
TrueTime: Real-time Control System Simulation with MATLAB/Simulink

Henriksson, Dan; Cervin, Anton; Årzén, Karl-Erik

Published in:
Proceedings of the Nordic MATLAB Conference

2003

Link to publication

Citation for published version (APA):
Henriksson, D., Cervin, A., & Årzén, K-E. (2003). TrueTime: Real-time Control System Simulation with
MATLAB/Simulink. In Proceedings of the Nordic MATLAB Conference

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/17e2d2a4-09a9-4718-92c6-6a9780e20c08

TRUETIME: Real-time Control System Simulation with
MATLAB/Simulink

Dan Henriksson, Anton Cervin, Karl-Erik Årzén

Department of Automatic Control
Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden
{dan,anton,karlerik}@control.lth.se

Abstract: Traditional control design using MATLAB/Simulink, often disregards the temporal effects arising from the actual
implementation of the controllers. Nowadays, controllers are often implemented as tasks in a real-time kernel and communicate with other
nodes over a network. Consequently, the constraints of the target system, e.g., limited CPU speed and network bandwidth, must be taken into
account at design time.

For this purpose we have developed TRUETIME, a toolbox for simulation of distributed real-time control systems. TRUETIME makes it
possible to simulate the timely behavior of real-time kernels executing controller tasks. TRUETIME also makes it possible to simulate simple
models of network protocols and their influence on networked control loops.

TRUETIME consists of a kernel block and a network block, both variable-step S-functions written in C++. TRUETIME also provides a
collection of MATLAB functions used to, e.g., do A/D and D/A conversion, send and receive network messages, set up timers, and change
task attributes. The TRUETIME blocks are connected with ordinary continuous Simulink blocks to form a real-time control system.

The TRUETIME kernel block simulates a computer with an event-driven real-time kernel, A/D and D/A converters, a network interface, and
external interrupt channels. The kernel executes user-defined tasks and interrupt handlers, representing, e.g., I/O tasks, control algorithms, and
communication tasks. Execution is defined by user-written code functions (C++ functions or m-files) or graphically using ordinary discrete
Simulink blocks. The simulated execution time of the code may be modeled as constant, random or even data-dependent. Furthermore, the
real-time scheduling policy of the kernel is arbitrary and decided by the user.

The TRUETIME network block is event driven and distributes messages between computer nodes according to a chosen network model.
Currently five of the most common medium access control protocols are supported (CSMA/CD (Ethernet), CSMA/CA (CAN), token-ring,
FDMA, and TDMA). It is also possible to specify network parameters such as transmission rate, pre- and post-processing delays, frame
overhead, and loss probability.

TRUETIME is currently used as an experimental platform for research on flexible approaches to real-time implementation and scheduling
of controller tasks. One example is feedback scheduling where feedback is used in the real-time system to dynamically distribute resources
according to the current situation in the system.

1. Introduction

Control systems are becoming increasingly complex from
the perspectives of both control and computer science.
Today, even seemingly simple embedded control systems
often contain a multitasking real-time kernel and support
networking. At the same time, the market demands that the
cost of the system be kept at a minimum. For optimal use of
computing resources, the control algorithm and the control
software designs need to be considered at the same time.
For this reason, new, computer-based tools for real-time and
control co-design are needed.

Many computer-controlled systems are distributed systems
consisting of computer nodes and a communication network
connecting the various systems. It is not uncommon for
the sensor, the actuator, and the control calculations to re-
side on different nodes, as in vehicle systems, for example.
This gives rise to networked control loops (see [1]). Within
the individual nodes, the controllers are often implemented
as one or several tasks on a microprocessor with a real-

time operating system. Often the microprocessor also con-
tains tasks for other functions (e.g., communication and user
interfaces). The operating system typically uses multipro-
gramming to multiplex the execution of the various tasks.
The CPU time and the communication bandwidth can hence
be viewed as shared resources for which the tasks compete.

