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Abstract

WebAssembly is a binary format originally designed for web-
based deployment and execution combined with JavaScript.
WebAssembly can also be used for standalone programs
provided a WebAssembly runtime environment is available.
This paper describes the design and implementation of

Tru�eWasm, a guest language implementation of aWebAssem-
bly hosted on Tru�e and GraalVM. Tru�e is a Java frame-
work capable of constructing and interpreting an Abstract

Syntax Tree (AST) representing a program on standard JVMs.
GraalVM is a JVM with a JIT compiler which optimises the
execution of ASTs from Tru�e.

Our work is motivated by trying to understand the advan-
tages and disadvantages of using GraalVM, and its support
for multiple programming languages, to build a standalone
WebAssembly runtime. This contrast with developing a new
runtime, as Wasmtime and other projects are undertaking.
Tru�eWasm can execute standalone WebAssembly mod-
ules, while o�ering also interoperability with other GraalVM
hosted languages, such as Java, JavaScript, R, Python and
Ruby.
The experimental results compare the peak performance

of Tru�eWasm to the standalone Wasmtime runtime for
the Shootout, C benchmarks in JetStream, and the Poly-
BenchC benchmarks. The results show the geo-mean peak
performance of Tru�eWasm is 4% slower than Wasmtime
for Shootout/JetStream, and 4% faster for PolyBenchC.

CCS Concepts • Software and its engineering→ Inter-

preters; Runtime environments;

Keywords WebAssembly, Wasm, JVM, GraalVM, Just In
Time compilation
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1 Introduction

WebAssembly, sometimes abbreviated as Wasm, is a com-
pact, portable, statically typed stack-based binary format.
WebAssembly is easy to parse, specialise, and optimise com-
pared to equivalent code fragments in JavaScript [8, 19, 20].
Performance critical components of web applications can be
expressed in languages such as C, C++ or Rust. These com-
ponents are compiled into WebAssembly which typically
executes faster than the equivalent JavaScript. Thus, initial
WebAssembly implementations have focused on client-side
language execution on the browser to support tight inte-
gration with JavaScript and its APIs. Nonetheless, recent
development e�orts have included WebAssembly targets
for standalone execution, such as on IoT, embedded, mobile
devices, and servers.

StandaloneWebAssembly environments require a runtime
to provide access to IO and external resources, leading to the
WebAssembly System Interface (WASI) that de�nes a POSIX -
like interface. Standalone environments can provide their
own developed optimising compiler, but typically, they reuse
existing back-ends such as LLVM [11]. For example, Was-
mer (see Section 7) provides an option to choose between
di�erent deployment speci�c compiler back-ends balancing
compilation time vs. quality of generated code. Browser en-
gines typically use less aggressive optimisations with Ahead

of Time (AoT) compilation because of the relatively short
execution times that are expected for client-side scenarios.
An alternative approach to support WebAssembly could

be based on a Java Virtual Machine (JVM). Modern JVMs
provide a highly optimised managed runtime execution en-
vironment that has been ported to many di�erent target plat-
forms. In addition, they support the JVM compiler interface
(JVMCI) which, for example, enable the Graal JIT compiler
to be integrated with the JVMs part of the OpenJDK com-
munity. The Tru�e framework [25] enables guest language
interpreters with competitive runtime performance to be
hosted on a JVM with relatively low development e�ort in
comparison to native implementations. GraalVM1, is a JVM
distribution packaged with the Graal JIT compiler which

1GraalVM website https://www.graalvm.org/
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provides an aggressive general set of optimisations, and spe-
ci�c transformations for Tru�e-hosted guest languages [24]
as well as cross programming language interoperability [7]
[6] [3]. Using a JVM provides access to a wide range of
the Java ecosystem support tools, such as debugging and
instrumentation [18], including those designed speci�cally
for GraalVM. Cross-language interoperability in GraalVM
could allow e�cient embedding of WebAssembly with other
Tru�e-hosted languages; such as GraalJS (JavaScript), FastR
(R), GraalPython (Python), and Tru�eRuby (Ruby).

We present Tru�eWasm, the �rst implementation of aWe-
bAssembly language interpreter using Tru�e and GraalVM
with support for WASI, and compare its performance to the
standaloneWasmtime implementation. Tru�eWasm imple-
ments version 1.0 (Minimal Viable Product) of the speci�ca-
tion, and passes all core WebAssembly spec-tests provided
by the speci�cation. In summary, the main contributions of
this paper are:

• AWebAssembly interpreter implemented using Tru�e
on the JVM that exploits partial evaluation and JIT
compilation (See Section 4).

• A peak-performance comparison between WebAssem-
bly using Tru�eWasm and Wasmtime (See Section
6).

• An evaluation of WebAssembly features and how they
map to Tru�e language implementation framework.

• An addition to the GraalVM ecosystem which allows
other Tru�e languages to reuse existingWebAssembly
modules and libraries using Tru�e interoperability
(See Section 4).

We select Wasmtime as the main comparison point as it is
the main standalone WebAssembly runtime with support for
WASI required by the benchmarks. An anecdotal inspection
of relative complexity using Lines of Code as a rough and
ready metric shows that Wasmtime requires more than dou-
ble the number of lines of code than Tru�eWasm. The next
sections of the paper are organised as follows. Section 2 in-
troduces background material onWebAssembly, its runtimes
and execution use-cases. Section 3 presents a short high-level
overview of how Tru�e and Graal support the implementa-
tion of Abstract Syntax Tree (AST) interpreters for hosting
guest language execution on JVMs. Section 4 discusses the
design and implementation of Tru�eWasm. Section 5 de-
scribes the experimental methodology and benchmarks used
to compare Tru�eWasm against Wasmtime, while Section
6 discusses the results. Section 7 presents relevant related
work. Conclusions are presented in Section 8.

2 WebAssembly Overview

The main concepts and features of WebAssembly, and the
important aspects of browser engine execution support are
presented. WebAssembly code is compiled in a single scope
called a module where di�erent components are de�ned that

- Imports
- Exports
- Tables
- Memories ...

