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Usual Model of Encryption

• Single line between Alice and Bob.

• Alice and Bob share a key.

• Enemy can fully corrupt the channel.

(Observe and modify the ciphertext)

Alice Bob



Dolev, Dwork, Waarts and Yung

• n-channels between Alice and Bob.

• An infinitely powerful adversary A 

can corrupt t out of n channels.

(Observe and modify)

Alice Bob



Goal

• Alice wishes to send a secret s to Bob

• in r-rounds

• without sharing any key.



1 Round Protocol

Sender
Receiver



2 Round Protocol

Sender
Receiver

Sender
Receiver

1st

2nd



We say that a MT scheme

is perfectly secure if

• (Perfect Privacy)

Adversary learns no information on s

• (Perfect Reliability)

Bob can receive s correctly 



In what follows, PSMT means

• Perfectly 

• Secure 

• Message 

• Transmission

• Scheme



For 1 round,

• Dolev et al. showed that there exists 

a 1-round PSMT iff n ≧ 3t+1.

• They also showed 

an efficient 1-round PSMT.

where the adversary can corrupt 

t out of n channels.



For 2 rounds,

• It is known that there exists 

a 2-round PSMT iff n ≧ 2t+1.

• However, it is very difficult to construct 

an efficient scheme for n=2t+1.



For n=2t+1,

• Dolev et al. showed a 3-round PSMT 

such that 

the transmission rate is O(n5),

• where the transmission rate is defined as

the total number of bits transmitted

the size of the secrets



Sayeed et al. showed

• a 2-round PSMT such that 

the transmission rate is O(n3)



Srinathan et al. showed that

• n is a lower bound on

the transmission rate of 2-round PSMT 

with n=2t+1.



At CRYPTO 2006,

• Agarwal, Cramer and de Haan

showed  a 2-round PSMT such that 

the transmission rate is O(n) .

• However, 

the computational cost is exponential. 



Agarwal, Cramer and de Haan

• left it as an open problem to

construct a 2-round PSMT for n=2t+1 

such that 

• not only 

the transmission rate is O(n)

• but also

the computational cost is poly(n).



In This Paper,

• We solve this open problem.



2-round PSMT for n=2t+1

Trans. rate Sender‟s 

comp.

Receiver‟s 

comp.

Agarwal et 

al.‟s schme

O(n) exponential exponential

Proposed 

scheme

O(n) poly(n) poly(n)



Alice Bobs=f(0)

f(1)

f(t)

f(n)

・

・

・

・

・

・

Consider a MT as follows.

Alice chooses a random f(x) such that

deg f(x)≦t and 



Enemy

Alice Bobs=f(0)

f(1)

f(t)

f(n)

・

・

・

・

・

・

because deg f(x)≦t

Perfect Privacy:

Enemy learns no info. on s

corrupts t channels.



Let C be a linear code

• such that a codeword is 

X=(f(1),…, f(n)),

• where f(x) is a polynomial 

with deg f(x) ≦ t.



Let C be a linear code

• such that a codeword is 

X=(f(1),…, f(n)),

• where with deg f(x) ≦ t.

• Then X has at most t zeros

because deg f(x) ≦ t.



Let C be a linear code

• such that a codeword is 

X=(f(1),…, f(n)),

• where with deg f(x) ≦ t.

• Then X has at most t zeros.

• Hence 

the minimum Hamming weight of C is

n-t.



Let C be a linear code

• such that a codeword is 

X=(f(1),…, f(n)),

• where with deg f(x) ≦ t.

• Then X has at most t zeros.

• Hence 

the minimum Hamming distance of C is

d=n-t.



If n=3t+1,

• the minimum Hamming distance of C is

d = n – t = (3t+1) – t = 2t+1.
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caused by the adversary.
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If n=3t+1,

• the minimum Hamming distance of C is

d=n – t = (3t+1) – t = 2t+1.

• Hence the receiver can correct t errors 

caused by the adversary.

• Thus perfect reliability is satisfied.

• Therefore 

we can obtain a 1-round PSMT easily.