Digital control theory normally assumes equidistant sam-
pling intervals and a negligible or constant control delay
from sampling to actuation. However, this can seldom be
achieved in practice. Within a node, tasks interfere with
each other through preemption and blocking when wait-
ing for common resources. The execution times of the tasks
themselves may be data-dependent or may vary due to hard-
ware features such as caches. On the distributed level, the
communication gives rise to delays that can be more or
less deterministic depending on the communication proto-
col. Another source of temporal nondeterminism is the in-
creasing use of commercial off-the-shelf (COTS) hardware
and software components in real-time control (e.g., general-

purpose operating systems such as Windows and Linux and
general-purpose network protocols such as Ethernet). These
components are designed to optimize average-case rather
than worst-case performance.

The temporal nondeterminism can be reduced by the proper
choice of implementation techniques and platforms. For ex-
ample, time-driven static scheduling improves the determin-
ism, but at the same time it reduces the flexibility and lim-
its the possibilities for dynamic modifications. Other tech-
niques of similar nature are time-driven architectures such
as TTA [5] and synchronous programming languages such
as Esterel, Lustre, and Signal [4]. With these techniques,
however, a certain level of temporal nondeterminism is still
unavoidable.

The delay and jitter introduced by the computer system
can lead to significant performance degradation. To achieve
good performance in systems with limited computer re-
sources, the constraints of the implementation platform
must be taken into account at design time. To facilitate this,
software tools are needed to analyze and simulate how the
timing affects the control performance.

This paper describes TRUETIME1 , which is MATLAB tool-
box facilitating simulation of the temporal behavior of a
multitasking real-time kernel executing controller tasks.
The tasks are controlling processes that are modeled as
ordinary Simulink blocks. TRUETIME also makes it pos-
sible to simulate simple models of communication net-
works and their influence on networked control loops. Dif-
ferent scheduling policies may be used (e.g., priority-based
preemptive scheduling and earliest-deadline-first (EDF)
scheduling, see, e.g., [6].

TRUETIME is currently used as an experimental platform
for research on dynamic real-time control systems. For in-
stance, it is possible to study compensation schemes that
adjust the control algorithm based on measurements of ac-
tual timing variations (i.e., to treat the temporal uncertainty
as a disturbance and manage it with feedforward or gain
scheduling). It is also easy to experiment with more flexi-
ble approaches to real-time scheduling of controllers, such
as feedback scheduling [3]. There the available CPU or net-
work resources are dynamically distributed according the
current situation (CPU load, the performance of the differ-
ent loops, etc.) in the system.

2. Simulation Environment

TRUETIME consists of a block library with a computer
kernel block and a network block, as shown in Fig. 1. The
blocks are variable-step, discrete, MATLAB S-functions
written in C++. The computer block executes user-defined
tasks and interrupt handlers representing, e.g., I/O tasks,
control algorithms, and network interfaces. The scheduling
policy of the individual computer blocks is arbitrary and
decided by the user. The network block distributes messages

1Available at http://www.control.lth.se/˜dan/truetime

Figure 1 The TRUETIME block library. The Schedule and
Monitor outputs display the allocation of common resources
(CPU, monitors, network) during the simulation.

between computer nodes according to a chosen network
model.

Both blocks are event-driven, with the execution determined
both by internal and external events. Internal events are
timely and correspond to events such as “a timer has
expired,” “a task has finished its execution,” or “a message
has completed its transmission.” External events correspond
to external interrupts, such as “a message arrived on the
network” or “the crank angle passed zero degrees.”

The block inputs are assumed to be discrete-time signals,
except the signals connected to the A/D converters of the
computer block, which may be continuous-time signals. All
outputs are discrete-time signals. The Schedule and Mon-
itors outputs display the allocation of common resources
(CPU, monitors, network) during the simulation.

The level of simulation detail is chosen by the user—it is
often neither necessary nor desirable to simulate code exe-
cution on instruction level or network transmissions on bit
level. TRUETIME allows the execution time of tasks and
the transmission times of messages to be modeled as con-
stant, random, or data-dependent. Furthermore, TRUETIME

allows simulation of context switching and task synchro-
nization using events or monitors.

