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Abstract

Verifiable computation (VC) enables thin clients to effi-

ciently verify the computational results produced by a

powerful server. Although VC was initially considered to

be mainly of theoretical interest, over the last two years

impressive progress has been made on implementing VC.

Specifically, we now have open-source implementations

of VC systems that handle all classes of computations

expressed either as circuits or in the RAM model. Despite

this very encouraging progress, new enhancements in the

design and implementation of VC protocols are required

to achieve truly practical VC for real-world applications.

In this work, we show that for functions that can be ex-

pressed efficiently in terms of set operations (e.g., a subset

of SQL queries) VC can be enhanced to become drasti-

cally more practical: We present the design and prototype

implementation of a novel VC scheme that achieves or-

ders of magnitude speed-up in comparison with the state

of the art. Specifically, we build and evaluate TRUESET,

a system that can verifiably compute any polynomial-time

function expressed as a circuit consisting of “set gates”

such as union, intersection, difference and set cardinality.

Moreover, TRUESET supports hybrid circuits consisting

of both set gates and traditional arithmetic gates. There-

fore, it does not lose any of the expressiveness of previous

schemes—this also allows the user to choose the most

efficient way to represent different parts of a computation.

By expressing set computations as polynomial operations

and introducing a novel Quadratic Polynomial Program

technique, our experiments show that TRUESET achieves

prover performance speed-up ranging from 30x to 150x

and up to 97% evaluation key size reduction compared to

the state-of-the-art.
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1 Introduction

Verifiable Computation (VC) is a cryptographic protocol

that allows a client to outsource expensive computation

tasks to a worker (e.g., a cloud server), such that the client

can verify the result of the computation in less time than

that required to perform the computation itself. Cryp-

tographic approaches for VC [5, 6, 7, 12, 13, 14, 21]

are attractive in that they require no special trusted hard-

ware or software on the server, and can ensure security

against arbitrarily malicious server behavior, including

software/hardware bugs, misconfigurations, malicious in-

siders, and physical attacks.

Due to its various applications such as secure cloud

computing, the research community has recently made

impressive progress on Verifiable Computation, both on

the theoretical and practical fronts. In particular, several

recent works [2, 3, 9, 23, 25, 26, 29] have implemented

Verifiable Computation for general computation tasks,

and demonstrated promising evidence of its efficiency.

Despite this encouraging progress, performance improve-

ment of orders of magnitude is still required (especially

on the time that the server takes to compute the proof) for

cryptographic VC to become truly practical.

Existing systems for Verifiable Computation are built

to accommodate any language in NP: Specifically, func-

tions/programs are represented as either circuits (Boolean

or arithmetic) or sets of constraints and cryptographic

operations are run on these representations. While such

an approach allows us to express any polynomial-time

computation, it is often not the most efficient way to repre-

sent common computation tasks encountered in practice.

For example, Parno et al. [23] point out that the behavior

of their construction deteriorates abruptly for function-

alities that have “bad” arithmetic circuit representation

and Braun et al. [9] recognize that their scheme is not

quite ready for practical use, restricting their evaluations

to “smaller scales than would occur in real applications.”

In order to reduce the practical cost of Verifiable Com-

putation, we design and build TRUESET. TRUESET is an

efficient and provably secure VC system that specializes

in handling set-centric computation tasks. It allows us to
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model computation as a set circuit—a circuit consisting

of a combination of set operators (such as intersection,

union, difference and sum), instead of just arithmetic op-

erations (such as addition and multiplication in a finite

field). For computation tasks that can be naturally ex-

pressed in terms of set operations (e.g., a subset of SQL

database queries), our experimental results suggest orders-

of-magnitude performance improvement in comparison

with existing VC systems such as Pinocchio [23]. We

now present TRUESET’s main contributions:

Expressiveness. TRUESET retains the expressiveness of

existing VC systems, in that it can support arbitrary com-

putation tasks. Fundamentally, since our set circuit can

support intersection, union, and set difference gates, the

set of logic is complete1. Additionally, in Section 4.4, we

show that TRUESET can be extended to support circuits

that have a mixture of arithmetic gates and set gates. We

achieve this by introducing a “split gate” (which, on input

a set, outputs the individual elements) and a “merge gate”

(which has the opposite function of the split gate).

Input-specific running time. One important reason why

TRUESET significantly outperforms existing VC systems

in practice is that it achieves input-specific running time

for proof computation and key generation. Input-specific

running time means that the running time of the prover is

proportional to the size of the current input.

Achieving input-specific running time is not possible

when set operations are expressed in terms of Boolean

or arithmetic circuits, where one must account for worst-

case set sizes when building the circuit: For example, in

the case of intersection, the worst case size of the output is

the minimum size of the two sets; in the case of union, the

worst case size of the output is the sum of their sizes. Note

that this applies not only to the set that comprises the final

outcome of the computation, but to every intermediate set

generated during the computation. As a result, existing

approaches based on Boolean or arithmetic circuits incur a

large blowup in terms of circuit size when used to express

set operations. In this sense, TRUESET also achieves

asymptotic performance gains for set-centric computation

workloads in comparison with previous approaches.

TRUESET achieves input-specific running time by en-

coding a set of cardinality c as a polynomial of degree

c (such an encoding was also used in previous works,

e.g., [18, 22]), and a set circuit as a circuit on polyno-

mials, where every wire is a polynomial, and every gate

performs polynomial addition or multiplication. As a re-

sult, per-gate computation time for the prover (including

the time for performing the computation and the time for

1Any function computable by Boolean circuits can be computed by

a set circuit: If one encodes the empty set as 0 and a fixed singleton set

{s} as 1, a union expresses the OR gate, an intersection expresses the

AND gate and a set difference from {s} expresses the NOT gate.

SELECT COUNT(UNIVERSITY.id)

FROM UNIVERSITY JOIN CS

ON UNIVERSITY.id = CS.id

Figure 1: An example of a JOIN SQL query (between tables

UNIVERSITY and CS) that can be efficiently supported by

TRUESET. TRUESET will implement JOIN with an intersection

gate and COUNT with a cardinality gate.

producing the proof) is (quasi-)linear in the degree of the

polynomial (i.e., cardinality of the actual set), and not

proportional to the worst-case degree of the polynomial.

Finally, as in other VC systems, verifying in TRUESET

requires work proportional to the size of inputs/outputs,

but not in the running time of the computation.

Implementation and evaluation. We implemented

TRUESET and documented its efficiency comparing it

with a verifiable protocol that compiles a set circuit into

an arithmetic circuit and then uses Pinocchio [23] on

the produced circuit. In TRUESET the prover’s running

time is reduced by approximately 30x for all set sizes

of 64 elements or more. In particular, for a single in-

tersection/union gate over 2 sets of 256 elements each,

TRUESET improves the prover cost by nearly 150x. We

also show that, while other systems [23] cannot—in a

reasonable amount of time—execute over larger inputs,

TRUESET can scale to large sets, e.g., sets with cardinality

of approximately 8000 (213), efficiently accommodating

instances that are about 30x larger than previous systems.

Finally, TRUESET greatly reduces the evaluation key size,

a reduction that can reach 97% for some operations.

Applications. TRUESET is developed to serve various in-

formation retrieval applications that use set operations as a

building block. For example, consider an SQL query that

performs a JOIN over two tables and then computes MAX

or SUM over the result of the join operation. TRUESET

can model the join operation as an intersection and then

use the split gate to perform the maximum or the summa-

tion/cardinality operation over the output of the join—see

Figure 1. Other queries that TRUESET could model are

advanced keyword search queries containing complicated

filters that can be expressed as arbitrary combinations of

set operations (union, intersection, difference) over an

underlying data set. Finally, the computation of similarity

measurements for datasets often employs set operations.

