Truly Efficient 2-Round
 Perfectly Secure Message Transmission Scheme

Kaoru Kurosawa
Kazuhiro Suzuki
(Ibaraki University, Japan)

Usual Model of Encryption

- Single line between Alice and Bob.
- Alice and Bob share a key.
- Enemy can fully corrupt the channel. (Observe and modify the ciphertext)

Dolev, Dwork, Waarts and Yung

- n-channels between Alice and Bob.
- An infinitely powerful adversary A can corrupt t out of n channels.
(Observe and modify)

Goal

- Alice wishes to send a secret s to Bob
- in r-rounds
- without sharing any key.

1 Round Protocol

Receiver

2 Round Protocol

We say that a MT scheme

is perfectly secure if

- (Perfect Privacy)

Adversary learns no information on s

- (Perfect Reliability)

Bob can receive s correctly

In what follows, PSMT means

- Perfectly
- Secure
- Message
- Transmission
- Scheme

For 1 round,

- Dolev et al. showed that there exists a 1 -round PSMT iff $n \geqq 3 t+1$.
- They also showed an efficient 1-round PSMT.
where the adversary can corrupt t out of n channels.

For 2 rounds,

- It is known that there exists a 2-round PSMT iff $n \geqq 2 t+1$.
- However, it is very difficult to construct an efficient scheme for $\mathrm{n}=2 \mathrm{t}+1$.

For $n=2 t+1$,

- Dolev et al. showed a 3-round PSMT such that the transmission rate is $\mathrm{O}\left(\mathrm{n}^{5}\right)$,
- where the transmission rate is defined as
the total number of bits transmitted the size of the secrets

Sayeed et al. showed

- a 2-round PSMT such that the transmission rate is $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Srinathan et al. showed that

- n is a lower bound on the transmission rate of 2 -round PSMT with $n=2 t+1$.

At CRYPTO 2006,

- Agarwal, Cramer and de Haan showed a 2-round PSMT such that the transmission rate is $\mathrm{O}(\mathrm{n})$.
- However, the computational cost is exponential.

Agarwal, Cramer and de Haan

- left it as an open problem to construct a 2 -round PSMT for $n=2 t+1$ such that
- not only
the transmission rate is $\mathrm{O}(\mathrm{n})$
- but also
the computational cost is poly(n).

In This Paper,

- We solve this open problem.

2-round PSMT for $n=2 t+1$

	Trans. rate	Sender's comp.	Receiver's comp.
Agarwal et al.'s schme	O(n)	exponential	exponential
Proposed scheme	O(n)	poly(n)	poly(n)

Consider a MT as follows.
Alice chooses a random $f(x)$ such that $\operatorname{deg} f(x) \leqq t$ and

Perfect Privacy:
 Enemy learns no info. on s

because $\operatorname{deg} f(x) \leqq t$
Enemy corrupts t channels.

Let C be a linear code

- such that a codeword is

$$
X=(f(1), \ldots, f(n)),
$$

- where $f(x)$ is a polynomial with $\operatorname{deg} f(x) \leqq t$.

Let C be a linear code

- such that a codeword is

$$
X=(f(1), \ldots, f(n)),
$$

- where with $\operatorname{deg} f(x) \leqq t$.
- Then X has at most t zeros because $\operatorname{deg} f(x) \leqq t$.

Let C be a linear code

- such that a codeword is

$$
X=(f(1), \ldots, f(n))
$$

- where with deg $f(x) \leqq t$.
- Then X has at most t zeros.
- Hence
the minimum Hamming weight of C is n-t.

Let C be a linear code

- such that a codeword is

$$
X=(f(1), \ldots, f(n)),
$$

- where with $\operatorname{deg} f(x) \leqq t$.
- Then X has at most t zeros.
- Hence
the minimum Hamming distance of C is

$$
\mathrm{d}=\mathrm{n}-\mathrm{t} .
$$

If $\mathrm{n}=3 \mathrm{t}+1$,

- the minimum Hamming distance of C is

$$
d=n-t=(3 t+1)-t=2 t+1 .
$$

If $\mathrm{n}=3 \mathrm{t}+1$,

- the minimum Hamming distance of C is

$$
\mathrm{d}=\mathrm{n}-\mathrm{t}=(3 \mathrm{t}+1)-\mathrm{t}=2 \mathrm{t}+1 .
$$

- Hence the receiver can correct t errors caused by the adversary.

If $n=3 t+1$,

- the minimum Hamming distance of C is

$$
\mathrm{d}=\mathrm{n}-\mathrm{t}=(3 \mathrm{t}+1)-\mathrm{t}=2 \mathrm{t}+1 .
$$

- Hence the receiver can correct t errors caused by the adversary.
- Thus perfect reliability is also satisfied.

$$
\text { If } \mathrm{n}=3 \mathrm{t}+1 \text {, }
$$

- the minimum Hamming distance of C is

$$
d=n-t=(3 t+1)-t=2 t+1 .
$$

- Hence the receiver can correct t errors caused by the adversary.
- Thus perfect reliability is satisfied.
- Therefore
we can obtain a 1-round PSMT easily.