2.1 The Computer Block

The computer block S-function simulates a computer with a
simple but flexible real-time kernel, A/D and D/A convert-
ers, a network interface, and external interrupt channels.

Internally, the kernel maintains several data structures that
are commonly found in a real-time kernel: a ready queue, a
time queue, and records for tasks, interrupt handlers, moni-
tors and timers that have been created for the simulation.

The execution of tasks and interrupt handlers is defined by
user-written code functions. These functions can be written
either in C++ (for speed) or as MATLAB m-files (for ease
of use). Control algorithms may also be defined graphically
using ordinary discrete Simulink block diagrams.

Tasks The task is the main construct in the TRUE-
TIME simulation environment. Tasks are used to simulate
both periodic activities, such as controller and I/O tasks,
and aperiodic activities, such as communication tasks and
event-driven controllers.

An arbitrary number of tasks can be created to run in the
TRUETIME kernel. Each task is defined by a set of attributes
and a code function. The attributes include a name, a
release time, a worst-case execution time, an execution time
budget, relative and absolute deadlines, a priority (if fixed-
priority scheduling is used), and a period (if the task is
periodic). Some of the attributes, such as the release time
and the absolute deadline, are constantly updated by the
kernel during simulation. Other attributes, such as period
and priority, are normally kept constant but can be changed
by calls to kernel primitives when the task is executing.

In accordance with [2], it is furthermore possible to attach
two overrun handlers to each task: a deadline overrun han-
dler (triggered if the task misses its deadline) and an exe-
cution time overrun handler (triggered if the task executes
longer than its worst-case execution time).

Interrupts and Interrupt Handlers Interrupts may
be generated in two ways: externally or internally. An
external interrupt is associated with one of the external
interrupt channels of the computer block. The interrupt is
triggered when the signal of the corresponding channel
changes value. This type of interrupt may be used to
simulate engine controllers that are sampled against the
rotation of the motor or distributed controllers that execute
when measurements arrive on the network.

Internal interrupts are associated with timers. Both periodic
timers and one-shot timers can be created. The correspond-
ing interrupt is triggered when the timer expires. Timers are
also used internally by the kernel to implement the overrun
handlers described in the previous section.

When an external or internal interrupt occurs, a user-defined
interrupt handler is scheduled to serve the interrupt. An
interrupt handler works much the same way as a task, but is
scheduled on a higher priority level. Interrupt handlers will
normally perform small, less time-consuming tasks, such as
generating an event or triggering the execution of a task.
An interrupt handler is defined by a name, a priority, and a
code function. External interrupts also have a latency during
which they are insensitive to new invocations.

Priorities and Scheduling Simulated execution oc-
curs at three distinct priority levels: the interrupt level (high-
est priority), the kernel level, and the task level (lowest pri-
ority). The execution may be preemptive or non-preemptive;
this can be specified individually for each task and interrupt
handler.

At the interrupt level, interrupt handlers are scheduled ac-
cording to fixed priorities. At the task level, dynamic-
priority scheduling may be used. At each scheduling point,

1 2 3

Simulated execution time

Execution of user code

Figure 2 The execution of the code associated with tasks and
interrupt handlers is modeled by a number of code segments with
different execution times. Execution of user code occurs at the
beginning of each code segment.

the priority of a task is given by a user-defined priority func-
tion, which is a function of the task attributes. This makes it
easy to simulate different scheduling policies. For instance,
a priority function that returns a priority number implies
fixed-priority scheduling, whereas a priority function that
returns a deadline implies deadline-driven scheduling. Pre-
defined priority functions exist for most of the commonly
used scheduling schemes.