If n=2t+1, however, 

• the minimum Hamming distance of C is   

d = n - t = (2t+1) – t = t+1



If n=2t+1, however, 

• the minimum Hamming distance of C is   

d=n-t=(2t+1)-t= t+1

• Hence the receiver can only detect t errors,

but cannot correct them.



If n=2t+1, however, 

• the minimum Hamming distance of C is   

d=n-t=(2t+1)-t=t+1

• Hence the receiver can only detect t errors,

but cannot correct them.

• This is the main reason why the 

construction of PSMT for n=2t+1 is difficult.



What is a difference

• between error correction and PSMT ?



What is a difference

• between error correction and PSMTs ?

• If the sender sends a single codeword, 

then the Enemy causes t errors randomly.



What is a difference

• between error correction and PSMTs ?

• If the sender sends a single codeword, 

then the Enemy causes t errors randomly.

• Hence there is no difference.



Our Observation

• If the sender sends many codewords

X1, …, Xm, 

then the errors are not totally random

• because 

the errors always occur 

at the same t (or less) places !



Our Observation

• Suppose that the receiver received 

Y1=X1+ E1, …,  Ym=Xm+ Em, 

• Let 

E = [E1, …, Em].

• Then 

dim E ≦ t

because the errors always occur 

at the same t (or less) places !



Y= {Y1, …, Ym} E = [E1, …, Em].

Pseudo dim k dim k

Pseudo basis

{Yj1, …, Yjk}

Basis {Ej1, …, Ejk}

Suppose that the receiver received 

Yi=Xi+ Ei



Main Contribution

• We introduce a notion of 

pseudo-dimension 

pseudo-basis, 

and

• show a poly-time algorithm 

which finds them from Y={Y1, …, Ym}.



Main Contribution

• We introduce a notion of 

pseudo-dimension 

pseudo-basis, and

• show a poly-time algorithm 

which finds them from Y={Y1, …, Ym}.

• Please see the proceedings 

for this algorithm.



More Observation

For example,

• E1=(1,0, …, 0),       

• E2=(1,1,0, …, 0),    

• …

• Et=(1,…,1,0, …, 0), 

is a basis of E.



More Observation

• E1=(1,0, …, 0),       NonZero(E1)={1}

• E2=(1,1,0, …, 0),    NonZero(E2)={1,2}

• …

• Et=(1,…,1,0, …, 0), NonZero(Et)={1, …, t}
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More Observation

• E1=(1,0, …, 0),       NonZero(E1)={1}

• E2=(1,1,0, …, 0),    NonZero(E2)={1,2}

• …

• Et=(1,…,1,0, …, 0), NonZero(Et)= {1, …, t}

• Define

FORGED = U NonZero(Ei) 

basis

= {all forged channels}



In general,

• FORGED = U NonZero(Ei) 

basis

FORGED = {all forged channels}



Rest of This Talk

• Our 3-round PSMT 

• Basic 2-round PSMT 

• More Efficient 2-round PSMT

• Final 2-round PSMT
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• Final 2-round PSMT



Sender
Random codeword

Xi = (fi(1), …, fi(n))

Yi = Xi + Ei
Receiver

Receiver
Pseudo-dimension k

Pseudo-basis B

of {Y1, …, Yt+1}

For i=1, …, t+1,



R Broadcasts (k, B)

Receiver

(k, B)

.

.

.

(k, B)

channel 1

channel n



S can receive them correctly

by taking the majority vote

(k1, B1)

(kt, Bt)

(k, B)

(k, B)

channel 1

channel n

Sender

t  (forged)

t+1 (correct)

because n = 2t + 1



For simplicity,

Sender Pseudo-dimension k=t

Pseudo-basis B={Y1, …, Yt}

S computes

{Ei=Yi-Xi | Yi ∈B}



For simplicity,

Sender Pseudo-dimension k=t

Pseudo-basis B={Y1, …, Yt}

S computes

{Ei=Yi-Xi | Yi ∈B}

= basis of [E1, …, Et+1]

from the definition of pesudo-basis



For simplicity,

Sender Pseudo-dimension k=t

Pseudo-basis B={Y1, …, Yt}

S computes

{Ei=Yi-Xi | Yi ∈B}

= basis of [E1, …, Et+1]

FORGED = ∪ NonZero( these Ei )



For simplicity,

Sender Pseudo-dimension k=t

Pseudo-basis B={Y1, …, Yt}

S computes

{Ei=Yi-Xi | Yi ∈B}

= basis of [E1, …, Et+1]

FORGED = ∪ NonZero( these Ei )

= { all forged channels }



In the 3rd round

R decrypts c as follows.