Linker

Internal API

WASI ...

JS 
Runtime

Interface 
to other
runtimes

WebAssembly Runtime

...
- Imports
- Exports
- Tables
- Memories ...

Wasm Modules

Imports

Exports

Figure 1. WebAssembly modules on an abstract runtime.

specify the functionality of a whole program as shown in
Figure 1. In the C/C++ ecosystem, there are currently three
ways for C/C++ front end compilers to generate WebAssem-
bly modules. By compiling core execution source code to
WebAssembly and wrapping I/O and other necessary initiali-
sation in JavaScript, using standardised WASI API functions,
or by providing a standalone2 module where standard library
functions are added into a module as imports. Standalone
runtimes must implement any imported functionality using
their own (library code) mechanisms.

2.1 Imports and Exports

Imports and exports are key features for inter-module and
language interoperability. Imported components are expected
to be supplied by a host runtime, such as a JavaScript runtime,
or a standalone runtime de�ning its own built-ins or exports
from another module. Clearly, imports such as JavaScript
built-ins, and memory (that describe how storage is assigned
to amodule) or table de�nitions are likely to in�uence overall
performance. For example, if a module requires signi�cant
interactions with its host runtime, then it will be heavily
dependent on the host’s implementation of the imported
functions.

For instance, if a JavaScript code creates an ArrayBuffer

data structure that is sent toWebAssembly as an import, then
the WebAssembly code can use this as its linear memory
storage, and any writes to this storage are visible to both
JavaScript and WebAssembly.

2.2 WASI API and Standalone Imports

The WebAssembly System Interface3 o�cial speci�cation
outlines a modular standard API. The core module of WASI
provides an API that covers aspects such as �le system and

2https://github.com/kripken/emscripten/wiki/WebAssembly-Standalone
3https://wasi.dev/



Tru�leWasm: A WebAssembly Interpreter on GraalVM VEE ’20, March 17, 2020, Lausanne, Switzerland

(import (func $__wasi_fd_prestat_get (type $t2)))

(import (func $__wasi_fd_prestat_dir_name (type $t0)))

(import (func $__wasi_environ_sizes_get (type $t2)))

(import (func $__wasi_environ_get (type $t2)))

(import (func $__wasi_args_sizes_get (type $t2)))

(import (func $__wasi_args_get (type $t2)))

(import (func $__wasi_proc_exit (type $t3)))

(import (func $__wasi_clock_time_get (type $t10)))

(import (func $__wasi_fd_fdstat_get (type $t2)))

(import (func $__wasi_fd_close (type $t4)))

(import (func $__wasi_fd_seek (type $t5)))

(import (func $__wasi_fd_write (type $t6)))

Listing 1. WASI functions required by a typical Shootout
benchmark.

networking based interactions. WASI provides a standard-
ised, POSIX interface with a CloudABI [16] capability-based
access that enables WebAssembly modules to interact with
a conceptual system. Import functions (See Listing 1 for an
example) are de�ned from the wasi module. Standalone We-
bAssembly runtimes that support wasi based modules must
provide implementations for the APIs as outlined by the
standard.
Emscripten, WasmExplorer, LLVM and other languages

tools provide an option to generate standalone modules,
where no JavaScript code is generated. Standard library func-
tions are added as imported functions and it is the runtime’s
responsibility to provide their implementation.

ManyWebAssembly runtimes (See Section 7) support only
one deployment option. For example, browser engines typ-
ically only support modules that import from JavaScript.
Wasmtime supports WASI targeted modules, whereas Was-
mer can execute both Emscripten standalone andWASI mod-
ules. To execute a WebAssembly module on a di�erent de-
ployment target runtime may require the original source to
be recompiled with appropriate �ags.

The speci�c compilation target for WebAssembly modules
and any associated dependencies can have di�erent e�ects
on the WebAssembly module performance when executed
on di�erent implementations. Even though the same original
source code is used, a compiled module with a JavaScript
wrapper will perform di�erently compared to a WASI or a
standalone module. In summary, the environment where a
WebAssemblymodule obtains its required imports in�uences
how it performs and behaves. Note, as WebAssembly run-
times are being embedded in many other languages, the need
for high-performance optimised language interoperability
functionality is essential because the cross-language perfor-
mance wall associated with embedding multiple runtimes
will be visible in the overall performance.

2.3 Linear Memory and Tables

ManyWebAssemblymodules require interactionswith linear
memory that provides a raw byte array addressed using an
index. Using special memory access operations, a speci�c

00 00 00 00 00 00 00 00 00 00
0

Initial empty memory

00 00 00 00 e8 04 00 00 00 00

Memory after

//	executing:

i32.const	4														//	start	address
i32.const	1256							//	value	to	store
i32.store																	//	store	a	32-bit	value

16-bit 32-bit 64-bit

1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Figure 2. A linear memory operation example.

32/64 bit integer or �oating point type (i32, i64, f32 or f64)
can be read/stored from/to an array of bytes in memory.

External APIs, such as WASI and other JavaScript imports,
may use linear memory to communicate with user functions
by reading and writing into a pre-de�ned o�set in linear
memory. Memory load and store instructions also provide
an alignment value to ensure that the memory accessed by
a load/store operation is n-byte aligned. This value can be
used by runtimes as an optimisation hint to provide aligned
memory access where bene�cial.
Figure 2 shows a linear memory operation which takes

a value 1256 and stores it into memory at address 4. The
value is stored in little-endian and 4 bytes in the memory
are modi�ed. Tables, another global element of a module,
store function references (anyfunc, see Listing 4) in an array
structure. They are used by an indirect call operation to
implement function pointer calls available in languages such
as C/C++.

2.4 Inside a Function Body

To illustrate di�erent features of WebAssembly, we demon-
strate how a simple C code snippet from Listing 2 compiles
to WebAssembly code in Listing 3. Please note, in this il-
lustration, all C-code structures and arrays are stored in a
linear memory, and WebAssembly functions will access such
structures using a 32-bit integer value as a pointer to the be-
ginning of such data in a linear memory. Local variables and
function arguments are indexed from zero. So local.get

0 will get the �rst local variable (and for functions with
arguments, that will be the �rst argument).

