Truly Efficient 2-Round Perfectly Secure Message Transmission Scheme

Kaoru Kurosawa Kazuhiro Suzuki (Ibaraki University, Japan)

- Single line between Alice and Bob.
- Alice and Bob share a key.
- Enemy can fully corrupt the channel.
 (Observe and modify the ciphertext)

Dolev, Dwork, Waarts and Yung

- n-channels between Alice and Bob.
- An infinitely powerful adversary A can corrupt t out of n channels.
 (Observe and modify)

Goal

- Alice wishes to send a secret s to Bob
- in r-rounds
- without sharing any key.

1 Round Protocol

2 Round Protocol

We say that a MT scheme

- is perfectly secure if
- (Perfect Privacy)

Adversary learns no information on s

• (Perfect Reliability)

Bob can receive s correctly

In what follows, PSMT means

- Perfectly
- Secure
- Message
- Transmission
- Scheme

For 1 round,

- Dolev et al. showed that there exists a 1-round PSMT iff n ≥ 3t+1.
- They also showed an efficient 1-round PSMT.

where the adversary can corrupt tout of n channels.

For 2 rounds,

• It is known that there exists a 2-round PSMT iff $n \ge 2t+1$.

 However, it is very difficult to construct an efficient scheme for n=2t+1.

For n=2t+1,

- Dolev et al. showed a 3-round PSMT such that the transmission rate is O(n⁵),
- where the transmission rate is defined as

the size of the secrets

Sayeed et al. showed

 a 2-round PSMT such that the transmission rate is O(n³)

Srinathan et al. showed that

 n is a lower bound on the transmission rate of 2-round PSMT with n=2t+1.

At CRYPTO 2006,

- Agarwal, Cramer and de Haan showed a 2-round PSMT such that the transmission rate is O(n).
- However,

the computational cost is exponential.

Agarwal, Cramer and de Haan

- left it as an open problem to construct a 2-round PSMT for n=2t+1 such that
- not only the transmission rate is O(n)
- but also

the computational cost is poly(n).

In This Paper,

• We solve this open problem.

2-round PSMT for n=2t+1

	Trans. rate	Sender's comp.	Receiver's comp.
Agarwal et al.'s schme	O(n)	exponential	exponential
Proposed scheme	O(n)	poly(n)	poly(n)

Consider a MT as follows. Alice chooses a random f(x) such that deg $f(x) \leq t$ and

such that a codeword is

X=(f(1),..., f(n)),

 where f(x) is a polynomial with deg f(x) ≤ t.

such that a codeword is

X = (f(1), ..., f(n)),

- where with deg $f(x) \leq t$.
- Then X has at most t zeros because deg f(x) ≤ t.

such that a codeword is

X=(f(1),..., f(n)),

- where with deg $f(x) \leq t$.
- Then X has at most t zeros.
- Hence

the minimum Hamming weight of C is n-t.

such that a codeword is

X=(f(1),..., f(n)),

- where with deg $f(x) \leq t$.
- Then X has at most t zeros.
- Hence

the minimum Hamming distance of C is

d=n-t.

If n=3t+1,

• the minimum Hamming distance of C is

d = n - t = (3t+1) - t = 2t+1.

If n=3t+1,

• the minimum Hamming distance of C is

d=n-t = (3t+1) - t = 2t+1.

 Hence the receiver can correct t errors caused by the adversary.

If n=3t+1,

• the minimum Hamming distance of C is

d=n-t = (3t+1) - t = 2t+1.

- Hence the receiver can correct t errors caused by the adversary.
- Thus perfect reliability is also satisfied.

If n=3t+1,

• the minimum Hamming distance of C is

d=n-t = (3t+1) - t = 2t+1.

- Hence the receiver can correct t errors caused by the adversary.
- Thus perfect reliability is satisfied.
- Therefore

we can obtain a 1-round PSMT easily.

If n=2t+1, however,

the minimum Hamming distance of C is

d = n - t = (2t+1) - t = t+1

If n=2t+1, however,

- the minimum Hamming distance of C is d=n-t=(2t+1)-t= t+1
- Hence the receiver can only detect t errors, but cannot correct them.

If n=2t+1, however,

- the minimum Hamming distance of C is d=n-t=(2t+1)-t=t+1
- Hence the receiver can only detect t errors, but cannot correct them.
- This is the main reason why the construction of PSMT for n=2t+1 is difficult.