Sedner
FORGED

c = s+ ft+1(0)

where Yt+1 ∈B

Receiver



R received FORGED

Suppose that FORGED={1, …, t}

Xt+1=(ft+1(1), …, ft+1(t),  ft+1(t+1), …, ft+1(n))

R ignores
R received these t+1

values correctly



Perfect Reliability

Xt+1=(ft+1(1), …, ft+1(t),  ft+1(t+1), …, ft+1(n))

R can reconstruct ft+1(x) from these t+1

by using Lagrange formula.

Therefore R can decrypt 

c = s + ft+1(0)



Perfect Privacy

Sedner
FORGED

c = s + ft+1(0)

Xt+1=(ft+1(1), …, ft+1(t),  ft+1(t+1), …, ft+1(n))

Enemy knows at most t values.

Hence 

it has no info. on ft+1(0).

Therefore it has no info. on s.



Rest of This Talk

• Our 3-round PSMT 

• Basic 2-round PSMT 

• More Efficient 2-round PSMT

• Final 2-round PSMT



For i=1, …, n

Xi=(fi(1), …, fi(n)) Receiver

Receiverthe coefficients of fi(x)

Xi=(fi(1), …, fi(n))
channel i



For i=1, …, n

Sender Yi = Xi +Ei

Sender

channel i

fi‟(x)

Xi‟ =(fi‟(1), …, fi‟(n))



For i=1, …, n

Sender
Yi = Xi +Ei

Sender

channel i

If d( Yi, Xi‟) > t,

then S broadcasts “ignore channel i”

fi‟(x)

Xi‟ =(fi‟(1), …, fi‟(n))

Note that d( Yi, Xi) ≦t



If d( Yi, Xi‟) > t,

then S broadcasts “ignore channel i”

Otherwise 

S broadcasts Δi=Xi‟ - Yi

Sender Yi = Xi +Ei

Sender

channel i

fi‟(x)

Xi‟ =(fi‟(1), …, fi‟(n))



In the 2nd round

Sender

Each Δi

Pseudo-dimension k

Pseudo-basis B

c=s+f1‟(1)+…+fn‟(n)



In the 2nd round

Sender

Each Δi

Pseudo-dimension k

Pseudo-basis B

c= s + f1‟(1)+…+fn‟(n)

R first computes FORGED.

R next reconstrcuts each fi‟(x) as follows.



For each j ∈FORGED,

• R computes

fi‟(j) = Δi |j+ fi(j)           

= (Xi‟ – Yi ) |j + fi(j)

• This holds because 

fi‟(j)=Xi‟|j and Yi|j=fi(j)



For each j ∈FORGED,

• R computes

fi‟(j) = Δi |j+ fi(j)           

= (Xi‟ – Yi ) |j + fi(j)

• This holds because 

fi‟(j)=Xi‟|j and yij=fi(j)

• R can reconstrcut fi‟(x) from these fi‟(j)

by using Lagrange formula.



Perfect Reliability

Thus R can reconstrcut each fi‟(x).

Hence R can decrypt 

c= s + f1‟(1)+…+fn‟(n)



Perfect Privacy

• S broadcasts a pseudo-basis {Y1, …, Yt}

• Enemy corrupts t channels.

• Note that

n – t - t = (2t+1) – t - t = 1

• This implies that 

there remains at least one fi‟(i)

on which the enemy has no information



Perfect Privacy

• Hence in the ciphertext

c = s + f1„(1) + … + fn„(n),

• the enemy has no information on s.

• Hence 

perfect privacy is also satisfied.



Efficiency

Trans.

rate

Sender‟s     Receiver‟s

Comp.         Comp.

Basic scheme O(n2t) poly(n)        poly(n)

More efficient 

scheme

O(n2) poly(n)        poly(n)

Final scheme O(n) poly(n)        poly(n)
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More Efficient 2-round PSMT

• In our basic scheme,

S sends a single secret s.