WebAssembly code follows a structured control �ow. That
is br* operations can only jump to one of the enclosing
blocks. The values of the br* instruction (Lines 7 and 23),
speci�es how many blocks outside to break to, with zero
specifying the inner most block relative to the instruction.
To maintain structured control, a compiler targeting We-
bAssembly would convert unstructured �ow to a structured
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typedef struct tn {

struct tn* left;

struct tn* right;

} treeNode;

long count(treeNode* tr) {

if (!tr->left)

return 1;

else

return 1 + count(tr->left) + count(tr->right);

}

Listing 2. A simple code snippet in C.

1 func count ;; (i32) -> i32

2 block

3 local.get 0

4 i32.load 0

5 local.tee 1

6 i32.eqz

7 br_if 0 # 0: down to label0

8 i32.const 1

9 local.set 2

10 loop # label1:

11 local.get 2

12 local.get 1

13 i32.call count@FUNCTION

14 i32.add

15 i32.const 1

16 i32.add

17 local.set 2

18 local.get 0

19 i32.load 4

20 local.tee 0

21 i32.load 0

22 local.tee 1

23 br_if 0 # 0: up to label1

24 end_loop

25 local.get 2

26 return

27 end_block # label0:

28 i32.const 1

29 end_function

Listing 3.WebAssembly code for the example in Listing 2,
compiled with clang 8.0 using Compiler Explorer.

one by introducing multiple (nested) blocks. For a code seg-
ment with a complex logic, the nesting depth can be large.
For example, printf_core4 function generated by clang as
part of theWebAssemblymodule, contains around 300 blocks
+ loops with the nested depth of up to 72. A loop block has
its target label at the beginning of that block. That is a br*
instruction targeting a loop block will cause a block to run
another iteration, and if a block �nishes without any jump
back to the beginning, then the loop stops and execution
continues to the next instruction.

2.5 Using WebAssembly from JavaScript

WebAssembly modules can be called from JavaScript using
the WebAssembly.* JavaScript API, which is supported by
the four major browsers. Listing 4 illustrates a simple exam-
ple of how aWebAssembly module is loaded and instantiated
from JavaScript. It shows (simple and cut-down) JavaScript

4From Wasi libc: https://github.com/CraneStation/wasi-
libc/blob/master/libc-top-half/musl/src/stdio/vfprintf.c

1 const fs = require('fs');

2 async function run() {

3 function createWebAssembly(bytes) {

4 const memory = new WebAssembly.Memory({initial: 256,

5 maximum: 256 });

6 const table = new WebAssembly.Table({

7 initial: 0, maximum: 0, element: 'anyfunc' });

8 const env = {

9 table, __table_base: 0,

10 memory, __memory_base: 1024,

11 STACKTOP: 0, STACK_MAX: memory.buffer.byteLength,

12 };

13 return WebAssembly.instantiate(bytes, { env });

14 }

15 const result = await createWebAssembly(

16 new Uint8Array(fs.readFileSync('test.wasm')));

17 console.log(result.instance.exports.hello());

18 }

19 run();

Listing 4. A simple JavaScript WebAssembly API call in
Node.js. First memory is created plus any other required
imports by a WebAssembly module. The module is then
instantiated and its exported members can be accessed from
JavaScript.

code that initiates a WebAssembly module and runs a func-
tion called hello() (see Line 23). Other than JavaScript,
a recent published proposal provides Interface Types to allow
WebAssembly to interoperate with arbitrary languages using
a single interface5.
Front-end tools such as Emscripten generate both We-

bAssembly and JavaScript code. JavaScript APIs are used to
instantiate and interact with WebAssembly modules. The
JavaScript APIs include functions to handle features such as
I/O operations and exception handling, and to provides stubs
for accessing the C/C++ standard library. The WebAssem-
bly code can call JavaScript functions as imported functions.
Such calls between WebAssembly and JavaScript (or any
other language) create a language wall or barrier that may
in�uence how the overall module performance is measured
or interpreted.

2.6 Tiered Compilation in Browsers

The JavaScript engines for Google Chrome’s V8, Mozilla Fire-
fox’s SpiderMonkey, andWebkit’s JavaScriptCore all initially
started to support WebAssembly by AoT compiling modules
on arrival, and then later with streaming compilation. The en-
gines typically reused their existing JavaScript JIT compilers
for AoT compilation. Chakra (a former JavaScript engine in
Microsoft Edge), used lazy function interpretation followed
by JIT compilation of hot functions [8]. The AoT approach
targets predictable peak performance and reduces unpre-
dictability associated with JavaScript JIT warm-up times.
This helped achieve faster start-up and lower memory con-
sumption for Microsoft Edge using Chakra.
Nevertheless, compilation times were still signi�cant for

larger modules [9]. Thus, both V8 and SpiderMonkey now

5https://hacks.mozilla.org/2019/08/webassembly-interface-types/
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provide a tiered compilation approach where modules are
�rst compiled using a baseline compiler (called Baseline in
SpiderMonkey and Lifto� in V8) as modules arrive. The
baseline provides a fast and e�cient �rst tier compiler that
decodes the module, performs validation, and emits machine
code in a single pass. Hot paths are identi�ed and JIT com-
piled using an optimising compiler (IonMonkey in Spider-
Monkey and TurboFan in V8) to produce more e�cient ma-
chine code. The same optimising compilers are used as top
tier compilers within the JavaScript compilation pipeline.
Converting WebAssembly instructions into an AST for inter-
pretation is much slower than a decode->validate->generate
approach used by a baseline compiler. Hence, the interpreter,
used as a �rst tier for JavaScript, is only used for WebAssem-
bly when in debug mode.