What is a difference

between error correction and PSMT ?

What is a difference

- between error correction and PSMTs ?
- If the sender sends a single codeword, then the Enemy causes t errors randomly.

What is a difference

- between error correction and PSMTs ?
- If the sender sends a single codeword, then the Enemy causes t errors randomly.
- Hence there is no difference.

Our Observation

• If the sender sends many codewords

X₁, ..., X_m,

then the errors are not totally random

because

the errors always occur at the same t (or less) places !

Our Observation

Suppose that the receiver received

 $Y_1 = X_1 + E_1, ..., Y_m = X_m + E_m,$

Let

$$\mathsf{E} = [\mathsf{E}_1, \, \dots, \, \mathsf{E}_m].$$

• Then

dim $E \leq t$

because the errors always occur at the same t (or less) places !

Suppose that the receiver received $Y_i = X_i + E_i$

Main Contribution

• We introduce a notion of

{pseudo-dimension pseudo-basis,

and

show a poly-time algorithm
 which finds them from Y={Y₁, ..., Y_m}.

Main Contribution

• We introduce a notion of

{pseudo-dimension pseudo-basis, and

- show a poly-time algorithm
 which finds them from Y={Y₁, ..., Y_m}.
- Please see the proceedings for this algorithm.

For example,

- E₁=(1,0,...,0),
- E₂=(1,1,0, ..., 0),
- ...
- E_t=(1,...,1,0, ..., 0),
 is a basis of E.

- $E_1 = (1, 0, ..., 0),$ NonZero(E_1)={1}
- $E_2 = (1, 1, 0, ..., 0)$, NonZero(E_2)={1,2}

. . .

• E_t=(1,...,1,0,...,0), NonZero(E_t)={1,...,t}

- E₁=(1,0, ..., 0), NonZero(E₁)={1}
- E₂=(1,1,0, ..., 0), NonZero(E₂)={1,2}
- E_t=(1,...,1,0, ..., 0), NonZero(E_t)={1, ..., t}
- Define FORGED = U NonZero(E_i) basis

•

- E₁=(1,0, ..., 0), NonZero(E₁)={1}
- E₂=(1,1,0, ..., 0), NonZero(E₂)={1,2}
- E_t=(1,...,1,0, ..., 0), NonZero(E_t)= {1, ..., t}
- Define
 FORGED = U NonZero(E_i)
 basis
 = {all forged channels}

•

In general,

FORGED = U NonZero(E_i)

basis

FORGED = {all forged channels}

Rest of This Talk

- Our 3-round PSMT
- Basic 2-round PSMT
- More Efficient 2-round PSMT
- Final 2-round PSMT

Rest of This Talk

- Our 3-round PSMT
- Basic 2-round PSMT
- More Efficient 2-round PSMT
- Final 2-round PSMT

For i=1, ..., t+1,
Random codeword

$$X_i = (f_i(1), ..., f_i(n))$$

 $Y_i = X_i + E_i$
Pseudo-dimension k
Pseudo-basis B
of {Y₁, ..., Y_{t+1}}

S can receive them correctly by taking the majority vote

because n = 2t + 1

Pseudo-dimension k=t Pseudo-basis B={Y₁, ..., Y_t}

S computes $\{E_i = Y_i - X_i \mid Y_i \in B\}$

(Sender) Pseudo-dimension k=t Pseudo-basis $B=\{Y_1, ..., Y_t\}$

S computes $\{E_i = Y_i - X_i \mid Y_i \in B\}$ = basis of $[E_1, ..., E_{t+1}]$

from the definition of pesudo-basis

Pseudo-dimension k=t Pseudo-basis B={Y₁, ..., Y_t}

S computes $\{E_i = Y_i - X_i \mid Y_i \in B\}$ = basis of $[E_1, ..., E_{t+1}]$ FORGED = \cup NonZero(these E_i)

Pseudo-dimension k=t Pseudo-basis B={Y₁, ..., Y_t}

S computes $\{E_i = Y_i - X_i \mid Y_i \in B\}$ $= \text{ basis of } [E_1, \dots, E_{t+1}]$ $FORGED = \cup \text{ NonZero}(\text{ these } E_i)$ $= \{ \text{ all forged channels } \}$

In the 3rd round

R decrypts c as follows.

