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ABSTRACT

This paper describes a robust algorithm for reliable ideal Midsagit-
tal Plane extraction (iMSP) from 3D neuroimages. The algorithm
makes no assumptions about initial orientation of a given 3D brain
image and works reliably on neuroimages of normal brains as well
as brains with significant pathologies. Presented technique is truly
three-dimensional since we treat each neuroimage as a three-dimensional
volume rather than a set of two-dimensional slices. We use an edge-
based approach which employs cross-correlation to extract iMSP.
Proposed algorithm was quantitatively evaluated on a variety of real
and artificial neuroimages. We find that our algorithm is able to ex-
tract iMSP from neuroimages with arbitrary initial orientations, large
asymmetries, and low signal to noise ratio. We also demonstrate that
presented algorithm can increase robustness of existing neuroim-
age registration algorithms, be it rigid, affine or less restricted de-
formable registration. Our algorithm was implemented using Insight
Toolkit(ITK).

1. INTRODUCTION

In many neuroimage processing and classification tasks [10, 9] it
is important to know the location of the midsagittal plane. Such
tasks include statistical quantification of human brain asymmetry
[4, 5, 15], exploring changes in brain asymmetry due to aging or a
disease, classification tasks where symmetry-based features are used
for discrimination between groups of people. Knowing midsagittal
plane can also be useful in the process of registering neuroimages
because it allows roughly pre-align the images and also reduces the
number of transformation parameters which registration process has
to estimate. Another possible application of the midsagittal plane
extraction algorithm is in bringing neuroimages into standard co-
ordinate system, like commonly used Talairach coordinate system
[14], automatically. Talairach framework relies on landmarks and
defines principal orthogonal coordinate axes based on interhemi-
spheric midsagittal plane, AC-PC line 1 and VAC line2. However, in
some normal brains and in many pathological brains with tumors or
lesions interhemispheric midsagittal plane is not a geometric plane
but a curved two-dimensional surface. In such cases, therefore, the
coordinate axis based on interhemispheric midsagittal plane in Ta-
lairach coordinate system is defined ambiguously. This ambiguity

This work is partially supported by NIH grants R21 DA015900-01,
MH064625, MH01077, AG05133.

1line passing through the superior aspect of the anterior commissure (AC)
and the inferior aspect of the posterior commissure (PC)

2line passing through the posterior margin of anterior commissure and
perpendicular to AC-PC line

can be removed by defining an ideal midsagittal plane (iMSP) as a
virtual geometric plane about which the three-dimensional anatomi-
cal structure captured in the given neuroimage exhibits maximum bi-
lateral symmetry [10]. Fully automatic extraction of iMSP presents
a number of challenges posed by various extrinsic and intrinsic fac-
tors. These factors include initial orientation of the neuroimage, the
amount of noise present and the degree of asymmetry of the input
neuroimage. In this paper we propose a simple algorithm that can
quickly and accurately estimate iMSP in neuroimages. We demon-
strate that the algorithm performs well no matter whether the neu-
roimage is represented by a set of axial, coronal, sagittal or arbi-
trarily oriented slices. We show that the algorithm is robust to the
presence of strong noise in the image or large tumors. The paper is
organized as follows. Section 2 reviews existing work on automatic
MSP extraction. Section 3 describes proposed algorithm for auto-
matic ideal midsagittal plane extraction. Section 4 contains quan-
titative evaluation of the algorithm’s performance when applied to
normal, highly asymmetric and noisy neuroimages. Section 5 illus-
trates advantages of using the algorithm as a preprocessing step of
registration process, and, finally, in section 6 we present our conclu-
sions.