One of the most popular measurements of this type, is the

Jaccard index [17] which is computed for two sets, as the

ratio of the cardinalities of their intersection and union, a

computation that can be easily compiled with TRUESET.

Technical highlight. Our core technical construction is

inspired by the recent quadratic span and arithmetic pro-

grams [14], which were used to implement VC for any



USENIX Association  23rd USENIX Security Symposium 767

Boolean or arithmetic circuit. Since our internal repre-

sentation is a polynomial circuit (as mentioned earlier),

we invent quadratic polynomial programs (QPP). During

the prover’s computation, polynomials on the wires of the

circuit are evaluated at a random point s—however, this

takes place in the exponent of a bilinear group, in a way

that the server does not learn s. Evaluating the polynomial

at the point s in effect reduces the polynomial to a value—

therefore one can now think of the polynomial circuit

as a normal arithmetic circuit whose wires encode plain

values. In this way, we can apply techniques resembling

quadratic arithmetic programs. While the intuition may

be summarized as above, designing the actual algebraic

construction and formally proving its security is nonethe-

less challenging, and requires a non-trivial transformation

of quadratic arithmetic programs.

1.1 Related Work

There exists a large amount of theoretical work on VC:

Micali [21] presented a scheme that can accommodate

proofs for any language in NP. A more efficient approach

is based on succinct non-interactive arguments of knowl-

edge (SNARKs) [5, 6, 7, 14]. For the case of polynomial-

time computable functions, protocols based on fully-

homomorphic encryption [12, 13] and attribute-based en-

cryption [24] have also been proposed. In general, the

above schemes employ heavy cryptographic primitives

and therefore are not very practical.

Recent works [2, 3, 9, 23, 25, 26, 29] have made im-

pressive progress toward implementations of some of

the above schemes, showing practicality for particular

functionalities. Unfortunately, the server’s cost for proof

computation remains too high to be considered for wide

deployment in real-world applications.

The problem of verifying a circuit of set operations

was first addressed in a recent work by Canetti et al. [10].

Their proofs are of size linear to the size of the circuit,

without however requiring a preprocessing phase for each

circuit. In comparison, our proofs are of constant size,

once such a preprocessing step has been run.

Papamanthou et al. [22] presented a scheme that pro-

vides verifiability for a single set operation. However,

more general set operations can be accommodated by se-

quentially using their approach, since all intermediate set

outputs are necessary for verification. This would lead to

increased communication complexity.

A related scheme appears in the work of Chung et

al. [11]. As this scheme uses Turing machines for the

underlying computation model, the prover has inherently

high complexity. Another work that combines verifiable

computation with outsourcing of storage is [1], where a

protocol for streaming datasets is proposed but the sup-

ported functionalities are quadratic polynomials only.

2 Definitions

In this section we provide necessary definitions and ter-

minology that will be useful in the rest of the paper.

Circuits of sets and polynomials. TRUESET uses the

same computation abstraction as the one used in the VC

scheme by Parno et al. [23]: a circuit. However, instead

of field elements, the circuit wires now carry sets, and,

instead of arithmetic multiplication and addition gates,

our circuit has three types of gates: intersection, union

and difference. For the sake of presentation, the sets we

are considering are simple sets, though our construction

can be extended to support multisets as well. We therefore

begin by defining a set circuit:

Definition 1 (Set circuit C) A set circuit C is a circuit

that has gates that implement set union, set intersection

or set difference over sets that have elements in a field F.

A set circuit is a tool that provides a clean abstrac-

tion of the computational steps necessary to perform a

set operation. This structured representation will allow

us to naturally encode a set operation into a number of

execution conditions that are met when it is performed

correctly. We stress that it is merely a theoretical abstrac-

tion and does not affect the way in which the computation

is performed; the computing party can use its choice of

efficient native libraries and architectures. In compari-

son, previous works that use arithmetic circuits to encode

more general computations, require the construction (or

simulation) and evaluation of such a circuit, an approach

that introduces an additional source of overhead.

As mentioned in the introduction, our main technique is

based on mapping any set circuit C to a circuit F of poly-

nomial operations, i.e., to a circuit that carries univariate

polynomials on its wires and has polynomial multiplica-

tion and polynomial addition gates. We now define the

polynomial circuit F :

Definition 2 (Polynomial circuit F) A polynomial cir-

cuit F in a field F is a circuit that has gates that im-

plement univariate polynomial addition and univariate

polynomial multiplication over F. We denote with d the

number of multiplication gates of F and with N the num-

ber of input and output wires of F . The input and output

wires are indexed 1, . . . , N . The rest of the wires2 are

indexed N + 1, . . . ,m.

SNARKs. TRUESET’s main building block is a primitive

called succinct non-interactive argument of knowledge

(SNARK) [14]. A SNARK allows a client to commit to

2These wires include free wires (which are inputs only to multiplica-

tion gates) and the outputs of the internal multiplication gates (whose

outputs are not outputs of the circuit). The set of these wires is denoted

with Im and has size at most 3d.
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a computation circuit C and then have a prover provide

succinct cryptographic proofs that there exists an assign-

ment on the wires w (which is called witness) such that

the input-output pair x = (I,O) is valid.

As opposed to verifiable computation [24], a SNARK

allows a prover to specify some wires of the input I as part

of the witness w (this is useful when proving membership

in an NP language, where the prover must prove witness

existence). For this reason, SNARKs are more powerful

than VC and therefore for the rest of the paper, we will

show how to construct a SNARK for hierarchical set

operations. In the full version of our paper [20], we

show how to use the SNARK construction to provide

a VC scheme as well as a VC scheme for outsourced

sets, where the server not only performs the computation,

but also stores the sets for the client. We now give the

SNARK definition, adjusted from [14].

Definition 3 (SNARK scheme) A SNARK scheme con-

sists of three probabilistic polynomial time (PPT) algo-

rithms (KeyGen,Prove,Verify) defined as follows.

1. (pk, sk) ← KeyGen(1k, C). The key generation al-

gorithm takes as input the security parameter k and

a computation circuit C; it outputs a public key pk,

and a secret key sk.

2. π ← Prove(pk, x, w): The prover algorithm takes

as input the public key pk, an input-output pair x =
(I,O), a valid witness w and it outputs a proof π.

3. {0, 1} ← Verify(sk, x, π): Given the key sk, a state-

ment x and a proof π, the verification algorithm

outputs 0 or 1.

We say that a SNARK is publicly-verifiable if sk = pk. In

this case, proofs can be verified by anyone with pk. Oth-

erwise, we call it a secretly-verifiable SNARK, in which

case only the party with sk can verify.

There are various properties that a SNARK should

satisfy. The most important one is soundness. Namely,

no PPT adversary should be able to output a verifying

proof π for an input-output pair x = (I,O) that is not

consistent with C. All the other properties of SNARKs

are described formally in Appendix 6.2.

3 A SNARK for Polynomial Circuits

In their recent seminal work, Gennaro et al. [14] showed

how to compactly encode computations as quadratic pro-

grams, in order to derive very efficient SNARKs. Specif-

ically, they show how to convert any arithmetic circuit

into a comparably-sized Quadratic Arithmetic Program

(QAP), and any Boolean circuit into a comparably-sized

Quadratic Span Program (QSP).

In this section we describe our SNARK construction

for polynomial circuits. The construction is a modifica-

tion of the optimized construction for arithmetic circuits

that was presented by Parno et al. [23] (Protocol 2) and

which is based on the original work of Gennaro et al. [14].