Code The code associated with tasks and interrupt
handlers is scheduled and executed by the kernel as the sim-
ulation progresses. The code is normally divided into sev-
eral segments, as shown in Fig. 2. The code can interact
with other tasks and with the environment at the beginning
of each code segment. This execution model makes it pos-
sible to model input-output delays, blocking when access-
ing shared resources, etc. The simulated execution time of
each segment is returned by the code function, and can be
modeled as constant, random, or even data-dependent. The
kernel keeps track of the current segment and calls the code
functions with the proper argument during the simulation.
Execution resumes in the next segment when the task has
been running for the time associated with the previous seg-
ment. This means that preemption from higher-priority ac-
tivities and interrupts may cause the actual delay between
the segments to be longer than the execution time.

Fig. 3 shows an example of a code function corresponding
to the time line in Fig. 2. The function implements a simple
controller. In the first segment, the plant is sampled and
the control signal is computed. In the second segment,
the control signal is actuated and the controller states are
updated. The third segment indicates the end of execution
by returning a negative execution time.

The functions calculateOutput and updateState
are assumed to represent the implementation of an arbi-
trary controller. The data structure data represents the lo-
cal memory of the task and is used to store the control signal
and measured variable between calls to the different seg-
ments. A/D and D/A conversion is performed using the ker-
nel primitives ttAnalogIn and ttAnalogOut.

function [exectime, data] = myController(seg, data)

switch seg,

case 1,

data.y = ttAnalogIn(1);

data.u = calculateOutput(data.y);

exectime = 0.002;

case 2,

ttAnalogOut(1, data.u);

updateState(data.y);

exectime = 0.003;

case 3,

exectime = -1; % finished

end

Figure 3 Example of a simple code function.

Table 1 Examples of kernel primitives (pseudo syntax) that can
be called from code functions associated with tasks and interrupt
handlers.

ttAnalogIn(ch) Get the value of an input channel

ttAnalogOut(ch, val) Set the value of an output channel

ttSendMsg(rec,data,len) Send message over network

ttGetMsg() Get message from network input queue

ttSleepUntil(time) Wait until a specific time

ttCurrentTime() Current time in simulation

ttCreateTimer(time,ih) Trigger interrupt handler at a specific time

ttEnterMonitor(mon) Enter a monitor

ttWait(ev) Await an event

ttNotifyAll(ev) Activate all tasks waiting for an event

ttSetPriority(val) Change the priority of a task

ttSetPeriod(val) Change the period of a task

Besides A/D and D/A conversion, many other kernel primi-
tives exist that can be called from the code functions. These
include functions to send and receive messages over the
network, create and remove timers, perform monitor opera-
tions, and change task attributes. Some of the kernel primi-
tives are listed in Table 1.

As an alternative to textual implementation of the controller
algorithms, TRUETIME also allows for graphical represen-
tation of the controllers. Controllers represented using or-
dinary discrete Simulink blocks may be called from within
the code functions to calculate control actions.

Synchronization Synchronization between tasks is
supported by monitors and events. Monitors are used to
guarantee mutual exclusion when accessing common data.
Events can be associated with monitors to represent condi-
tion variables. Events may also be free (i.e., not associated
with a monitor). This feature can be used to obtain syn-
chronization between tasks where no conditions on shared
data are involved. The example in Fig. 4 shows the use of a
free event input_event to simulate an event-driven con-
troller task. The corresponding ttNotifyAll-call of the
event is typically performed in an interrupt handler associ-
ated with an external interrupt port.

function [exectime, data] = eventController(seg, data)

switch (segment),

case 1,

ttWait(’input_event’);

exectime = 0.0;

case 2,

data.y = ttAnalogIn(1);

data.u = calculateOutput(data.y);

exectime = 0.002;

case 3,

ttAnalogOut(1, data.u);

updateState(data.y);

exectime = 0.003;

case 3,

ttSetNextSegment(1); % loop

end

Figure 4 Example of a code function implementing an event-
based controller.