2. RELATED WORK

Existing MSP extraction algorithms can be divided into 2 conceptu-
ally different groups. First group of algorithms defines MSP in terms
of anatomical structures of the brain [2]. Such methods assume that
the interhemispheric fissure of the brain is approximately planar and
is, in fact, a good approximation to MSP. Therefore, they identify
task of estimating MSP with the task of detecting the interhemi-
spheric fissure. Once the fissure is found, its location is used to esti-
mate MSP. The fact that interhemispheric fissure is often not planar
even in normal brains limits robustness of this kind of approaches.
Also, such algorithms are sensitive to modality of the image, image
artifacts, and often require segmentation as a preprocessing step.
The other group of techniques defines MSP as a symmetry plane of
a neuroimage [1, 6, 10]. Methods in this group usually define a sym-
metry measure and find a plane which maximizes it. Depending on
the type of symmetry measure and whether it is applied to the orig-
inal intensity image or to a volume that was preprocessed, the algo-
rithms in this group can be affected by the global asymmetry of the
brain. This is because if the brain is significantly tilted, correspond-
ing left and right anatomical structures of the brain do not appear on
the same slice. Consequently, symmetry lines which are computed
on each 2D slice are meaningless and lead to erroneous estimations
of MSP. 3D methods that compute symmetry measure on the entire
volume have the potential of overcoming the neuroimage orienta-
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tion constraint of 3D slice based algorithms. A different approach is
employed by Prima, et al [13]. They utilize deformable registration
and block matching to compute MSP. However, they report that their
approach breaks if the yaw and roll angles of the given neuroimage
are about 21 degrees [13]. This is approximately the same as the
breaking point reported by Liu et al [10] for their algorithm where
midsagittal plane was estimated from a set of 2D slices.

3. IDEAL MIDSAGITTAL PLANE EXTRACTION
ALGORITHM

In this section we present an algorithm for extracting ideal midsagit-
tal plane from an arbitrarily oriented three-dimensional neuroimage
represented by a set of two-dimensional slices. In order to describe
our algorithm we will first describe preprocessing operations we per-
form on the input neuroimage, then we specify three general compo-
nents of our algorithm: our parametrization of the space of possible
solutions, the metric to evaluate candidate solutions, and the explo-
ration strategy for this parametrized space.
In order to increase robustness of our algorithm, we must reduce
its sensitivity to such factors as noise, and local asymmetries of the
brain. We achieve this goal by anisotropic smoothing, subsampling
and edge detection [3]. Subsampling makes our algorithm insen-
sitive to minor asymmetries of the brain. Anisotropic smoothing
reduces noise in the image while preserving edges. Finally, edge
detection reduces effects of the remaining noise and bias field and
forces our algorithm to consider only main structures in the brain. In
addition, edge detection allows us to use computationally effective
measure of symmetry.
In our problem of extracting ideal midsagittal plane, the space of
possible solutions is a set of all possible planes. We can define any

plane by a point P on the plane and a unit normal vector
→
V . The

parametrization we use indexes the space of candidate midsagittal

planes by the coordinates of point P and unit vector
→
V . We traverse

the space in the following manner.

Given
→
V we will change the coordinates of P by

→
V at a time. This

corresponds to moving a plane by 1 unit at a time in the direction
perpendicular to the plane. Moreover, since we are looking for the
plane of symmetry, we will require that candidate planes be close to

the centroid of the given neuroimage. Thus, given
→
V , we will only

consider a relatively small set of planes located near centroid that

are perpendicular to
→
V . However, we cannot impose any restrictions

on
→
V since we make no assumptions about initial orientation of the

neuroimage. To visualize the search strategy we employ, imagine

that the unit vector
→
V is at the center of a unit sphere. Then to con-

sider all possible values for
→
V means to sweep the entire surface of

the sphere with the endpoint of
→
V . We will embed a lattice into the

surface of the sphere and visit only nodes of this lattice. Moreover
we can eliminate half of the sphere from the consideration because
→
V and -

→
V specify the same orientation of the plane perpendicular to

them. Thus, each visited node corresponds to a particular orientation

of
→
V . Fixing

→
V , we now change P as described above, and retrieve

the plane with the maximum correlation score computed according
to (2) described below. In such a way we can assign a score to each

of the
→
V ′s. In order to make our algorithm more robust to spurious

matches, we choose
→
V ′s with three highest scores rather than a single

Fig. 1. We embed a coarse lattice (left) on the surface of a unit

sphere and make the endpoint of
→
V visit every node of it. A finer lat-

tice is embedded and explored around each of the best 3 orientations

of
→
V .