Perfect Reliability

$$X_{t+1} = (f_{t+1}(1), \dots, f_{t+1}(t), \underbrace{f_{t+1}(t+1), \dots, f_{t+1}(n)}_{(t+1)})$$

R can reconstruct $f_{t+1}(x)$ from these t+1 by using Lagrange formula.

Therefore R can decrypt $c = s + f_{t+1}(0)$

$$X_{t+1} = (f_{t+1}(1), \dots, f_{t+1}(t), f_{t+1}(t+1), \dots, f_{t+1}(n))$$

Enemy knows at most t values. Hence it has no info. on f_{t+1}(0). Therefore it has no info. on s.

Rest of This Talk

- Our 3-round PSMT
- Basic 2-round PSMT
- More Efficient 2-round PSMT
- Final 2-round PSMT

For i=1, ..., n $X_i = (f_i(1), ..., f_i(n))$ Receiver

the coefficients of $f_i(x)$ $X_i = (f_i(1), ..., f_i(n))$ channel i Receiver

For i=1, ..., n

If d(Y_i, X_i') > t, then S broadcasts "ignore channel i"

If $d(Y_i, X_i') > t$, then S broadcasts "ignore channel i"

Otherwise S broadcasts $\Delta_i = X_i' - Y_i$

In the 2nd round

Each Δ_i Second Pseudo-dimension k Pseudo-basis B C=s+f_1'(1)+...+f_n'(n)

In the 2nd round

R first computes FORGED. R next reconstruts each f[']_i(x) as follows.

For each j ∉FORGED,

• R computes

$$\begin{aligned} \mathbf{f}_{i}'(\mathbf{j}) &= \Delta_{i} |_{j} + f_{i}(\mathbf{j}) \\ &= (\mathbf{X}_{i}' - \mathbf{Y}_{i}) |_{j} + f_{i}(\mathbf{j}) \end{aligned}$$

This holds because

 $f_i'(j) = X_i'|_j$ and $Y_i|_j = f_i(j)$

For each $j \in FORGED$,

R computes

 $\begin{aligned} \mathbf{f}_{i}'(\mathbf{j}) &= \Delta_{i} \mid_{j} + \mathbf{f}_{i}(\mathbf{j}) \\ &= (\mathbf{X}_{i}' - \mathbf{Y}_{i}) \mid_{j} + \mathbf{f}_{i}(\mathbf{j}) \end{aligned}$

This holds because

 $f_i'(j)=X_i'|_j$ and $y_{ij}=f_i(j)$

 R can reconstruct f_i'(x) from these f_i'(j) by using Lagrange formula.

Perfect Reliability

Thus R can reconstruct each $f_i'(x)$.

Hence R can decrypt $c = s + f_1'(1) + ... + f_n'(n)$

Perfect Privacy

- S broadcasts a pseudo-basis {Y₁, ..., Y_t}
- Enemy corrupts t channels.
- Note that

$$n - t - t = (2t+1) - t - t = 1$$

 This implies that there remains at least one f_i'(i) on which the enemy has no information

Perfect Privacy

• Hence in the ciphertext

 $c = s + f_1'(1) + ... + f_n'(n),$

- the enemy has no information on s.
- Hence

perfect privacy is also satisfied.

Efficiency

	Trans. rate	Sender's Comp.	Receiver's Comp.
Basic scheme	O(n ² t)	poly(n)	poly(n)
More efficient scheme	O(n ²)	poly(n)	poly(n)
Final scheme	O(n)	poly(n)	poly(n)

Efficiency

	Trans. rate	Sender's Comp.	Receiver's Comp.
Basic scheme	O(n ² t)	poly(n)	poly(n)
More efficient scheme	O(n ²)	poly(n)	poly(n)
Final scheme	O(n)	poly(n)	poly(n)

More Efficient 2-round PSMT

In our basic scheme,

S sends a single secret s.

More Efficient 2-round PSMT

- In our basic scheme,
 S sends a single secret s.
- In the more efficient scheme,
 S sends t² secrets s_i by running the basic scheme t times in parallel.

More Efficient 2-round PSMT

- In our basic scheme,
 S sends a single secret s.
- In the more efficient scheme,
 S sends t² secrets s_i by running the basic scheme t times in parallel.