2.7 JIT Compilation for WebAssembly Modules

Many server side applications are long running services that
can amortise the overheads of lengthy compilation times
with aggressive optimisation to improve performance. Sim-
ilarly, we leverage Tru�e and Graal, that collect pro�ling
information, to aid e�cient application of aggressive optimi-
sations.
For environments where start-up times are important,

such as embedded devices that require low memory and en-
ergy footprints, Tru�e interpreters can be AoT compiled to
produce smaller binaries that are appropriate for such use
cases [26]. Together these two con�gurations covermany use
cases outside of the client-side browser. The re-con�gurable
nature of the JVM, allows the interpreter to be supplied with
additional JVM �ags to cater for the speci�c execution en-
vironment requirements. For example, a GraalVM language
can be passed options to con�gure the underlying JVM for a
speci�c heap size and Garbage Collection implementation,
as well as a range of other �ags controlling JVM features.

3 GraalVM and the Tru�le Framework

The Tru�e framework provides a Java API for building guest
language Abstract Syntax Tree (AST) interpreters on any
JVM. The framework also allows annotating AST nodes dur-
ing interpretation with additional information. That informa-
tion is used by the Graal JIT compiler during the optimisation
phase [7] as to enable custom compilation and lowering of
guest language features. Other features of the Tru�e frame-
work are:

• A self-optimising interpreter to support dynamic lan-
guages by specialising nodes based on run-time type
information.

• Type system and domain-speci�c language utilities for
type management and mapping between GraalVM lan-
guages.

• Interoperability API for languages to interoperate with
other languages hosted byGraalVM [7] to give e�cient
access to code and data storage.

The interoperability (Interop 2.0) and TruffleLibrary

features included in newer Tru�e versions (since version
19.0) allow polymorphic inline caching and pro�ling between
language-boundary calls. This has improved performance,
provided a new protocol for message passing, and reduced
the memory footprint required for interpreters.

3.1 AST Interpreters using the Tru�le Framework

To model the stack based WebAssembly code using Tru�e
nodes, WebAssembly blocks (such as functions, loops and
other block kinds) contain individual instructions that make
up the block as their children nodes. In each WebAssembly
block, each instruction which pops a value(s) from a We-
bAssembly stack will maintain an instruction that previously
pushed a value(s) to the stack as its child(ren) node(s) in a
tree form (AST). For instance, WebAssembly from Listing 3
will be converted into an AST as illustrated in Figure 3.

Each Tru�e node contains an execute method which im-
plements the execution logic for interpretation, including
calling to its children and handling control �ow. Tru�e AST
interpretation transfers control �ow between nodes using
Java exceptions. Logic for instructions such as function re-
turn or break are implemented using ControlFlowException.
When a control �ow exception is thrown, the current node
stops its execution, and transfers execution to the parent
node, which may catch or propagate the exception upwards
to its parent node.
Tru�e interpreters use pro�ling to provide hints for the

partial evaluation phases. These hints can enable better ma-
chine code to be generated during JIT compilation. Tru�e
pro�ling of runtime execution behaviour involves each node
collecting information, such as branch and value pro�ling,
and identifying any run-time constant values. Values that can
be constant during JIT compilation, but are not declared as
�nal during runtime pro�ling can be annotated. Interpreters
can also utilise Tru�e assumptions to guide optimisation
decisions. Tru�e assumptions are used to let the compiler
optimistically treats state of an object as unchanged. When
the assumption is invalidated, the specialisation cached code
guarded by that assumption is also discarded. The inter-
preters can also limit the number of cached copies of gen-
erated code, such as for value-based specialisations of an
integer add operation.

3.2 Tru�le Native Function Interface (Tru�leNFI)

The Tru�e framework provides an optimised mechanism
for interpreters to call native code via the Tru�eNFI6. When
running on a regular JVM, this is mapped into a Java Native

6https://github.com/oracle/graal/blob/master/tru�e/docs/NFI.md
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func_start

Enter

block

i32.const(1)

local.set(2)

i32.const(1)

block (loop)

end_block

local.tee(1)

i32.load(0)

local.get(0)

br_if

local.set(2)

i32.add

i32.add

i32.call
(count@FUNC)

local.get(1)

local.get(2)

i32.const(1)

local.tee(1)

i32.load(0)

local.tee(0)

i32.load(4)

local.get(0)

return

local.get(2)

exit

i32.eqz

br_if

Control flow

Child node

ControlFlowException

ControlFlowException

Call dispatch

Figure 3. AST and control �ow of the WebAssembly code
from Listing 3. The area highlighted in yellow corresponds
to Lines 18 to 23.

Interface (JNI). Using libffi, Tru�eNFI wraps the neces-
sary functionalities to allow a guest language to access native
functions that are not available in Java and even to provide
a Foreign Function Interface (FFI) for their language.

3.3 The Graal Compiler

The Graal JIT compiler applies speculative optimisations
and partial evaluation to optimise its internal graph-based
intermediate representation [2]. Partial evaluation allows
interpreters to be specialised with respect to the current
values and types associated with AST nodes. The evaluator
performs aggressive optimisations such as constant propaga-
tion and method in-lining using assumptions associated with
current values [12]. Aggressive optimisation of node special-
isation are constrained by guards (such as Tru�e assump-
tions), which when not valid, may trigger re-specialisation or
discard the generated code and return to the interpretation
mode in a process typically referred to as deoptimisation.

3.4 GraalVM Native Image

GraalVM native image tools allow AoT compilation of JVM-
based languages into a native executable. Tru�e language
interpreters can be AoT compiled to produce an executable
having a smaller memory footprint, lower overhead and
faster start-up times. The native image can then be run stan-
dalone with no JVM overhead. Another advantage provided
by the native image support is that a shared library can be
used to expose a C function (C-API) that can be called from
other languages, such as from Java through the Java Native
Interface (JNI). This is generally relevant for our use case, as

it can be used to expose the functionality of Tru�eWasm as
C-APIs to other languages as speci�ed in the proposal 7.

4 Design and Implementation

Figure 4 illustrates the Tru�eWasm high level design. It
uses Binaryen8, a compiler infrastructure tool-chain for We-
bAssembly, for parsing and static validation. After parsing,
Binaryen converts a stack-based WebAssembly IR source
into its tree-based internal IR.