Our extension accounts for univariate polynomials on the

wires, instead of just arithmetic values. We therefore need

to define a quadratic polynomial program:

Definition 4 (Quadratic Polynomial Program (QPP))

A QPP Q for a polynomial circuit F contains three

sets of polynomials V = {vk(x)},W = {wk(x)},Y =
{yk(x)} for k = 1, . . . ,m and a target polynomial τ(x).
We say that Q computes F if: c1(z), c2(z), . . . , cN (z) is

a valid assignment of F’s inputs and outputs iff there

exist polynomials cN+1(z), . . . , cm(z) such that τ(x)
divides p(x, z) where

p(x, z) =

(

m
∑

k=1

ck(z)vk(x)

)(

m
∑

k=1

ck(z)wk(x)

)

−

(

m
∑

k=1

ck(z)yk(x)

)

. (3.1)

We define the degree of Q to equal the degree of τ(x).

The main difference of the above quadratic program with

the one presented in [23] is the fact that we introduce

another variable z in the polynomial p(x, z) representing

the program (hence we need to account for bivariate poly-

nomials, instead of univariate), which is going to account

for the polynomials on the wires of the circuit.

Constructing a QPP. We now show how to construct

a QPP Q for a polynomial circuit. The polynomials in

V,W,Y and the polynomial τ(x) are computed as fol-

lows. Let r1, r2, . . . , rd be random elements in F. First,

set τ(x) = (x−r1)(x−r2) . . . (x−rd) and compute the

polynomial vk(x) such that vk(ri) = 1 iff wire k is the

left input of multiplication gate i, otherwise vk(ri) = 0.

Similarly, wk(ri) = 1 iff wire k is the right input of mul-

tiplication gate i, otherwise wk(ri) = 0 and yk(ri) = 1
iff wire k is the output of multiplication gate i, otherwise

yk(ri) = 0. For example, consider the circuit of Figure 2

that has five inputs and one output and its wires are num-

bered as shown in the figure (gates take the index of the

their output wire). Then τ(x) = (x− r6)(x− r7). For vk
we require that vk(r6) = 0 except for v2(r6) = 1, since

the second wire is the only left input for the sixth gate,

and vk(r7) = 0 except for v1(r7) and v6(r7) which are 1,

since the first and sixth wire contribute as left inputs to

gate 7. Right input polynomials wk are computed simi-

larly and output polynomials yk are computed such that

y6(r6) = y7(r7) = 1; all other cases are set to 0.

To see why the above QPP computes F , let us fo-

cus on a single multiplication gate g, with k1 being its



USENIX Association  23rd USENIX Security Symposium 769

×

c1(z) c2(z) c3(z) c4(z) c5(z)

c6(z)

c7(z)

×

+

+

Figure 2: A sample polynomial circuit.

output wire and k2 and k3 be its left and right input

wires respectively. Due to the divisibility requirement, it

holds p(ri, z) = 0 for i = 1, . . . , d, hence Equation 3.1

will give (
∑m

k=1
ck(z)vk(rg))(

∑m

k=1
ck(z)wk(rg)) =

(
∑m

k=1
ck(z)yk(rg)). Now, from the way the polyno-

mials vk, wk, yk were defined above, most terms are 0

and what remains is ck2
(z)vk2

(rg) · ck3
(z)wk3

(rg) =
ck1

(z)yk1
(rg) or else ck2

(z) · ck3
(z) = ck1

(z), which is

the definition of a multiplication gate. More formally:

Lemma 1 The above QPP Q computes F .

Proof: (⇒) Suppose c1(z), c2(z), . . . , cN (z) are correct

assignments of the input and output wires but there do

not exist polynomials cN+1(z), . . . , cm(z) such that τ(x)
divides p(x, z). Then there is at least one multiplication

gate r with left input x, right input y and output o, such

that p(r, z) �= 0. Let p be the path of multiplication gates

that contains r starting from an input polynomial ci(z) to

an output polynomial cj(z), where i, j ≤ N . Since ci(z)
and cj(z) are correct assignments, there must exist poly-

nomials cx(z) and cy(z) such that cx(z)cy(z) = co(z).
Since r has a single left input, a single right input and

a single output it holds vx(r) = 1 and vi(r) = 0 for all

i �= x. Similarly, wy(r) = 1 and wi(r) = 0 for all i �= y

and yo(r) = 1 and yi(r) = 0 for all i �= o. Therefore

p(r, z) �= 0 implies that for all polynomials cx(z), cy(z),
co(z), it is cx(z)cy(z) �= co(z), a contradiction.

(⇐) Suppose τ(x) divides p(x, z). Then p(r, z) = 0
for all multiplication gates r. By the definition of vi(x),
wi(x), yi(x), the c1(z), c2(z), . . . , cm(z) are correct as-

signments on the circuit wires.

We next give an efficient SNARK construction for poly-

nomial circuits based on the above QPP. Recall that a

polynomial circuit F has d multiplication gates and m

wires, the wires 1, . . . , N occupy inputs and outputs and

set Im = {N + 1, . . . ,m} represents the internal wires,

where |Im| ≤ 3d. Also, we denote with ni the degree of

polynomial on wire i and we set n to be an upper bound

on the degrees of the polynomials on F’s wires.

3.1 Intuition of Construction

The SNARK construction that we present works as fol-

lows. First, the key generation algorithm KeyGen pro-

duces a “commitment” to the polynomial circuit F by

outputting elements that relate to the internal set of wires

Im of the QPP Q = (V,W,Y, τ(x)) as the public key.

These elements encode bivariate polynomials in the ex-

ponent, evaluated at randomly chosen points t and s, to

accommodate for the fact that circuit F encodes opera-

tions over univariate polynomials and not just arithmetic

values (as is the case with [14]).

As was described in the previous section, for the prover

to prove that an assignment c1(z), c2(z), . . . , cN (z) of

polynomials on input/output wires is valid, it suffices

to prove there exist polynomials cN+1(z), . . . , cm(z)
corresponding to assignments on the internal wires,

such that the polynomial p(x, z) from Relation 3.1

has roots r1, r2, . . . , rd. To prove this, the prover

first “solves” the circuit and computes the polynomials

c1(z), c2(z), . . . , cm(z) that correspond to the correct as-

signments on the wires. Then he uses these polynomials

and the public evaluation key (i.e., the circuit “commit-

ment”) to compute the following three types of terms

(which comprise the actual proof). The detailed computa-

tion of these values is described in Section 3.2.

• Extractability terms. These terms declare three

polynomials in the exponent, namely polynomials∑m

k=N+1
ck(z)vk(x),

∑m

k=N+1
ck(z)wk(x), and∑m

k=N+1
ck(z)yk(x). These polynomials corre-

spond to the internal wires since the verifier can

fill in the parts for the input and output wires.

The above terms are engineered to allow extractabil-

ity using a knowledge assumption. In particu-

lar, given these terms, there exists a polynomial-

time extractor that can, with overwhelming proba-

bility, recover the assignment cN+1(z), . . . , cm(z)
on internal wires. This proves the existence of

cN+1(z), . . . , cm(z).

• Consistency check terms. Extraction is done sep-

arately for terms related to the three polynomials∑m

k=N+1
ck(z)vk(x),

∑m

k=N+1
ck(z)wk(x), and∑m

k=N+1
ck(z)yk(x). We therefore require a set of

consistency check terms to ensure that the extracted

cN+1(z), . . . , cm(z) polynomials are consistent for

the above V , W , and Y terms—otherwise, the same

wire can have ambiguous assignments.

• Divisibility check term. Finally, the divisibility

check term is to ensure that the above divisibil-

ity check corresponding to relation p(x, z) =
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h(x, z)τ(x), holds for the polynomial

(

m
∑

k=1

ck(z)vk(x)

)(

m
∑

k=1

ck(z)wk(x)

)

−

(

m
∑

k=1

ck(z)yk(x)

)

declared earlier by the extractability terms.