More Efficient 2-round PSMT

• In our basic scheme,

S sends a single secret s.

• In the more efficient scheme,

S sends t2 secrets si by running 

the basic scheme t times in parallel.



More Efficient 2-round PSMT

• In our basic scheme,

S sends a single secret s.

• In the more efficient scheme,

S sends t2 secrets si by running 

the basic scheme t times in parallel.

This implies that the transmission rate is 
reduced from O(n2t) to O(n2).



Run the basic scheme t times

• For each channel i, 

R chooses t polynomials fi+jn(x), 

where j=0, …,t-1. 

• In total, 

R chooses tn polynomials fi+jn(x).



Among tn polynomials fi+jn(x),

• Since the enemy corrupts t channels,

she knows t2 values of fi+jn(i).
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• Since the enemy corrupts t channels,
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Among tn polynomials fi+jn(x),

• Since the enemy corrupts t channels,

she knows t2 values of fi+jn(i).

• S broadcasts a  pseudo-basis {Y1, …, Yt}

• There remains t2 uncorrupted fi+jn„(i)s

because 

tn - t2 - t = t(2t+1) - t2 – t = t2

Enemy has no info. on these t2 values



Randomness Extractor

• is used to extracst these t2 values

• S uses them as one-time pad 

to encrypt t2 secrets



Randomness Extractor

• Suppose that Enemy has no info. on 

t2 out of tn elements r0, …,rtn-1.

• Let

R(x)=r0+r1x+… + rtn-1 xtn-1

• Then Enemy has no info. on

R(1), …, R(t2)



Consequently,

• In the more efficient scheme,

S can send t2 secrets si by running 

the basic scheme t times in parallel.

This implies that the transmission rate is 

reduced from O(n2t) to O(n2).



Efficiency

Trans.

rate

Sender‟s     Receiver‟s

Comp.         Comp.
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Efficiency

Trans.

rate

Sender‟s     Receiver‟s

Comp.         Comp.

Basic scheme O(n2t) poly(n)        poly(n)

More efficient 

scheme

O(n2) poly(n)        poly(n)

Final scheme O(n) poly(n)        poly(n)



Most Costly Part

• S broadcasts Δ1, …Δtn, where |Δi|≦t.

• The communication cost 

to broadcast each Δi is tn.

• We will show how to reduce it to O(n).



Modify the 2nd round as follows.

• S first computes the pseudo-dimension k.

• If | Δi|>k, 

S broadcasts “ignore channel i”.



Otherwise S sends Δi as follows

• |Δi|≦k

• S knows the pseudo-dimension k.

• R knows FORGED={k forged channels}



Generalized Broadcast

• Suppose that S wants to 

send k+1 elements a0, …, ak.

• S constructs A(x) such that

A(x)= a0 + a1x+ …+ akx
k

• S sends A(i) througth channel i  

for i=1, …,n. 

• This communication cost is n.



R receives as follows.

• Suppose that FORGED={1, …, k}.

• R ignores FORGED and

considers a shortened codeword 

[A(k+1), …, A(n)]

• It turns out that

d = 2 ( t – k ) + 1



R receives as follows.

• Hence R can correct t-k errors.

• On the other nhand,

since there are k forged channels,

Enemy can forge more t-k channels.

• Therefore 

R can receive a0, …, ak correctly.



Transmission Rate

• By using this technique,

the cost of sending each Δi is 

reduced from tn to n.

• This implies that the transmission rate is 

reduced from O(n2) to O(n).



Efficiency

Trans.

rate

Sender‟s     Receiver‟s

Comp.         Comp.

Basic scheme O(n2t) poly(n)        poly(n)

More efficient 

scheme

O(n2) poly(n)        poly(n)

Final scheme O(n) poly(n)        poly(n)



Summary

• We solved the open problem

raised by  Agarwal, Cramer and de Haan

at CRYPTO 2006.   



2-round PSMT for n=2t+1

Trans. rate Sender‟s 

comp.

Receiver‟s 

comp.

Agarwal et 

al.‟s schme

O(n) exponential exponential

Proposed 

scheme

O(n) poly(n) poly(n)



Thank you !