Two goals of WebAssembly are to be e�cient and safe [8].
As such, WebAssembly engines are expected to deliver rela-
tively good performance whilst sand-boxing execution from
the underlying host machine.

In the initial implementation of Tru�eWasm, WebAssem-
bly features/elements such as globals, builtins and table are
implemented using TruffleObject and Tru�e Nodes. This
is a default way for Tru�e interpreters to build language
features. Linear memory on the other hand, provides a dif-
ferent challenge. In JavaScript, when creating a new mem-
ory with WebAssembly.Memory (See Listing 4, Line 5), an
ArrayBuffer is created with the speci�ed size and limit9.
In GraalJS for instance, TypedArray and ArrayBuffer are
backed by a Java ByteBuffer or a byte[] depending on the
implementation option. GraalJS provides di�erent optimi-
sation and specialisation for arrays of di�erent types. We
applied the same technique and provided linear memory as a
TruffleObject encapsulating a ByteBuffer. Nevertheless,
accessing a byte array for reading and writing to memory
did not produce good performance (See Section 6). This is
also because WebAssembly modules have more loads and
stores as discussed in [10].
For the above limitations, Tru�e and Java provide the

following solutions:

• Specialisation of linear memory read and writes using
Tru�e Object Storage Model [23].

• A linear memory implementation using Unsafe API
and the wrapping of WASI APIs using Tru�eNFI (Sec-
tion 3).

The second option provides one more advantage, by man-
aging native memory, Tru�eWasm can add memory align-
ment optimisation in the future for load and store oper-
ations. As such, Tru�eWasm currently implements linear
memory using Java Unsafe API and bound checks all ac-
cesses to native memory. The WASI API calls are wrapped as
C++ functions that control access as speci�ed by the standard
and are called by Tru�eWasm using Tru�eNFI. Currently
a slower version using ByteBuffer is available through a
�ag --wasm.emulated=true. The rest of the sub-sections
explain the Tru�eWasm approach for implementation of

7https://github.com/WebAssembly/proposals
8https://github.com/WebAssembly/binaryen
9https://hacks.mozilla.org/2017/07/memory-in-webassembly-and-why-its-
safer-than-you-think/
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Figure 4. An overview of the Tru�eWasm design.

1 usize_t fd_write(fd, iov, iovcnt, nwritten) {

2 // checks ...

3 // get wasi 32-bit version iovec

4 wasi_iovec <- iov;

5 // convert to native iovec

6 iovec_c <- wasi_iovec

7 // call POSIX writev

8 written = writev(fd, iovec_c , iovcnt);

9 if (written < 0)

10 return errno; // return errorno

11 // record written bytes

12 *nwritten = written;

13 //cleaning ...

14 return 0; //ESUCCESS

15 }

Listing 5. A description of a POSIX API wrapper for WASI
fd_write. This is called from Java through Tru�eNFI and
only the necessary values are passed.

various WebAssembly features that produce a runtime with
competitive performance as discussed in Section 6.

4.1 WebAssembly System Interface (WASI)

Implementation

To provide a standalone runtime for WebAssembly, the im-
ported environment functions must be implemented by the
runtime engine. For wasi, Tru�eWasm provides implemen-
tations for the required functions. Typically, these functions
interact heavily with linear memory (Section 4.3), and ef-
�cient access is necessary for high performance WASI ex-
ecution. Tru�eWasm uses C++ wrapper functions around
the POSIX API to implement WASI functions. The wrappers
perform all necessary checks and call an appropriate POSIX
function if all requirements are satis�ed. Note that all WASI
APIs return an error number, and each wrapper function
must check for, and return an appropriate error code. For
instance, fd_write wrapper is implemented as outlined in
Listing 5.
In wasm32, pointers are presented as 32-bit integers. But,

when sending the iovec pointer to C/C++, iov_base uses
uintptr_t, which on a 64-bit machine, will not map cor-
rectly. We provide an i32 iovec struct that is mapped to the
native iovec before being passed to writev.

In an earlier version of the Tru�eWasm implementation,
support was present for other non standard APIs generated
by compiler font-ends such asWasmExplorer and standalone
Emscripten. Support was dropped for these front-ends be-
cause their APIs changed between versions and the APIs
were not following any standardisation e�orts. As a result,
Tru�eWasm now favours WASI functions and supports load-
ing imported functions from a host embedder10 such as a
JavaScript runtime.

4.2 Instruction Interpreter and Control Flow

Tru�eWasm uses Tru�e Nodes to build an AST interpreter
for nodes read from Binaryen. Each instruction is converted
into a Tru�e node, that can be further specialised at run-
time, in order to provide an optimised method to execute its
behaviour. Since WebAssembly is statically typed, and type
information is already known during parsing, specialisation
is mostly used to separate slow- and fast-path code for an
operation and to potentially cache the constant and repeated
appearance of speci�c input values to an instruction. This
can separate out problematic corner cases that may require
complicated control �ow from fast path code. Generating
code only for the specialised instances seen during pro�ling,
and only for the code dispatch points as needed, can lead to
reductions in the compiled code size, and improvement in
the produced code quality.
Calls to functions, both direct and indirect (through a ta-

ble lookup), are dispatched using Tru�e’s InteropLibrary.
This allows exported functions to be called outside Tru�e-
Wasm by other Tru�e/JVM languages.

In Tru�eWasm, loop blocks are implemented using the
class RepeatingNode of Tru�e, that is designed to help pro-
�ling to identify On-Stack Replacement (OSR) optimisation
opportunities. Nevertheless, loops in WebAssembly are con-
trolled by break instructions that jump to the beginning of
loop blocks (See Figure 3). When a break targets a loop block,
the loop continues, otherwise, execution continues to the
next instruction after the loop block (see Listing 3). This

10https://webassembly.github.io/spec/core/intro/overview.html#embedder
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creates a challenge when pro�ling for counting loops. Other
bytecode-based Tru�e languages have observed challenges
in modelling loop blocks in Tru�e [13–15].