3.2 Concrete Construction

We now give the algorithms of our SNARK construction,

(following Definition 3). In comparison with the QSP

and QAP constructions [14, 23], one difficulty arises in

our setting when working with polynomials on wires. In

essence, to express a polynomial ck(z) on a wire in our

construction, we evaluate the polynomial at a committed

point z = t. In existing QSP and QAP constructions,

the prover knows the cleartext value on each wire when

constructing the proof. However, in our setting, the prover

does not know what t is, and hence cannot directly evalu-

ate the polynomials ck(z)’s on each wire. In fact, security

would be broken if the prover knew the value of the poly-

nomials at z = t.
To overcome this problem, we have to include more el-

ements in the evaluation key which will contain exponent

powers of the variable t (see the evaluation key below).

In this way, the prover will be able to evaluate ck(t) in

the exponent, without ever learning the value t. We now

give the algorithms:

(pk, sk) ← KeyGen(F , 1k): Let F be a polynomial cir-

cuit. Build the corresponding QPP Q = (V,W,Y, τ(x))
as above. Let e be a non-trivial bilinear map e : G×G →
GT , and let g be a generator of G. G and GT have prime

order p. Pick s, t, rv, rw, αv, αw, αy, β, γ from Zp and

set ry = rvrw and gv = grv , gw = grw and gy = gry .

The public evaluation key EKF is

1. {g
tivk(s)
v , g

tiwk(s)
w , g

tiyk(s)
y }(i,k)∈[n]×Im .

2. {g
tiαvvk(s)
v , g

tiαwwk(s)
w , g

tiαyyk(s)
y }(i,k)∈[n]×Im .

3. {g
tiβ·vk(s)
v g

tiβ·wk(s)
w g

tiβ·yk(s)
y }(i,k)∈[n]×Im .

4. {gt
isj}(i,j)∈[2n]×[d].

The verification key VKF consists of the values

g, gαv , gαw , gαy , gγ , gβγgt(s)y

and the set {g
tivk(s)
v , g

tiwk(s)
w , g

tiyk(s)
y }(i,k)∈[n]×[N ].

Note VKF and EKF are the public key pk of the SNARK.

Our SNARK is publicly verifiable, hence sk = pk.

π ← Prove(pk, x, w): The input x contains input poly-

nomials u and output polynomials y and the witness w
(which contains assignments of polynomials on the inter-

nal wires). Let ck(z) be the polynomials on the circuit’s

wires such that y = F(u,w). Let h(x, z) be the poly-

nomial such that p(x, z) = h(x, z) · τ(x). The proof is

computed as follows:

1. (Extractability terms) g
vm(s,t)
v , g

wm(s,t)
w , g

ym(s,t)
y ,

g
αvvm(s,t)
v , g

αwwm(s,t)
w , g

αyym(s,t)
y .

2. (Consistency check term)

g
β·vm(s,t)
v g

β·wm(s,t)
w g

β·ym(s,t)
y .

3. (Divisibility check term) gh(s,t), where

(a) vm(x, z) =
∑

k∈Im
ck(z)vk(x);

(b) wm(x, z) =
∑

k∈Im
ck(z)wk(x); and

(c) ym(x, z) =
∑

k∈Im
ck(z)yk(x). Note that the term

g
β·vm(s,t)
v g

β·wm(s,t)
w g

β·ym(s,t)
y can be computed from pub-

lic key terms {g
tiβ·vk(s)
v g

tiβ·vk(s)
w g

tiβ·yk(s)
y }(i,k)∈[n]×Im .

{0, 1} ← Verify(pk, x, π): Parse the proof π as

1. γv, γw, γy, κv, κw, κy .

2. Λ.

3. γh.

First, verify all three α terms: e(γv, g
αv )

?
= e(κv, g) ∧

e(γw, g
αw)

?
= e(κw, g) ∧ e(γy, g

αy )
?
= e(κy, g). Then

verify the divisibility requirement:

e(λv · γv, λw · γw)/e(λy · γy, g)
?
= e(γh, g

τ(s)),

where λv = g
∑

k∈[N] ck(t)vk(s), λw = g
∑

k∈[N] ck(t)wk(s),

λy = g
∑

k∈[N] ck(t)yk(s). Finally verify the β term:

e(γv · γw · γy, g
βγ)

?
= e(Λ, gγ).

3.3 Asymptotic Complexity and Security

In this section we analyze the asymptotic complexity of

our SNARK construction for polynomial circuits. We

also state the security of our scheme.

KeyGen: It is easy to see that the computation time of

KeyGen is O(n|Im|+ nd+ nN) = O(dn).

Prove: Let T be the time required to compute the poly-

nomials ci(z) for i = 1, . . . ,m and let ni be the degree

of the polynomial ci(z) for i = 1, . . . ,m. The compu-

tation of each gci(z)vi(x) (similarly for gci(z)wi(x) and

gci(z)yi(x)) for i ∈ Im takes O(ni) time (specifically,

7 ·
∑

ni exponentiations are required to compute all the
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proof), since one operation per coefficient of ci(z) is re-

quired. Then multiplication of |Im| terms is required.

Therefore the total time required is

O

(

T +
∑

i∈Im

ni + |Im|

)

= O (T + dν) ,

where ν = maxi=1,...,m{ni} is the maximum degree

of the polynomials over the wires and since |Im| ≤
3d. To compute p(x, z), first the degree d polynomials

vi(x), wi(x), yi(x) for i = 1, ...,m are parsed in time

O(dm). Then p(x, z) is computed according to Equa-

tion 1; each summation term is computed in time O(dν)
with naive bivariate polynomial multiplication and then

they are summed for total complexity of O(mdν). For

the division, note that p(x, z) has maximum degree in z

equal to 2ν and maximum degree in x equal to 2d. To

do the division, we apply “the change of variable trick”.

We set z = x2×(2d)+1 and therefore turn p(x, z) into

a polynomial of one variable x, namely the polynomial

p(x, x2×(2d)+1). Therefore the dividend now has maxi-

mum degree 2ν(4d+ 1) + 2d while the divisor has still

degree d. By using FFT, we can do such division in

O(dν log(dν)) time. Therefore the total time for Prove is

O (T + dν log(dν) +mdν).

Verify: The computation of each element gci(z)vi(x)

(resp. for gci(z)wi(x) and gci(z)yi(x)) for i = 1, . . . , N
takes O(ni) time, since one operation per coefficient of

ci(z) is required. Then multiplication of N terms is re-

quired. Hence, the total time required is O(
∑

i∈[N ] ni),
proportional to the size of the input and output.

We now have the following result. The involved as-

sumptions can be found in Appendix 6.1 and we provide

its proof of security in the full version of our paper [20].

Theorem 1 (Security of the SNARK for F) Let F be

a polynomial circuit with d multiplication gates. Let n be

an upper bound on the degrees of the polynomials on the

wires of F and let q = 4d+ 4. The construction above is

a SNARK under the 2(n+ 1)q-PKE, the (n+ 1)q-PDH

and the 2(n+ 1)q-SDH assumptions.

4 Efficient SNARKs for Set Circuits

In this section, we show how to use the SNARK construc-

tion for polynomial circuits from the previous section to

build a SNARK for set circuits.

We first define a mapping from sets to polynomials (see

Definition 5– such representation was also used in prior

work, e.g., the work of Kissner and Song [18]). Then we

express the correctness of the operations between two sets

as constraints between the polynomials produced from

this mapping (e.g., see Lemma 2). For a set operation to

be correct, these constraints must be satisfied simultane-

ously. To capture that, we represent all these constraints

with a circuit with loops, where a wire can participate in

more than one constraint (see Figure 3).

4.1 Expressing Sets with Polynomials

We first show how to represent sets and set operations

with polynomials and polynomial operations. This repre-

sentation is key for achieving input-specific time, since

we can represent a set with a polynomial evaluated at a

random point (regardless of its cardinality). Given a set,

we define its characteristic polynomial.