→
V with the highest score for further exploration. For each selected

→
V

we embed a finer lattice around the node which corresponds to it and
then visit every node of that finer lattice. For each of the finer lattices
we pick a node with the highest score and subsequently choose the
node which gives the highest score as evaluated on the full size edge
image. After that we embed yet another even finer lattice around the
selected node and evaluate the nodes of the lattice according to the
formula (2) as applied to full sized edge image. The evaluation of

the finest lattice produces
→
V and P that correspond to the ideal mid-

sagittal plane.
Given a particular instantiation of the point P and the unit normal

vector
→
V , we evaluate how symmetric the input neuroimage is with

respect to the plane specified by these P and
→
V using correlation

of original neuroimage and its flipped copy about the given plane
[11, 8].

S =

�w
i

�h
j

�d
k Io

ijkIf
ijk���w

i

�h
j

�d
k If

ijkIf
ijk

���w
i

�h
j

�d
k Io

ijkIo
ijk

� (1)

where w, h, d are respectively width, height and depth of the 3D
neuroimage, Io

ijk is intensity value of the voxel with coordinates i,
j, k in the original image, If

ijk is intensity value of the voxel with
coordinates i, j, k in the flipped image.
After preprocessing, we transform the original neuroimage into a
binary edge image. (1) reduces to

S =
M√
N · N =

M

N
(2)

where N is the total number of non-zero voxels in the binary image,
M is the total number of coordinate triples for which voxels in both
original and flipped binary neuroimages have non-zero values.
The formula (2) suggests that we only need to consider non-zero
voxels of the binary edge image, which makes the evaluation process
much faster

The algorithm is implemented using Insight Toolkit. Anisotropic
diffusion is done using classic Perona-Malik algorithm [12]. Canny
edge detection method is used to find edges in the MR images. For
the edge detection, threshold of 0.11 and gaussian smoothing fil-
ter with variance of 20 mm were used for subsampled image; and
threshold of 0.04 and gaussian smoothing filter with variance of 5
mm were used for the original image. The algorithm takes about 7
minutes to complete on a PC with Pentium IV 2.6Ghz processor.
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Fig. 2. The figure demonstrates the way we partition the unit hemi-
sphere into sectors and introduces the numbering of the sectors

Fig. 3. (a) slices of input and reoriented brain images from Noise
dataset, (b) -from Tumor dataset, (c) - from Normal dataset, and (d)
- from Symmetry dataset.

Fig. 4. Advantage of using iMSP for registration. First row contains
the slices of input neuroimages. Second row contains slices of the
target neuroimage to which we register the input brain image. Third
row contains the result of registration without reorienting input brain
image according to iMSP. Fourth row contains results of registration
after reorientation had been applied.

Table 1. Absolute strength of noise added to each image, in dBW.
Neuroimage # 1, 6, 2, 7, 3, 8, 4, 9, 5, 10,

11, 16 12, 17 13, 18 14, 19 15
Noise, dBW 40 30 20 10 50

Table 2. Parameters of simulated tumors. X, Y , Z are coordinates
of the center of a simulated tumor and R is the radius of the tumor,
in voxels

Neuroimage # 1, 6, 2, 7, 3, 8, 4, 9, 5, 13,
14, 19 10, 15 11, 16 12, 17 18

X, voxels 100 120 140 160 80
Y, voxels 120 130 140 150 110
Z, voxels 100 100 100 100 100
R, voxels 30 40 50 60 20

4. EVALUATION

In this section we will quantitatively characterize robustness of the
proposed iMSP extraction algorithm. As the measure of error of our
algorithm we will use angle α, in degrees, between vector normal to

true iMSP,
→
V , and vector normal to an iMSP estimated by the algo-

rithm,
→
V̂ .

We will test our algorithm on 19 3D MR neuroimages. For conve-
nience, the images were resampled to have cubic voxels and dimen-
sions of 256x256x256 voxels. We call this dataset Normal. Three
additional datasets are created based on this Normal dataset: Noise,
Tumor and Symmetric. Parameters of added noise and simulated
tumors are summarized in Tables 1 and 2 respectively. Symmetric
dataset is created by reflecting left half of every brain in the Normal
dataset about plane x = 128.