Output Graphs Depending on the simulation, sev-
eral different output graphs are generated by the TRUETIME

blocks. Each computer block will produce two graphs,
a computer schedule and a monitor graph, and the net-
work block will produce a network schedule. The computer
schedule will display the execution trace of each task and
interrupt handler during the course of the simulation. If con-
text switching is simulated, the graph will also display the
execution of the kernel. For an example of such an execu-
tion trace, see Fig. 9. If the signal is high it means that the
task is running. A medium signal indicates that the task is
ready but not running (preempted), whereas a low signal
means that the task is idle. In an analogous way, the network
schedule shows the transmission of messages over the net-
work, with the states representing sending (high), waiting
(medium), and idle (low). The monitor graph shows which
tasks are holding and waiting on the different monitors dur-
ing the simulation. Generation of these execution traces is
optional and can be specified individually for each task, in-
terrupt handler, and monitor.

2.2 The Network Block

The network model is similar to the real-time kernel model,
albeit simpler. The network block is event-driven and exe-
cutes when messages enter or leave the network. A message
contains information about the sending and the receiving
computer node, arbitrary user data (typically measurement
signals or control signals), the length of the message, and
optional real-time attributes such as a priority or a deadline.

In the network block, it is possible to specify the transmis-
sion rate, the medium access control protocol (CSMA/CD,
CSMA/CA, round robin, FDMA, or TDMA), and a number
of other parameters, see Fig. 5. A long message can be split
into frames that are transmitted in sequence, each with an
additional overhead. When the simulated transmission of a
message has completed, it is put in a buffer at the receiving
computer node, which is notified by a hardware interrupt.

Figure 5 The dialogue of the TRUETIME Network block.

3. Example: A Networked Control System

Using TRUETIME, general simulation of a distributed con-
trol system is possible wherein the effects of scheduling in
the CPUs and simultaneous transmission of messages over
the network can be studied in detail. TRUETIME allows ex-
perimentation with different scheduling policies of CPU and
network and different compensation schemes to cope with
induced delays.

The TRUETIME simulation model of the system contains
four computer nodes connected by one network block. The
time-driven sensor node contains a periodic task, which
at each invocation samples the process and transmits the
sample package to the controller node. The controller node
contains an event-driven task that is triggered each time a
sample arrives over the network from the sensor node. Upon
receiving a sample, the controller computes a control signal,
which is then sent to the event-driven actuator node, where
it is actuated. The model also contains an interference node
with a periodic task generating random interfering traffic
over the network.

3.1 Initialization of the Actuator Node

As a complete initialization example, Fig. 6 shows the code
needed to initialize the actuator node in this particular exam-
ple. The computer block contains one task and one interrupt
handler, and their execution is defined by the code functions
actcode and msgRcvHandler, respectively. The task
and interrupt handler are created in the actuator_init
function together with an event (packet) used to trigger
the execution of the task. The node is “connected” to the

%% Code function for the actuator task

function [exectime, data] = actcode(seg, data)

switch seg,

case 1,

ttWait(’packet’);

exectime = 0.0;

case 2,

data.u = ttGetMsg;

exectime = 0.0005;

case 3,

ttAnalogOut(1, data.u);

ttSetNextSegment(1); % wait for new msg

exectime = 0.0;

end

%% Code function for the network interrupt handler

function [exectime, data] = msgRcvHandler(seg, data)

ttNotifyAll(’packet’);

exectime = -1;

%% Initialization function

%% creating the task, interrupt handler and event

function actuator_init

nbrOfInputs = 0;

nbrOfOutputs = 1;

ttInitKernel(nbrOfInputs, nbrOfOutputs, ’prioFP’);

priority = 5;

deadline = 0.010;

release = 0.0;

ttCreateTask(’act_task’, deadline, priority, ’actcode’);

ttCreateJob(’act_task’, release);

ttCreateInterruptHandler(’msgRcv’, 1, ’msgRcvHandler’);

ttInitNetwork(2, ’msgRcv’); % I am node 2

ttCreateEvent(’packet’);

Figure 6 Complete initialization of the actuator node in the
networked control system simulation.

network in the function ttInitNetwork by supplying
a node identification number and the interrupt handler to
be executed when a message arrives to the node. In the
ttInitKernel function the kernel is initialized by speci-
fying the number of A/D and D/A channels and the schedul-
ing policy. The built-in priority function prioFP speci-
fies fixed-priority scheduling. Other predefined scheduling
policies include rate monotonic (prioRM), earliest dead-
line first (prioEDF), and deadline monotonic (prioDM)
scheduling.