Definition 5 (Characteristic polynomial) Let A be a

set of elements {a1, a2, . . . , an} in F. We define its char-

acteristic polynomial as A(z) = (z + a1) . . . (z + an).

We now show the relations between set operations and

polynomial operations. Note that similar relations were

used by Papamanthou et al. [22] in prior work.

Lemma 2 (Intersection constraints) Let A, B and I be

three sets of elements in F. Then I = A ∩ B iff there exist

polynomials α(z), β(z), γ(z) and δ(z) such that

1. α(z)A(z) + β(z)B(z) = I(z).

2. γ(z)I(z) = A(z).

3. δ(z)I(z) = B(z).

Proof: (⇒) If I = A ∩ B, it follows that (i) the great

common divisor of polynomials A(z) and B(z) is I(z),
therefore, by Bézout’s identity, there exist polynomials

α(z) and β(z) such that (i) α(z)A(z) + β(z)B(z) =
I(z); (ii) I(z) divides A(z) and B(z), therefore there exist

polynomials γ(z) and δ(z) such that γ(z)I(z) = A(z)
and δ(z)I(z) = B(z).

(⇐) Let A, B and I be sets. Suppose there exist poly-

nomials α(z), β(z), γ(z) and δ(z) such that (1), (2) and

(3) are true. By replacing (2) and (3) into (1), we get that

α(z) and β(z) do not have any common factor, therefore

I(z) is the greatest common divisor of A(z) and B(z) and

therefore A ∩ B = I.

Corollary 1 (Union constraints) Let A, B and U be

three sets of elements in F. Then U = A ∪ B iff ∃ polyno-

mials i(z), α(z), β(z), γ(z) and δ(z) such that

1. α(z)A(z) + β(z)B(z) = i(z).

2. γ(z)i(z) = A(z).

3. δ(z)i(z) = B(z).

4. δ(z)A(z) = U(z).
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I = A ∩ B

A B

I

+

× ×

× ×

α(z)

A(z) B(z)

β(z)

I(z)

γ(z) δ(z)

U = A U B

A B

U

+

× ×
× ×

α(z)

A(z)

B(z)
β(z)

i(z)
γ(z) δ(z)

×

U(z)

D = A − B

A B

D

+

× ×

× ×

α(z)

A(z)

B(z)
β(z)

i(z)
γ(z)

δ(z)

×

D(z)

(a) (b) (c)

Figure 3: Set circuits for intersection (a), union (b) and difference (c) expressed as polynomial circuits with loops using Lemma 2,

Corollary 1 and Corollary 2.

Corollary 2 (Difference constraints) Let A, B and D

be three sets of elements in F. Then D = A − B iff ∃

polynomials i(z), α(z), β(z), γ(z) and δ(z) such that

1. α(z)A(z) + β(z)B(z) = i(z).

2. D(z)i(z) = A(z).

3. δ(z)i(z) = B(z).

4.2 From Set to Polynomial Circuits

Polynomial circuits with loops. To compile a set circuit

into a circuit on polynomials, we need to check that the

constraints in Lemma 2 and Corollaries 1 and 2 simultane-

ously satisfy for all intersection, union, and set difference

gates respectively. Doing this in a straightforward manner

seems to require implementing a Boolean AND gate us-

ing polynomial algebra, which introduces an unnecessary

representation overhead.

We use a simple idea to avoid this issue, by introduc-

ing polynomial circuits with loops. This means that the

circuit’s wires, following the direction of evaluation, can

contain loops, as shown in Figure 3. When a circuit con-

tains loops, we require that there exist an assignment for

the wires such that every gate’s inputs and output are con-

sistent. It is not hard to see that we can build a QPP for a

polynomial circuit with loops.

From set circuits to polynomial circuits. Suppose we

have a set circuit C, as in Definition 1. We can compile C

into a polynomial circuit with loops F as follows:

1. Replace every intersection gate gI with the circuit

of Figure 3(a), which implements the constraints in

Lemma 2. Note that 6 additional wires per intersec-

tion gate are introduced during this compilation, 4

of which are free wires. Also, for each intersection

gate, 4 polynomial multiplication gates are added.

2. Replace every union gate gU of C with the circuit of

Figure 3(b), which implements the set of constraints

in Corollary 1. Note that 7 additional wires per

union gate are introduced during this compilation, 3

of which are free wires. Also, for each union gate, 5

polynomial multiplication gates are added.

3. Replace every difference gate gD of C with the cir-

cuit of Figure 3(c), which implements the set of

constraints in Corollary 2. Note that 7 additional

wires per union gate are introduced during this com-

pilation, 3 of which are free wires. Also, for each

difference gate, 5 polynomial multiplication gates

are added.

4.3 Asymptotic Complexity and Security

Let C be a set circuit with d gates (out of which d1 are

intersection gates and d2 are union and difference gates)

and N inputs and outputs. After compiling C into an

polynomial circuit with loops, we end up with a circuit F

with 4d1 + 5d2 multiplication gates since each intersec-

tion introduces 4 multiplication gates and each union or

difference introduces 5 multiplication gates.

Therefore, a SNARK for set circuits with d = d1 + d2
gates can be derived from a SNARK for polynomial cir-

cuits with 4d1 + 5d2 multiplication gates. Note that the

complexity of Prove for the SNARK for set circuits is

O(dν log2 ν log log ν) because the prover runs the ex-

tended Euclidean algorithm to compute the polynomials

on the free wires, which takes O(t log2 t log log t) time,

for t-degree polynomials as inputs.

Theorem 2 (Security of the SNARK for C) Let C be a

set circuit that has d total gates and N total inputs and

outputs. Let n be an upper bound on the cardinalities of

the sets on the wires of C and let q = 16d1 + 20d2 + 4,

where d1 is the number of intersection gates and d2 is

the number of union and difference gates (d = d1 + d2).

The construction above is a SNARK for the set circuit

C under the 2(n+ 1)q-PKE, the (n+ 1)q-PDH and the

2(n+ 1)q-SDH assumptions.

We note here that there do exist known SNARK con-

structions for languages in NP that have excellent asymp-

totic behavior and are input-specific, e.g., the work of

Bitansky et al. [6], based on recursive proof composition.
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Therefore, in theory, our SNARK asymptotics are the

same with the ones by Bitansky et al. [6] (when applied

to the case of set operations). However, the concrete over-

head of such techniques remains high; in fact, for most

functionalities it is hard to deduce the involved constants.

In comparison, with our approach, we can always deduce

an upper bound on the number of necessary operations

involved. We give a tight complexity analysis of our

approach in the full version of our paper [20].

4.4 Handling More Expressive Circuits

As discussed in the introduction, by moving from QAPs to

QPPs our scheme is not losing anything in expressiveness.

So far we explicitly discussed the design of efficient set

circuits that only consist of set gates. Ideally, we want

to be able to efficiently accommodate “hybrid” circuits

that consist both of set and arithmetic operations in an

optimally tailored approach.

In this section we show how, by constructing a split

gate (and a merge gate) that upon input a set A outputs

its elements ai, we gain some “backwards compatibility”

with respect to QAPs. In particular, this allows us to com-

pute on the set elements themselves, e.g., performing MAX

or COUNT. Also, using techniques described by Parno et

al. [23], one can go one step below in the representation

hierarchy and represent ai’s in binary form which yields,

for example, more efficient comparison operations.

Hence we produce a complete toolkit that a delegating

client can use for a general purpose computation, in a

way that allows it both to be more efficient for the part

corresponding to set operations and at the same time per-

form arithmetic and bit operations optimally, choosing

different levels of abstraction for different parts of the

circuit.