This implies that the transmission rate is reduced from $O(n^2t)$ to $O(n^2)$.

Run the basic scheme t times

- For each channel i,
 R chooses t polynomials f_{i+jn}(x),
 where j=0, ...,t-1.
- In total,

R chooses tn polynomials $f_{i+in}(x)$.

Among tn polynomials $f_{i+jn}(x)$,

 Since the enemy corrupts t channels, she knows t² values of f_{i+jn}(i).

Among tn polynomials $f_{i+jn}(x)$,

- Since the enemy corrupts t channels, she knows t² values of f_{i+jn}(i).
- S broadcasts a pseudo-basis {Y₁, ..., Y_t}

Among tn polynomials $f_{i+jn}(x)$,

- Since the enemy corrupts t channels, she knows t² values of f_{i+in}(i).
- S broadcasts a pseudo-basis {Y₁, ..., Y_t}
- There remains t² uncorrupted f_{i+jn} (i)s because

tn - t² - t = t(2t+1) - t² - t = t² Enemy has no info. on these t² values

Randomness Extractor

- is used to extracst these t² values
- S uses them as one-time pad to encrypt t² secrets

Randomness Extractor

- Suppose that Enemy has no info. on
 t² out of tn elements r₀, ..., r_{tn-1}.
- Let $R(x)=r_0+r_1x+...+r_{tn-1}x^{tn-1}$
- Then Enemy has no info. on R(1), ..., R(t²)

Consequently,

 In the more efficient scheme,
 S can send t² secrets s_i by running the basic scheme t times in parallel.

This implies that the transmission rate is reduced from $O(n^2t)$ to $O(n^2)$.

Efficiency

	Trans. rate	Sender's Comp.	Receiver's Comp.
Basic scheme	O(n ² t)	poly(n)	poly(n)
More efficient scheme	O(n ²)	poly(n)	poly(n)
Final scheme	O(n)	poly(n)	poly(n)

Efficiency

	Trans. rate	Sender's Comp.	Receiver's Comp.
Basic scheme	O(n ² t)	poly(n)	poly(n)
More efficient scheme	O(n ²)	poly(n)	poly(n)
Final scheme	O(n)	poly(n)	poly(n)

Most Costly Part

- S broadcasts $\Delta_1, ... \Delta_{tn}$, where $|\Delta_i| \leq t$.
- The communication cost to broadcast each Δ_i is tn.
- We will show how to reduce it to O(n).

Modify the 2nd round as follows.

- S first computes the pseudo-dimension k.
- If $|\Delta_i| > k$,
 - S broadcasts "ignore channel i".

Otherwise S sends Δ_i as follows

- |Δ_i|≦k
- S knows the pseudo-dimension k.
- R knows FORGED={k forged channels}

Generalized Broadcast

- Suppose that S wants to send k+1 elements a₀, ..., a_k.
- S constructs A(x) such that $A(x) = a_0 + a_1x + ... + a_kx^k$
- S sends A(i) through channel i for i=1, ...,n.
- This communication cost is n.

R receives as follows.

- Suppose that FORGED={1, ..., k}.
- R ignores FORGED and considers a shortened codeword [A(k+1), ..., A(n)]
- It turns out that

d = 2(t - k) + 1

R receives as follows.

- Hence R can correct t-k errors.
- On the other nhand, since there are k forged channels, Enemy can forge more t-k channels.
- Therefore

R can receive a_0, \ldots, a_k correctly.

Transmission Rate

- By using this technique, the cost of sending each Δ_i is reduced from tn to n.
- This implies that the transmission rate is reduced from O(n²) to O(n).

Efficiency

	Trans. rate	Sender's Comp.	Receiver's Comp.
Basic scheme	O(n ² t)	poly(n)	poly(n)
More efficient scheme	O(n ²)	poly(n)	poly(n)
Final scheme	O(n)	poly(n)	poly(n)

Summary

 We solved the open problem raised by Agarwal, Cramer and de Haan at CRYPTO 2006.

2-round PSMT for n=2t+1

	Trans. rate	Sender's comp.	Receiver's comp.
Agarwal et al.'s schme	O(n)	exponential	exponential
Proposed scheme	O(n)	poly(n)	poly(n)

Thank you !