was PCR amplified using a 50-mL reaction volumeunder the

following conditions: 2.5 mM MgCl2, 13 TaqGold buffer, 0.2 mM

each primer (59-AATGATACGGCGACCACCGAGATCTACACTCT

TTCCCTACACGACGCTCTT, and 59-CAAGCAGAAGACGGCAT

ACGAGATCGGTCTCGGCATTCCTGCTGAACC), 0.2 mM each

dNTP, and 2 U of TaqGold. Cycling conditions consisted of an

initial denaturation at 95°C for 9 min, followed by 24 cycles of

denaturation at 95°C for 15 sec, annealing at 60°C for 20 sec, and

extension at 72°C for 30 sec. A final extension was performed for

10 min at 72°C. A further reamplification under identical condi-

tions was done for 10 cycles, except that 5 mL of the previous PCR

was used as template for a total of 10 reactions. The quality of the

library was further checked on a 2% agarose gel and DNA frag-

ments ranging from ;130 to 250 bp were gel-purified using the

E.Z.N.A. gel-purification kit (Omega Bio-Tek). Overall, a total of

five library amplifications were gel purified through one column

and eluted with 30 mL of elution buffer (10mMTris-HCl at pH 8.5)

prior to sequencing.

DNA sequencing was performed on the Illumina Genome

Analyzer IIx platform available at the National High-throughput

DNA Sequencing Center (Denmark) using seven lanes of 76 cycles

on a single-read flow cell according to the manufacturer’s in-

structions. The images were converted into intensity files and the

Illumina base-calling pipeline (RTA1.8/SCS2.8) was run in order to

generate fastq sequence files. Raw reads were further filtered to

remove reads with bases determined as ‘‘N’’, trimmed for residual

adapter sequence, and regions starting or ending with a phred

quality score of 2 using a program called SinglePrimerEndRemoval

written in C++ (Stinus Lindgren, pers. comm.).

Helicos sequencing

Helicos HeliScope sequencing reactions were performed at the

Helicos BioSciences Corporation facilities. A volume of 8 mL of

DNA extracts wasmixed with 2.8 mL of nuclease-free water, 2 mL of

NEB Terminal Transferase 103 buffer, and 2 mL of a 2.5-mMCoCl2
solution, and heated at 80°C or 95°C for 5 min in a thermocycler

for denaturation. Rapid cooling on ice was performed in order to

minimize reannealing of denatured DNA strands. Single-stranded

DNAmolecules were poly(A) tailed for 1 h at 37°C. For the poly(A)-

tailing reaction, the volume of the previous mix was increased to

20 mL through the addition of 5 U of NEB Terminal Transferase,

NEB BSA (to 1 final concentration), and dATP at a final concen-

tration of 10 mM in the 20-mL reaction. Reactions were stopped by

inactivating the enzyme at 70°C for 10min. As theDNA is prone to

reannealing during the tailing step, heating at 80°C or 95°C, fol-

lowed by rapid cooling, was repeated before 10 mL of 39-end

blocking master mix (NEB Terminal Transferase buffer, 250 mM

CoCl2, 5 U of NEB Terminal Transferase, 10 mM of Biotin-ddATP)

was added to the tailing reaction volume. The 39-end blocking re-

actions were performed for 1 h at 37°C and stopped by denaturing

the enzyme at 70°C for 20 min. DNA that may have reannealed

during the blocking reaction was converted back to single strands

by repeating the previous heating–rapid-cooling conditions prior

to loading the samples on the flow cell. After addition of 10 mL of

23 hybridization buffer, 20 mL of sample was added to each

channel and allowed to hybridize for 1 h at 37°C. The buffer was

then rinsed away and the extra bases of the poly(A) tailed filled in

with TTP and then locked in place with the first non-TTP base

(Lipson et al. 2009). Sequencing was carried out using Virtual
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Terminator nucleotides as described in Bowers et al. (2009). The

resulting sequence reads were then filtered for length (discarding

sequences shorter than 25 nt) and for artifactual sequences that

were too similar to the order of nucleotide addition (CTAG).When

the sequence started with more than two T’s, the leading T’s were

removed in case they arose from an incomplete fill and lock re-

action. The remaining set of filtered reads was then analyzed.

DNA sequence analyses

The DNA sequence data analyzed in this study are available on

NCBI Sequence Read Archive (SRA accession no. SRP005902, for

both Illumina and Helicos reads). Filtered Illumina and Helicos

reads were mapped against the horse and donkey mitogenomes

(accession no. NC_001640 and NC_001788, respectively), the

horse reference genome (equCab2, filtered for the mitochondrial

genome and chromosome Un), and the human reference genome

(hg19) available for download at the UCSC Genome Bioinformatics

website (http://genome.ucsc.edu/). Mitogenomes and nuclear ge-

nomes were mapped separately in order to avoid possible numt

misidentification. Global alignments were performed with BWA (Li

and Durbin 2009) after indexing the reference (mito)genomes using

the index command and a linear-time algorithm. The Suffix Array

coordinates of the reads showing aminimal size of 25 ntwere found

using the aln command and default parameters. The output was

further converted in sam formatwith the samse command and reads

mapping uniquely the horse reference genome, but not the human

reference, regardless of the number of mismatches, were filtered for

mapping quality scores higher than 25 using the samtools view

command. This very conservative approach was performed in order

to remove possible remnant human contamination and paralogs, as

both could bias the analyses of DNA substitution and fragmentation

patterns. Illumina reads starting and ending at the same coordinates

were collapsed using the samtools rmdup command that keeps the

read showing the highestmapping quality, as they could result from

clonal expansion during library amplification. Finally, 1,000,000

random reads per lane (GAIIx) or channel (HeliScope)were analyzed

usingMegaBlast against the nucleotide database with a word size of

16, a gap opening penalty of �2, an identity percentage cut-off of

0.9, a maximal expect value 0.01, and default parameters otherwise

in order to characterize the taxonomic origin of sequence reads. The

megablast outputswere further assigned tomajor taxonomic groups

using MEGAN 3.9 (Huson et al. 2007).

DNA fragmentation and misincorporation patterns were

generated using the custom-mademapDamage package (Ginolhac

et al. 2011), parsing quality filtered sam files as input, and re-

covering corresponding regions in reference genomes with sam-

tools. mapDamage generated chromosome-specific output files

reporting the frequencies of all possible substitutions and indels as

a function of distance for 59- to 39-ends and 39 to 59 as well as read

base composition. Furthermore, the base composition of the ge-

nomic regions located upstream and downstream (20 nt) of the

reads was recorded. Statistical tests and misincorporation and frag-

mentation patterns were generated using custom R scripts (R De-

velopment Core Team 2010). The same patterns were analyzed us-

ingmodern humanDNA reads that are publicly available (Sequence

Read Archive ID: SRA009216) in order to monitor for possible

method specific substitution and base composition biases in se-

quencing. One of the eight fastq files consisting of 343,743,622

reads was downloaded and 3,000,000 randomly selected reads

were mapped against hg19 and filtered for minimal quality scores

of 25, resulting in 1,090,673 unique hits that were further ana-

lyzed using the mapDamage package. The mapDamage package is

freely available with documentation and example files at http://

geogenetics.ku.dk/all_literature/mapdamage/.

Data access

The sequence data generated in this study have been submitted to

the NCBI Sequence Read Archive (http://trace.ncbi.nlm.nih.gov/

Traces/sra/sra.cgi) under accession number SRP005902.
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