Zero-degree assertion gate. Arithmetic values can be

naturally interpreted as zero-degree polynomials. Since

we want to securely accommodate both polynomials and

arithmetic values in our circuit, we need to construct

a gate that will constrain the values of some wires to

arithmetic values. For example, we need to assure that

the outputs of a split gate are indeed numbers (and not

higher degree polynomials).

Lemma 3 (Zero-degree constraints) Let p(z) be a uni-

variate polynomial in F[z]. The degree of p(z) is 0 iff ∃
polynomial q(z) in F[z] such that p(z)q(z) = 1.

Proof: (⇒) Every zero-degree polynomial q(z) ∈ F[z]
also belongs in F. Since every element in F has an inverse,

the claim follows. (⇐) Assume now that p(z)q(z) = 1.

Since polynomial 1 is of degree 0, p(z)q(z) must also

be of degree 0. By polynomial multiplication, we know

that p(z)q(z) has degree deg(p(z)) + deg(q(z)). Hence

deg(p(z)) = deg(q(z)) = 0.

SPLIT

A

a

+

×

z

A(z)

b
a
a-1

×

+

b
b-1

×

1

+

c
c-1

×

+

d
d-1

×

c d z z z

Figure 4: Implementation of a split gate for the set A =

{a, b, c, d}. The elements z and 1 on the wires are hard-coded

in the circuit during setup. All other polynomials on the wires

are computed by the prover.

This simple gate consists of a multiplication gate be-

tween polynomial p(z) and an auxiliary input q(z) com-

puted by the server and the output is set to the (hard-

coded) polynomial 1. If the input is indeed a zero-degree

polynomial, by the above Lemma, q(z) is easily com-

putable by the server (an inverse computation in F).

Split gate. A split gate, depicted in Figure 4, operates

as follows. On input a wire with value A(z), it outputs

n wires with the individual elements ai. First, each of

the wires carrying ai is connected to a degree-zero as-

sertion gate. This will make sure that these wires carry

arithmetic values. Second, each of these wires is used as

an input to an addition gate, with the other input being

the degree-one polynomial z. Then the outputs of all the

addition gates are multiplied together and the output of

the multiplication is connected to the wire carrying A(z).

Split gate with variable number of outputs. In the

above we assumed that the split gate has a fixed number

of outputs, n. However, the number of outputs can vary.

To accommodate this, we assume that n is an upper bound

on the number of outputs of a split gate. Now, for each

of the n output wires, we introduce an indicator variable

νi (picked by the prover) such that if νi = 1, this output

wire is occupied and carries an arithmetic value, other-

wise νi = 0. Then, in the split gate of Figure 4, instead of∏
n

i=1
(z + ai) we compute

∏
n

i=1
[νi(z + ai) + (1− νi)].

Note here that an additional restriction we need to impose

is that νi ∈ {0, 1}. Fortunately this can be checked very

easily by adding one self-multiplication gate and a loop

wire for each value that enforces the condition νi ·νi = νi
that clearly holds iff νi = 0 or 1.

Cardinality gate. One immediate side-effect of our con-

struction for split gates with variable number of outputs,

is that it indicates a way to construct another very impor-

tant type of gate, namely a cardinality gate. Imagine for

example a computation where the requested output is not

a set but only its cardinality (e.g., a COUNT SQL-query

or the Jaccard similarity index). A cardinality gate is im-

plemented exactly like a split gate, however it only has a
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single output wire that is computed as
∑

i νi, using n− 1
addition gates over the νi wires.

Merge gate. Finally, the merge gate upon input n wires

carrying numerical values ai, outputs a single wire that

carries them as a set (i.e., its characteristic polynomial).

The construction is similar to that of the split gate, only

in reverse order. First input wires are tested to verify they

are of degree 0, with n zero-degree assertion gates. Then,

these wires are used as input for union gates, taken in

pairs, in an iterative manner (imagine a binary tree of

unions with n leaves and the output set at the root).

5 Evaluation

We now present the evaluation of TRUESET comparing

its performance with Pinocchio [23], which is the state-of-

the-art general VC scheme (already reducing computation

time by orders-of-magnitude when compared with pre-

vious implementations). We also considered alternative

candidates for comparison such as Pantry [9] which is

specialized for stateful computations. Pantry is theoret-

ically more efficient than Pinocchio, as it can support a

RAM-based O(n)-time algorithm for computing set inter-

section (i.e., when the input sets are sorted), instead of the

circuit-based O(n log2 n) or O(n2) algorithms that Pinoc-

chio supports. However, evaluation showed that Pantry

requires considerable proof construction time, even for

simple memory-based operations (e.g., 92 seconds for a

single verifiable put operation in a memory of 8192 ad-

dresses), hence we chose to compare only with Pinocchio.

In our experiments, we analyze the performance of

TRUESET both for the case of a single set operation and

multiple set operations. We begin by presenting the details

of our implementation and the evaluation environment

and then we present the performance results.

5.1 Implementation

We built TRUESET by extending Pinocchio’s C++ imple-

mentation so that it can handle set circuits, with the special

set gates that we propose. However, since the original

implementation of Pinocchio used efficient libraries for

pairing-based cryptography and field manipulation that

are not available for public use (internal to Microsoft), the

first step was to replace those libraries with available free

libraries that have similar characteristics. In particular, we

used the Number Theory Library (NTL) [27] along with

the GNU Multi-Precision (GMP) library [15] for polyno-

mial arithmetic, in addition to an efficient free library for

ate-pairing over Barreto-Naehrig curves [4], in which the

underlying BN curve is y2 = x3 +2 over a 254-bit prime

field Fp that maintains a 126 bit-level of security. As in

Pinocchio, the size of the cryptographic proof produced

by our implementation is typically equal to 288 bytes in

all experiments regardless of the input or circuit sizes.

TRUESET’s executable receives an input file describing

a set circuit that contains one or more of the set gates

described earlier. The executable compiles the circuit

to a QPP in two stages. In the first stage, the set gates

are transformed into their equivalent representation using

polynomial multiplication and addition gates, as in Fig-

ures 3 and 4, and then the QPP is formed directly in the

second stage by generating the roots, and calculating the

V , W and Y polynomials.

Optimizations. For a fair comparison, we employ the

same optimizations used for reducing the exponentiation

overhead in Pinocchio’s implementation. Concerning

polynomial arithmetic, Pinocchio’s implementation uses

an FFT approach to reduce the polynomial multiplication

costs. In our implementation, we use the NTL library,

which already provides an efficient solution for polyno-

mial arithmetic based on FFT [28].

In addition to the above, the following optimizations

were found to be very useful when the number of set gates

is high, or when the set split gate is being used.

1) For key generation, we reduce the generated key size

by considering the maximum polynomial degree that can

appear on each wire, instead of assuming a global upper

bound on the polynomial degree for all wires (as described

in previous sections). This can be calculated by assuming

a maximum cardinality of the sets on the input wires, and

then iterating over the circuit wires to set the maximum

degree per wire in the worst case, e.g. the sum of the

worst case cardinalities of the input sets for the output of

a union gate, and the smaller for intersections.

2) The NTL library does not provide direct support for bi-

variate polynomial operations, needed to calculate h(x, z)
through division of p(x, z) by τ(x). Hence, instead of

doing a naive O(n2) polynomial division, we apply the

change-of-variable trick discussed in Section 3.3 to trans-

form bivariate polynomials into univariate ones that can

be handled efficiently with NTL FFT operations.