3.2 Experiments

In the following simulations, we will assume a CAN-type
network where transmission of simultaneous messages is
decided based on package priorities. The controller node
contains a PD-controller task with a 10-ms sampling inter-
val. The same sampling interval is used in the sensor node.
In a first simulation, all execution times and transmission
times are set equal to zero. The control performance result-
ing from this ideal situation is shown in Fig. 7.

Next we consider a more realistic simulation where execu-
tion times in the nodes and transmission times over the net-

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0

0.5

1

1.5
Reference Signal (dashed) and Measurement Signal (full)

0 0.1 0.2 0.3 0.4 0.5 0.6
−2

−1

0

1

2
Control Signal

Time [ms]

Figure 7 Control performance without time delay.

work are taken into account. The execution time of the con-
troller is 0.5 ms and the ideal transmission time from one
node to another is 1.5 ms. The ideal round-trip delay is thus
3.5 ms. The packages generated by the interference node
have high priority and occupy 50% of the network band-
width. We further assume that an interfering, high-priority
task with a 7-ms period and a 3-ms execution time is ex-
ecuting in the controller node. Colliding transmissions and
preemption in the controller node will thus cause the round-
trip delay to be even longer on average and time-varying.
The resulting degraded control performance can be seen in
the simulated step response in Fig. 8. The execution of the
tasks in the controller node and the transmission of mes-
sages over the network can be studied in detail (see Fig. 9).

Finally, a simple compensation is introduced to cope with
the delays. The packages sent from the sensor node are now
time-stamped, which makes it possible for the controller to
determine the actual delay from sensor to controller. The
total delay is estimated by adding the expected value of
the delay from controller to actuator. The control signal is
then calculated based on linear interpolation among a set
of controller parameters pre-calculated for different delays.
Using this compensation, better control performance is
obtained, as seen in Fig. 10.

References
[1] Special Section on Networks and Control, IEEE Control Systems

Magazine, vol. 21. February 2001.

[2] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and
M. Turnbull. The Real-Time Specification for Java. Addison-Wesley,
2000.

[3] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzén. “Feedback-
feedforward scheduling of control tasks.” Real-Time Systems, 23,
pp. 25–53, 2002.

[4] N. Halbwachs. Synchronuous Programming of Reactive Systems.
Kluwer, Boston, MA, 1993.

[5] H. Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer, Boston, MA, 1997.

[6] J. W. S. Liu. Real-Time Systems. Prentice-Hall, 2000.

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0

0.5

1

1.5
Reference Signal (dashed) and Measurement Signal (full)

0 0.1 0.2 0.3 0.4 0.5 0.6
−2

−1

0

1

2
Control Signal

Time [ms]

Figure 8 Control performance with interfering network mes-
sages and interfering task in the controller node.

0 0.02 0.04 0.06 0.08 0.1

Network Schedule

Sensor
 Node

Controller
 Node

Interf.
Node

0 0.02 0.04 0.06 0.08 0.1

Computer Schedule

Time [s]

Controller
 Thread

Interf.
Thread

Figure 9 Close-up of schedules showing the allocation of
common resources: network (top) and controller node (bottom).
A high signal means sending or executing, a medium signal
means waiting, and a low signal means idle.

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0

0.5

1

1.5
Reference Signal (dashed) and Measurement Signal (full)

0 0.1 0.2 0.3 0.4 0.5 0.6
−2

−1

0

1

2
Control Signal

Time [ms]

Figure 10 Control performance with delay-compensation.