In order to evaluate accuracy of the proposed algorithm for ar-
bitrary orientations of the 3D neuroimages, we apply 9 rotations Ri

to every volume in each of the four datasets. We choose rotations so
that each Ri is random and at the same time the set of Ri is spread
out through the entire set of possible rotations. As far as midsagittal
plane extraction is concerned, orientation of a volume is defined by

the orientation of its iMSP, which, in turn, is defined by
→
V . There-

fore, we partition the space of orientations of iMSPs into 9 sectors
as illustrated by the rightmost sphere in the Figure 2 and ensure that

each Ri maps
→
V inside a different sector. In such manner we ob-

tain 9 additional volumes for every neuroimage in each of the four
datasets. This brings the total number of neuroimages in our entire
testing set to 19 × 4 × (1 + 9) = 760. Sample results of our algo-
rithm are presented in the Figure 3
For each image in our test set we know, by construction, the rotation
transform R which was applied to it. Since originally midsagittal
planes of the neuroimages we chose were approximately parallel to
yz-plane, after we run the algorithm on an image in the test set, we
obtain estimate E of R−1. We can evaluate quality of this estimate

by the angle α between the correct normal vector
→
V and the esti-

mated
→
V̂ . For each of the four datasets, for every neuroimage j and

orientation i

αij = cos−1

�
EijRij [ 1 0 0 ]T

� • [ 1 0 0 ]T
�
�EijRij [ 1 0 0 ]T

�
� (3)

Since in the neuroimages from Normal, Tumor and Noise datasets

862



2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

NEUROIMAGE NUMBER

M
E

A
N

 E
R

R
O

R
, d

eg
re

es

SYMMETRIC
NORMAL
NOISE
TUMOR

(a) Mean errors for every image

0 I II III IV V VI VII VIII IX
0

0.5

1

1.5

2

SECTOR NUMBER

M
E

A
N

 E
R

R
O

R
, d

eg
re

es

SYMMETRIC
NORMAL
NOISE
TUMOR

(b) Mean errors for every orienta-
tion

Fig. 5. The graphs show mean errors of the algorithm for (a) every
image and every orientation (b).
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Fig. 6. The graphs show that accuracy of registration is improved
for (a) every brain image and (b) every orientstion when iMSP ex-
traction algorithm is applied before the registration.
iMSP is only approximately parallel to yz-plane, our results for these
images may be biased even if the algorithm works perfectly. To cor-
rect for this, for these three datasets, we substitute vector

�
1 0 0

�T

in the equation (3) by 0.1
�10

i=1 EijRij

�
1 0 0

�T
. Error plots

are presented in Figure 5. Our algorithm has mean error of 0.562 de-
grees when applied to Normal dataset; 0.242 degrees when applied
to Symmetric dataset, and 0.604 and 0.746 degrees when applied
to Tumor and Noise datasets respectively. Our algorithm’s accu-
racy does not suffer from noise or simulated tumors as long as noise
strength is less than 50dBW.

5. IMSP AND REGISTRATION

Process of neuroimage registration can benefit from iMSP extrac-
tion. First, prealigning two MSPs of two images to be registered
helps registration avoid local extrema. Second, by requiring that
iMSPs of two registered neuroimages coincide, we reduce the num-
ber of parameters a registration procedure has to optimize. In the
case of rigid registration, for example, 6 continuous parameters can
be reduced to 4: three continuous representing rotation parallel to
iMSP and 2 translations, and one binary representing flip. To eval-
uate advantages for registration provided by our iMSP extraction
algorithm, we conducted experiments using 190 neuroimages from
Normal dataset. We used rigid registration algorithm available in In-
sight Toolkit [7] with mean intensity square difference as a similarity
measure and initialization using moments of inertia turned on. Our
experiments have shown that reducing number of degrees of free-
dom using constraints imposed by iMSP makes registration more
than twice as fast compared to mere alignment of iMSPs of two im-
ages without sacrificing quality of registration. Our other findings
in terms of reliability and accuracy of registration which employs
midsagittal plane extraction are presented in Figures 4 and 6.

6. CONCLUSIONS

We have presented a robust truly three dimensional algorithm for
ideal midsagittal plane extraction. We have shown that, unlike other
existing algorithms, our algorithm has no limitations on the initial
orientation of the input neuroimage while achieving accuracy com-
parable to that of existing algorithms. In addition, we have demon-
strated and quantitatively evaluated the improvements in registration
accuracy, speed and reliability of neuroimage registration that are
made possible by our ideal midsagittal plane extraction algorithm.
Although we did extensive evaluation only on MR images, our al-
gorithm should perform well on other image modalities for which
edges can be found reliably.
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