3) Finally, calculation of the coefficients of the charac-

teristic polynomial corresponding to the output is done

by the prover and not by the verifier. The verifier then

verifies that the set elements of the output (i.e., the roots

of the characteristic polynomials) match the polynomial

(expressed in coefficients) returned by the server. This can

be efficiently done through a randomized check—see al-

gorithm certify() from [22]. We specify that this slightly

increases the communication bandwidth (the server effec-

tively sends the output set twice, in two different encod-

ings) but we consider this an acceptable overhead (This

can be avoided by having the client perform the interpola-

tion himself, increasing the verification time). It can also

be noted that the input polynomial coefficients computa-
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tion can be outsourced similarly to the server side, if the

client does not have them computed already.

5.2 Experiments Setup

We now provide a comparison between TRUESET’s ap-

proach and Pinocchio’s approach based for set operations.

For a fair comparison, we considered two different ways

to construct the arithmetic circuits used by Pinocchio to

verify the set operations:

• Pairwise comparison-based, which is the naive ap-

proach for performing set operations. This requires

O(n2) equality comparisons.

• Sorting network-based, in which the input sets are

merged and sorted first using and odd-even merge-

sort network [19]. Then a check for duplicate con-

secutive elements is applied to include/remove re-

peated elements, according to the query being exe-

cuted. This requires O(n log2 n) comparator gates,

and O(n) equality gates.

Although the second approach is asymptotically more

efficient, when translated to Pinocchio’s circuits it results

in numerous multiplication gates. This is due to the k-bits

split gates needed to perform comparison operations, re-

sulting into great overhead in the key generation and proof

computation stages. For a k-bit possible input value, this

split gate needs k multiplication constraints to constrain

each bit wire to be either 0 or 1. (It should be noted that

these gates translate a wire into its bit-level representation

and they should not be confused with the split gates we

introduce in this paper, which output the elements of a set

as separate arithmetical values). On the other hand, the

pairwise approach uses zero-equality gates to check for

equality of elements. Each equality gate translates into

only two multiplication gates, requiring only two roots.

For fairness purposes, different Pinocchio circuits were

produced for each different input set cardinality we exper-

iment with, as each wire in Pinocchio’s circuits represents

a single element. On the other hand, TRUESET can use

the same circuit for different input cardinalities.

We consider two Pinocchio circuit implementations:

• MS Pinocchio: This is the executable built using

efficient Microsoft internal libraries.

• NTL-ZM Pinocchio: This is a Pinocchio version

built using exactly the same free libraries we used

for our TRUESET implementation. This will help

ensure having a fair comparison.

The experiments were conducted on a Lenovo IdeaPad

Y580 Laptop. The executable used a single core of a

2.3 GHz Intel Core i7 with 8 GB of RAM. For the input

sets, disjoint sets containing elements in F were assumed.

For running time statistics, ten runs were collected for

each data point, and the 95% confidence interval was

calculated. Due to the scale of the figures, the confidence

interval of the execution times (i.e., error bars) was too

low to be visualized.

5.3 Single-Gate Circuit

In this subsection, we compare TRUESET and Pinocchio’s

protocols based on the verification of a single union op-

eration that accepts two input sets of equal cardinalities.

We study both the time overhead and the key sizes with

respect to different input set cardinalities. Note that, ex-

periments for higher input cardinalities in Pinocchio’s

case incur great memory overhead due to the large circuit

size, therefore we were unable to even perform Pinoc-

chio’s for large input sizes.

Figure 5 shows the comparison between TRUESET’s

approach and Pinocchio’s pairwise and sorting network

approaches, versus the cardinality of each input set. The

results show clearly that TRUESET outperforms both ap-

proaches in the key generation and proof computation

stages by orders of magnitude, while maintaining the

same verification time. Specifically, TRUESET outper-

forms Pinocchio in the prover’s running time by 150x

when the input set cardinality is 28. This saving hap-

pens in both polynomial computations and exponentia-

tion operations, as shown in Figure 5 (c). We also note

that Pinocchio’s pairwise comparison approach outper-

forms the sorting network approach due to the expensive

split gates needed for comparisons in the sorting-network

circuits, as discussed above, which results into a large

constant affecting the performance at small cardinalities.

Considering evaluation and verification key sizes, Fig-

ure 5 also shows a comparison between TRUESET and

Pinocchio under both the pairwise and sorting networks

approaches. The figures demonstrate that TRUESET

yields much smaller evaluation keys due to the more com-

pact wire representation it employs (a single wire for a

set as opposed to a wire per element), e.g., at an input set

cardinality of 28, the saving is about 98%. It can also be

noticed that the keys generated in Pinocchio using sort-

ing networks are much larger than the ones generated in

pairwise circuits, due to the use of the split gates. On the

other hand, TRUESET and Pinocchio almost maintain the

same verification key sizes, as the verification key mainly

depends on the number of input elements in addition to

the number of output elements in the worst case. (The

verification key in TRUESET is negligibly more than the

verification key of Pinocchio, due to an additional value

that is needed to be verified per each input or output set.

This is because an n-element set is represented by an

n-degree polynomial which requires n+ 1 coefficients.)
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Figure 5: Comparison between TRUESET and Pinocchio for the case of a single union gate. In the horizontal axis, we show the

cardinality of each input set in logarithmic scale. (Note: Each time data point is the average of ten runs. The error bars were too

small to be visualized). Subfigures (a), (b) and (d) show the comparison in terms of the key generation, proof computation and

verification times, while (c) shows TRUESET’s prover’s time in more detail compared to Pinocchio’s prover in the case of pairwise

comparison. Subfigures (e) and (f) show the compressed evaluation and verification key sizes (The cryptographic proof for all

instances is 288 bytes).

U

A B C D E F G H

-

U U

∩

U

U

Out = ((A U B) - (C U D)) U ((E U F)∩(G U H)) 

Figure 6: The multiple-gate circuit used for evaluation.

5.4 Multiple-Gate Circuit

We now compare TRUESET and Pinocchio’s performance

for a complex set circuit consisting of multiple set op-

erations, illustrated in Figure 6. The circuit takes eight

input sets of equal cardinalities, and outputs one set. We

compare both the prover’s overhead and the key sizes with

respect to different input set cardinalities, but this time

we consider only Pinocchio circuits based on pairwise

comparisons, as the sorting network approach has much

larger overhead for computation times and key sizes as

shown in the previous subsection.

Figure 7 shows a comparison between TRUESET’s

approach and Pinocchio’s approach. The results again
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Figure 7: Comparison between TRUESET and Pinocchio in the case of the multiple-gate circuit shown in Fig. 6, assuming the

pair-wise comparison circuit for Pinocchio. In the horizontal axis, we show the cardinality of each input set in logarithmic scale.

Subfigures (a), (b) and (d) show the comparison in terms of the key generation, proof computation and verification time, while (c)

shows TRUESET’s prover’s time in more detail compared to Pinocchio’s prover time. Subfigures (e) and (f) show the compressed

evaluation and verification key sizes (The cryptographic proof for all instances is 288 bytes).

confirm that TRUESET greatly outperforms Pinocchio’s

elapsed time for key generation and proof computation,

while maintaining the same verification time. In partic-

ular, for input set cardinality of 26, TRUESET’s prover

has a speedup of more than 50x. In terms of key sizes,

the figure confirms the observation that the evaluation key

used by TRUESET is tiny compared to that of Pinocchio,

e.g., 97% smaller when the input cardinality is 26.

5.5 Cardinality and Sum of Set Elements

Here, we evaluate TRUESET when a split gate is used

to calculate the cardinality and sum for the output set of

Figure 6. We compare that with Pinocchio’s performance

for the same functions. One important parameter that

has to be defined for the split gate first is the maximum

cardinality of the set it can support. This is needed for

translating the split gate to the appropriate number of

multiplication gates needed for verification. For example,

a split gate added to the output of the circuit in Figure 6,

will have to account for 4n set elements in the worst case,

if n is the upper bound on the input set cardinalities.