The deep nested nature of WebAssembly blocks (see Sec-
tion 2.4) implies that using the ControlFlowException of
Tru�e from inner blocks to the outer-most block level would
potentially require an expensive number of exception catches,
and runtime re-throw(s). Each catch checks whether a block
matches the jump target. Each throw happens when a match
is not found at that level. Consider, for instance, br n which
implies branching n blocks outwards. At each level, the
parent block will catch the ControlFlowException, check
whether it is the correct target, and if not, re-throw the ex-
ception again. Figure 5 shows the control �ow for br_if 1

(Listing 8, Line 36) when branching to an outer block. It �rst
throws an exception which is caught by the enclosing block
(block 0). The enclosing block then checks for the target, and
re-throws the exception if it did not match its label. The ap-
pendix includes the C code snippet (Listing 7) and associated
WebAssembly with nested blocks (Listing 8) for the control
�ow shown in Figure 5.

block

br_if (1)

block

Loop

is_target?

is_target?

no (re-throws)

is_target?

end_block

branch 
(ControlFlowException)

end_block

no (re-throws)

no (re-throws)

yes

yes

yes

Control flow

Child node

0

1

2

Figure 5. A control �ow graph showing br_if (highlighted
in yellow) branching out from a double nested block.

4.3 Linear Memory

WebAssembly linear memory is implemented using the Java
Unsafe API. In Tru�eWasm it is encapsulated as a Truffle-
Object to facilitate easy interoperability with other Tru�e
languages. When a module is instantiated, Tru�eWasm allo-
cates memory according to the speci�ed page size. Instruc-
tions can then access memory through a speci�c interface
by providing an o�set location, this is converted to a native
pointer and then bounds checked before a read or write oc-
curs. Linear memory can be grown using the memory.grow

instruction. Here, Tru�eWasm reallocates the native mem-
ory with the new page size. Memory reallocation can be
expensive, and some implementations chose to allocate a
bigger than speci�ed size at the beginning and then bounds
check over the speci�ed size, rather than the actual size of the
allocated region [21]. In this way, some expensive memory
re-allocations may be avoided at runtime.

In Tru�eWasm, at each memory access site (load, store),
start_address, offset and the native_pointer of the na-
tive memory are used to compute an effective_address

that is then bounds checked. Using Tru�e specialisation, the
e�ective address can be cached for subsequent calls as long
as the start_address and offset have remained invariant.
This is controlled by a Tru�e assumption which tracks that
no memory growth has occurred. When a memory.grow is
called, the assumption is invalidated and the access code will
be deoptimised to default specialisation which re-computes
the e�ective address. This is currently enough as Tru�e-
Wasm does not yet support the multi-threading proposal.
When this is supported by Tru�eWasm, approaches such as
those discussed in [21] will need to be implemented.

4.4 Interoperability with Other GraalVM Languages

For other GraalVM-hosted languages (such as Tru�eRuby
and FastR), a WebAssembly interpreter can be initialised by
accessing the WebAssembly GraalVM component. GraalVM
hosted languages, such as Python, Ruby and JavaScript, can
access WebAssembly modules/libraries compiled from lan-
guages such as C/C++ and Rust. These languages can also
delegate other functionalities to the WASI API already sup-
ported in Tru�eWasm. Listing 6 shows a Java program call-
ing into WebAssembly.

For instance, in GraalJS, exported WebAssembly functions
are called by accessing their de�nitions from the export

property of a created WebAssembly instance (see Listing
4, line 23). When GraalJS instantiates a Tru�eWasm mod-
ule, the module’s imported functions are sent as Proxy ob-
jects to Tru�eWasm. The Proxy objects can then be used
to make callbacks to JavaScript functions. This ensures calls
from Tru�eWasm follow the ECMAScript speci�cation (i.e.
[[Call]]). In Tru�eWasm, this proxy relation (see Figure 4)
to GraalJS is implemented using ProxyExecutable11 API
provided by the Tru�e framework. By sending a Proxy to
Tru�eWasm, a JavaScript function object remains in the
JavaScript realm and can be modi�ed without the need to
refer changes back to Tru�eWasm. This also reduces the
need for Tru�eWasm to maintain other JavaScript speci�c
details related to the function object such as the thisObject,
current context, and enclosure frame, needed to make a call
in JavaScript. The proxy then gets the required arguments

11ProxyExecutable interface allows one Tru�e guest language to mimic
execution of another di�erent guest language’s objects.
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1 String w = "wasm";

2 source = Source.newBuilder(w, module).build();

3 ctx = Context.newBuilder(w).build();

4 ctx.eval(source);

5 export = ctx.getBindings(w).getMember(funcName);

6 result = export.execute(args);

Listing 6. Executing a WebAssembly module from Java us-
ing Tru�eWasm.

from the WebAssembly current scope frame and proceeds to
do the actual call in the JavaScript side.

In summary, the Tru�eWasm interpreter reuses GraalVM
through the Tru�e framework, and it records pro�ling in-
formation that is used for partial evaluation, and to generate
better optimised code. With this approach, most of the ef-
fort is being spent into building the interpreter, identifying
fast- and slow-paths for operations and identifying pro�ling
information that can be useful to the JIT for code generation.

5 Experimental Methodology

5.1 Experiments Goals and Benchmarks

We aim to investigate peak performance of Tru�eWasm
and other WebAssembly standalone runtimes running WASI
modules. In the experiments, we compare a standalone execu-
tion of WebAssembly modules withWasmtime 0.212 (commit
6def6de)13 which has support for the WASI API.
We use the Shootout benchmarks [5], the C benchmarks

from the JetStream 2.014 suite (hereafter referred to as c-
JetStream), and PolyBenchC 4.2 [17]. We present the perfor-
mance comparison and discuss issues in benchmarks where
Tru�eWasm is performing poorly. We also illustrate the per-
formance gap between using Unsafe API and ByteBuffer

(See Section 4) for implementing the WebAssembly linear
memory.

5.2 Experimental Setup

To measure the peak performance of the JIT generated code,
we execute each benchmark to run long enough for JIT com-
pilation to be triggered for hot methods so that the runtimes
reach a steady state of performance. Determining when a
runtime reaches a steady state is di�cult [1]. We apply a
methodology presented in [15] and wrap the benchmark in
a harness and record the last 30 iterations for evaluation.
For Tru�eWasm, we set the compilation threshold to 1000
using JVM’s -XX:CompileThreshold=1000 �ag. We com-
pile the original C programs to WebAssembly using clang
8.0 with -O3 optimisation, and --target=wasm32-wasi and
--sysroot /wasi-libc �ags which sets target output to

12We are using an older version of Wasmtime for comparison here, as we
observed a performance regression (slowdown) in latter releases.
13https://github.com/bytecodealliance/wasmtime
14https://browserbench.org/JetStream/in-depth.html

WebAssembly using WASI API and points to the WASI ver-
sion of libc respectively. The Wasm+JavaScript modules
are compiled using Emscripten 1.39.3.

PolyBenchC benchmark suite provides di�erent compile-
time options (through macros) to record execution time and
other metrics. We added an option -DPOLYBENCH_HARNESS,
which harnesses the main computation kernel of each bench-
mark and executes it for speci�ed iterations and reports each
iteration’s execution time.We use the large data-set for all ex-
periments (compiled with -DEXTRALARGE_DATASET) so that
all “hot” functions are JIT compiled, and hence a steady state
performance is reached when recording execution times for
the last 30 iterations.

We run the experiments on a machine with Ubuntu 18.04.2
LTS, 16 GB memory, an Intel i7-6700 chip with Turbo boost
and Hyper-Threading disabled; DVFS �xed to a frequency
of 3.20GHz using a userspace governor. Tru�eWasm runs
on the GraalVM Enterprise Edition version 19.3.0.

6 Evaluation

This evaluation compares Tru�eWasm and Wasmtime using
peak performance execution times. Figure 6 shows Tru�e-
Wasm has a geo-mean slowdown of 4% compared to Wasm-
time. Tru�eWasm demonstrates comparable performance
in many of the benchmarks except in Quicksort, Float-mm

and richards showing the highest slowdowns of 82%, 68%
and 33%, respectively.

For binarytrees, Tru�eWasm performed better thanWasm-
time. Binarytrees is known for its memory-intensive nature.
By default, when clang compiles the module to WebAssem-
bly, it sets the initial linear memory page size to 2. This is
then increased (by one page each time, as of clang 8.0) at run-
time with memory.grow instruction every-time it gets full
(until it reaches a maximum page limit). We instrumented
memory.grow instruction to observe how it is called and by
how many pages the linear memory is increased in each
growth. We observed that WebAssembly runtimes incur a
substantial amount of linear memory reallocation and resiz-
ing for memory intensive programs, typically adding one
page at each time. For instance, nbody only grows its mem-
ory twice when run with 100 iterations in this experiment,
while binarytrees program of depth 10 reallocates 52 times
and that of depth 11 reallocates 102 times. For a binarytree of
depth 17 (used in this evaluation), around 6.5K memory.grow

operations are performed in just 100 iterations.
We also wanted to observe how the initial memory, if any,

in�uences the overall execution time of each run. Figure 7
illustrates the results of changing the initial memory of the
binarytrees program. For an initial 2 pages linear memory,
the execution time of Tru�eWasm for the �rst iteration is
4.7s and �nishes with 6.7s in its last iteration. On the other
hand, Wasmtime starts with 2.6s execution time and ends
with 16.4s execution time in the 100th iteration. For larger
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Figure 6. Tru�eWasm peak performance comparison relative toWasmtime executing the Shootout and C-JetStream benchmark
suites. Tru�eWasm executes with a geo-mean of 4% slower compared to Wasmtime.
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Figure 7. The benchmark BinaryTrees running with input depth of 17 showing the e�ect of changing the initial linear memory
size from the 2 pages default to larger values (but less than what is required).

initial memory size, such as 4096 pages, �rst iteration ex-
ecution time is 4.9 and 11.8 seconds for Tru�eWasm and
Wasmtime, respectively, and the 100th iteration execution
time is 7.3 and 25.7 seconds for Tru�eWasm and Wasmtime,
respectively. The observation suggests that execution time of
WebAssembly code with linear memory accesses increases
with larger memory sizes and in some implementations, ini-
tial page size of the linear memory may in�uence execution
times. This relationship is observable in both Wasmtime and
Tru�eWasm at varying degrees and it is also observed in
other runtimes, such as V8 and WAVM [4].

In the initial implementation of Tru�eWasm where Byte-
Bu�er is used for linear memory, the slowdown is larger.
This is due to the fact that linear memory is accessed contin-
ually by di�erent operations. In each memory read, multiple

bytes are read at a time and converted to a speci�c type such
as i64 or f64. This led to multiple reads just to get an int
or long from memory. The same applies for a write opera-
tion where a value is converted into an array of bytes and
stored back into memory. For the Java Unsafe API, reading
or writing to memory is done in a single operation. Table 1
shows geo-mean slowdowns relative to Wasmtime achieved
by Tru�eWasm when Java Unsafe vs ByteBuffer are used
for linear memory for some of the benchmarks presented in
Figure 6. Table 1 demonstrates a clear and signi�cant perfor-
mance advantage for using the Unsafe API in preference to
a ByteBu�er for linear memory support.

Figure 8 presents the evaluation using PolyBenchC, a bench-
mark containing scienti�c numerical computations, used to
evaluate WebAssembly execution performance in browsers
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Figure 8. Tru�eWasm peak performance for PolyBenchC benchmarks (lower is better).

Table 1. Tru�eWasm normalised to Wasmtime when using
Unsafe API and ByteBu�er for implementing linear memory.
Values below 1 depict faster execution by Tru�eWasm, while
values above 1 depict faster execution by Wasmtime.