Table 1 presents a comparison between TRUESET and

Pinocchio in terms of the elapsed times in the three stages

and the evaluation/verification key sizes, when the input

set cardinality is 64. As the table shows, TRUESET can

provide better performance in terms of the key generation

and proof computation times (4x better proof computation

time), in addition to a much smaller public evaluation key.

It can be noted that, while there definitely exists a large

improvement over Pinocchio, it is not as large as the one
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Figure 8: Summary of TRUESET performance under all circuits in linear scale.

TRUESET MS Pinocchio NTL-ZM

Pinocchio

Key Generation (sec) 13.07 43.03 47.39

Proof Computation (sec) 32.45 174.99 137.79

Verification (sec) 0.065 0.074 0.066

Evaluation Key (MB) 12.7 72.45 72.45

Verification Key (KB) 49.65 48.6 48.6

Table 1: Comparison between TRUESET and Pinocchio on a

circuit that computes the cardinality and the sum of the output

set in the circuit in Figure 6, at input set cardinality of 64.

exhibited for the previous single-gate and multiple-gate

circuits. Overall, we found the split gate to be costlier

than set gates since the multiplication gates introduced

by the split gate increase proportionally with the number

of the set elements it can support, whereas set gates are

“oblivious” to the number of elements.

5.6 Discussion of Results

The evaluation of TRUESET for single-gate and multiple-

gate circuits showed huge improvement for both key gen-

eration and proof computation time over Pinocchio. For

example, for the single union case with 2
8-element input

sets, a speed-up of 150x was obtained for the prover’s

time, while providing more than 98% saving in the eval-

uation key size. For a multiple-gate circuit comprised

of seven set gates with eight input sets, each of 26 ele-

ments, a prover speed-up of more than 50x, and key size

reduction of 97% were obtained.

As can be qualitatively inferred by our plots, these

improvements in performance allow us to accommodate

problem instances that are several times larger than what

was considered achievable by previous works. TRUESET

achieves the performance behavior that Pinocchio exhibits

for sets of a few dozen elements, for sets that scale up

to approximately 8000 elements, handling circuits with

nearly 30x larger I/O size. Figure 8 summarizes the be-

havior of TRUESET for all circuits we experimented with,

illustrating its performance for the three stages in linear

scale. In all cases, the running time increases approxi-

mately linearly in the input size. The cost increases more

abruptly when a split gate is introduced due to the added

complexity discussed above. Improving the performance

of the split gate is one possible direction for future work.

Remarks. We discuss here a few points related to the

performance of our scheme.

Performance on Arithmetic Circuits. The presented eval-

uation covered the case of set circuits only, in which

our construction outperformed arithmetic circuits verified

using Pinocchio. Our construction can support typical

arithmetic circuits as well, by assuming that the maximum

polynomial degree on each wire is 0. In this case, our con-

struction will reduce to Pinocchio’s, however due to the

bivariate polynomial operations, there will be more over-

head in accommodating arithmetic circuits. For example,

for an arithmetic circuit handling the multiplication of

two 50x50 32-bit element matrices, the prover’s time with

TRUESET increased by 10% compared to Pinocchio.

Outsourced Sets. In the above, we assumed that the client

possesses the input sets. However, it is common practice

in cloud computing, to not only delegate computations

but storage as well. In this case, the client initially out-

sources the sets to the server and then proceeds to issue

set operation queries over them. This introduces the need

for an additional mechanism to ensure the authenticity of

the set elements used by the server. The full version of

our paper [20] describes a modified protocol that handles

this case using Merkle tree proofs.

Supporting multisets. Finally, it should be noted that

the comparisons with Pinocchio above assumed proper

sets only. In a setting that accommodates multiset op-

erations (i.e., sets that allow repetition in elements), we

expect TRUESET’s performance to be much better, as it

can naturally handle multiset cases without adding any

modifications. On the other hand, Pinocchio multiset

circuits are going to become more complex due to the

added complexity of taking repetitions into account. For

example, in intersection gates, it will not be enough to

only check that two element are equal, but it will also be

necessary to make sure that the matched element was not

encountered before, introducing additional overhead.
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6 Appendix

6.1 Computational Assumptions

Assumption 1 (q-PDH assumption [16]) The q-power

Diffie-Hellman (q-PDH) assumption holds for G if for

all PPT A the following probability is negligible in k:

Pr











(p,G,GT , e, g) ← G(1k); s ← Z
∗
p;

G ←
[

g, gs, . . . , gs
q

, gs
q+2

, . . . , gs
2q
]

;

σ ← (p,G,GT , e,G);

y ← A(σ) : y = gs
q+1











.

Assumption 2 (q-PKE assumption [16]) The q-power

knowledge of exponent assumption holds for G if for all

PPT A there exists a non-uniform PPT extractor χA such

that the following probability is negligible in k:

Pr













(p,G,GT , e, g) ← G(1k); {α, s} ← Z
∗
p;

G ←
[

g, gs, . . . , gs
q

, gα, gαs, . . . , gαs
q]

;
σ ← (p,G,GT , e,G);
(c, ĉ; a0, a1, . . . , aq) ← (A||χA)(σ, z) :

ĉ = cα ∧ c �= g
∏q

i=0
ais

i













,

for any auxiliary information z ∈ {0, 1}poly(k) that

is generated independently of α. Note that (y; z) ←
(A||χA)(x) signifies that on input x, A outputs y, and

that χA, given the same input x and A’s random tape,

produces z.

Assumption 3 (q-SDH assumption [8]) The q-strong

Diffie-Hellman (q-SDH) assumption holds for G if for all

PPT A the following probability is negligible in k:

Pr





(p,G,GT , e, g) ← G(1k); {s} ← Z
∗
p;

σ ← (p,G,GT , e,G =
[

g, gs, . . . , gs
q]

);

(y, c) ← A(σ) : y = e(g, g)
1

s+c .



 .

6.2 Succinct Non-Interactive Arguments of

Knowledge (SNARKs)

Definition 6 (SNARK) Algorithms

(KeyGen,Prove,Verify) give a succinct non-interactive

argument of knowledge (SNARK) for an NP language L
with corresponding NP relation RL if:

Completeness: For all x ∈ L with witness w ∈ RL(x),
the following probability is negligible in k:

Pr

[

Verify(sk, x, π) = 0

∣

∣

∣

∣

(pk, sk) ← KeyGen(1k),
π ← Prove(pk, x, w)

]

Adaptive soundness: For any PPT algorithm A, the

following probability is negligible in k:

Pr

[

Verify(sk, x, π) = 1
∧ (x /∈ L)

∣

∣

∣

∣

(pk, sk) ← KeyGen(1k),
(x, π) ← A(1k, pk)

]

Succinctness: The length of a proof is given by |π| =
poly(k)poly log(|x|+ |w|).

Extractability: For any poly-size prover Prv, there ex-

ists an extractor Extract such that for any statement

x, auxiliary information µ, the following holds:

Pr

















(pk, sk) ← KeyGen(1k)
π ← Prv(pk, x, µ)
Verify(sk, x, π) = 1

∧
w ← Extract(pk, sk, x, π)

w /∈ RL(x)

















= negl(k) .

Zero-knowledge: There exists a simulator Sim, such

that for any PPT adversary A, the following holds:

Pr





pk ← KeyGen(1k); (x,w) ← A(pk);
π ← Prove(pk, x, w) : (x,w) ∈ RL

and A(π) = 1





≃

Pr





(pk, state) ← Sim(1k); (x,w) ← A(pk);
π ← Sim(pk, x, state) : (x,w) ∈ RL

and A(π) = 1 .





We say that a SNARK is publicly verifiable if sk = pk.

In this case, proofs can be verified by anyone with pk.

Otherwise, we call it a secretly-verifiable SNARK, in

which case only the party with sk can verify.