Benchmark Unsafe API ByteBu�er

fannkuchredux 0.85 5.58
nbody 0.76 5.76
spectralnorm 1.08 4.45
fastaredux 0.84 2.62
binarytrees 0.63 2.71
fasta 1.03 3.61
dhrystone 1.07 6.48
�oat-mm 1.68 4.02
richards 1.34 5.07

in [8]. Tru�eWasm achieves nearWasmtime speed inmost of
the benchmarks, with the exceptions of cholesky (65% slower),
deriche (47% slower) and adi (30% slower), and reaches a geo-
mean of 0.96; 4% faster. Since PolyBenchC kernels measure
computation and not system calls, Tru�eWasm performed
better and the harness reached a stable state after a short
number of iterations, and these benchmarks tended to reach
consistent peak performance execution timeswith very small
deviations.

7 Related Work

Other WebAssembly standalone runtimes exist that target
di�erent deployment scenarios and platforms. Beyond browser
engines, the following WebAssembly projects have in�u-
enced and are relevant to Tru�eWasm:

Wasmtime is a Bytecode alliance15 standalone runtime
for WASI targeted modules. Wasmtime currently has full
support for the WASI API, provides a C-API and is backed by
two JIT compilers, Cranelift and Lightbeam, providing tiered
code generation. Our Tru�eWasm implementation closely
follows Wasmtime for the WASI API, and provides similar
con�guration options in order that we can make the fairest
possible comparisons between Wasmtime and Tru�eWasm.

Wasmer is anotherWebAssembly standalone JIT runtime
written in Rust. Wasmer provides di�erent back-ends for
generating JITed code including LLVM, Cranelift and Single-
pass compilers. Wasmer also provides an API for languages
such as Go and PHP, and provides support for WASI and
Emscripten standalone modules.
GraalWasm16 was recently announced as an open-source

project aiming to support WebAssembly on GraalVM. How-
ever, GraalWasm does not support the WebAssembly System
Interface, and has only been tested with micro-benchmarks.
At the moment, GraalWasm cannot execute the benchmarks
used in the evaluation of this paper.
Sulong is part of the GraalVM and executes LLVM IR, a

compilation target for languages such as C, C++ and Swift, on
JVMs [15]. By working with IR, Sulong manages to support
multiple languages on the same implementation and it has
been used to investigate techniques for the safe execution of
native libraries on the JVM. In contrast, the research work
in this paper investigates WebAssembly bytecode that has
a similar abstraction level to LLVM IR. As such the same
implementation approaches are followed with a focus on

15https://bytecodealliance.org/
16December 2019 – https://medium.com/graalvm/announcing-graalwasm-
a-webassembly-engine-in-graalvm-25cd0400a7f2
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supporting WebAssembly interoperability for its external
imports.

To start understanding other WebAssembly runtimes, we
have started experiments using the PolyBenchC benchmarks
with Node.js v12.13.1 which uses V8. Currently, the geo-
mean of Tru�eWasm running WebAssembly with WASI is
55% slower relative to Node.js.

8 Conclusions

We have presented Tru�eWasm, the �rst WebAssembly im-
plementation on top of a JVM that can execute standalone
WebAssembly modules and interoperate with JavaScript.
Tru�eWasmprovides a platform for investigatingWebAssem-
bly core features, their performance, and how to provide
interoperability with other Tru�e-hosted languages.

The experimental results have compared the peak perfor-
mance of Tru�eWasm to the standalone Wasmtime runtime
for the Shootout, C-JetStream and the PolyBenchC bench-
marks. These results show that the geo-mean peak perfor-
mance of Tru�eWasm is competitive, and is only 4% slower
than Wasmtime for the Shootout/C-JetStream, and 4% faster
for PolyBenchC.

Considering the complexity of the implementation of Truf-
�eWasm and Wasmtime is also an interesting question, al-
though di�cult to quantify. An indirect (and not perfect)
but crude metric is the Lines of Code (LoC), Tru�eWasm
contains less than 50K LoC in Java, while Wasmtime con-
tains more than 100K LoC including �les in Rust, C++ and C.
Wasmtime only has a JIT back-end for Intel/AMD processors,
while Tru�eWasm bene�ts from a wider range of back-ends
available in the JVM ecosystem.

Future improvements will focus on adding support for new
WebAssembly features such as multi-threading and SIMD
that are now supported by some web browsers. We will also
investigate performance improvement opportunities for peak
performance, memory, and startup times; e.g. harnessing the
SubstrateVM AoT [22].
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A Appendix - C Snipet with Nested Blocks

#define sortelements 5000

long seed = 74755L;

int sortlist[sortelements+1], biggest, littlest;

void Initarr() {

int i; /* temp */

long temp;

biggest = 0; littlest = 0;

for ( i = 1; i <= sortelements; i++ ) {

temp = Rand();

sortlist[i] = (int)(temp - (temp/100000L) * 100000L - 50000L);

if ( sortlist[i] > biggest )

biggest = sortlist[i];

else if ( sortlist[i] < littlest )

littlest = sortlist[i];

}

}

Listing 7. Nested blocks example code snippet in C.

1 Initarr: # @Initarr

2 i32.const 0

3 i32.const 0

4 i32.store littlest

5 i32.const 0

6 i32.const 0

7 i32.store biggest

8 i32.const 4

9 local.set 0

10 loop # label0:

11 local.get 0

12 i32.const sortlist

13 i32.add

14 i32.call Rand@FUNCTION

15 i32.const 100000

16 i32.rem_s

17 i32.const -50000

18 i32.add

19 local.tee 1

20 i32.store 0

21 i32.const biggest

22 local.set 2

23 block

24 block

25 local.get 1

26 i32.const 0

27 i32.load biggest

28 i32.gt_s

29 br_if 0 # 0: down to label2

30 i32.const littlest

31 local.set 2

32 local.get 1

33 i32.const 0

34 i32.load littlest

35 i32.ge_s

36 br_if 1 # 1: down to label1

37 end_block # label2:

38 local.get 2

39 local.get 1

40 i32.store 0

41 end_block # label1:

42 local.get 0

43 i32.const 4

44 i32.add

45 local.tee 0

46 i32.const 20004

47 i32.ne

48 br_if 0 # 0: up to label0

49 end_loop

50 end_function

Listing 8.WebAssembly code for the example in Listing 7,
compiled with clang 8.0 using Compiler Explorer.
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