If $n=2 t+1$, however,

- the minimum Hamming distance of C is

$$
d=n-t=(2 t+1)-t=t+1
$$

If $n=2 t+1$, however,

- the minimum Hamming distance of C is

$$
d=n-t=(2 t+1)-t=t+1
$$

- Hence the receiver can only detect t errors, but cannot correct them.

If $n=2 t+1$, however,

- the minimum Hamming distance of C is

$$
d=n-t=(2 t+1)-t=t+1
$$

- Hence the receiver can only detect t errors, but cannot correct them.
- This is the main reason why the construction of PSMT for $n=2 t+1$ is difficult.

What is a difference

- between error correction and PSMT ?

What is a difference

- between error correction and PSMTs ?
- If the sender sends a single codeword, then the Enemy causes t errors randomly.

What is a difference

- between error correction and PSMTs ?
- If the sender sends a single codeword, then the Enemy causes t errors randomly.
- Hence there is no difference.

Our Observation

- If the sender sends many codewords

$$
X_{1}, \ldots, X_{m}
$$

then the errors are not totally random

- because
the errors always occur at the same t (or less) places !

Our Observation

- Suppose that the receiver received

$$
Y_{1}=X_{1}+E_{1}, \ldots, Y_{m}=X_{m}+E_{m}
$$

- Let

$$
E=\left[E_{1}, \ldots, E_{m}\right] .
$$

- Then

$$
\operatorname{dim} E \leqq t
$$

because the errors always occur at the same t (or less) places !

Suppose that the receiver received
 $$
Y_{i}=X_{i}+E_{i}
$$

$Y=\left\{Y_{1}, \ldots, Y_{m}\right\}$	$\mathrm{E}=\left[\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right]$.
Pseudo dimk \longleftrightarrow	dim k
$\begin{aligned} & \text { Pseudo basis } \\ & \left\{\mathrm{Y}_{\mathrm{j} 1}, \ldots, \mathrm{Y}_{\mathrm{jk}}\right\} \end{aligned} \longleftrightarrow$	Basis $\left\{\mathrm{E}_{\mathrm{j} 1}, \ldots, \mathrm{E}_{\mathrm{j} k}\right\}$

Main Contribution

- We introduce a notion of
$\left\{\begin{array}{l}\text { pseudo-dimension } \\ \text { pseudo-basis, }\end{array}\right.$
and
- show a poly-time algorithm which finds them from $Y=\left\{Y_{1}, \ldots, Y_{m}\right\}$.

Main Contribution

- We introduce a notion of
$\left\{\begin{array}{l}\text { pseudo-dimension } \\ \text { pseudo-basis, and }\end{array}\right.$
- show a poly-time algorithm which finds them from $Y=\left\{Y_{1}, \ldots, Y_{m}\right\}$.
- Please see the proceedings for this algorithm.

More Observation

For example,

- $E_{1}=(1,0, \ldots, 0)$,
- $E_{2}=(1,1,0, \ldots, 0)$,
- $\mathrm{E}_{\mathrm{t}}=(1, \ldots, 1,0, \ldots, 0)$,
is a basis of E.

More Observation

- $E_{1}=(1,0, \ldots, 0), \quad$ NonZero $\left(E_{1}\right)=\{1\}$
- $E_{2}=(1,1,0, \ldots, 0), \quad$ NonZero $\left(E_{2}\right)=\{1,2\}$
- $E_{t}=(1, \ldots, 1,0, \ldots, 0)$, NonZero $\left(E_{t}\right)=\{1, \ldots, t\}$

More Observation

- $\mathrm{E}_{1}=(1,0, \ldots, 0)$,

NonZero $\left(E_{1}\right)=\{1\}$

- $E_{2}=(1,1,0, \ldots, 0), \quad$ NonZero $\left(E_{2}\right)=\{1,2\}$
- $E_{t}=(1, \ldots, 1,0, \ldots, 0), \operatorname{NonZero}\left(E_{t}\right)=\{1, \ldots, t\}$
- Define

FORGED $=U$ NonZero $\left(E_{i}\right)$
basis

More Observation

- $E_{1}=(1,0, \ldots, 0), \quad$ NonZero $\left(E_{1}\right)=\{1\}$
- $E_{2}=(1,1,0, \ldots, 0), \quad$ NonZero $\left(E_{2}\right)=\{1,2\}$
- $E_{t}=(1, \ldots, 1,0, \ldots, 0)$, NonZero($\left.E_{t}\right)=\{1, \ldots, t\}$
- Define

$$
\begin{aligned}
\text { FORGED } & \left.=U \text { NonZero(} \mathrm{E}_{\mathrm{i}}\right) \\
& \text { basis } \\
& =\text { \{all forged channels }\}
\end{aligned}
$$

In general,

- $\operatorname{FORGED}=\mathrm{U}$ NonZero($\left.\mathrm{E}_{\mathrm{i}}\right)$ basis

FORGED = \{all forged channels $\}$

Rest of This Talk

- Our 3-round PSMT
- Basic 2-round PSMT
- More Efficient 2-round PSMT
- Final 2-round PSMT

Rest of This Talk

- Our 3-round PSMT
- Basic 2-round PSMT
- More Efficient 2-round PSMT
- Final 2-round PSMT

For $\mathrm{i}=1, \ldots, \mathrm{t}+1$,

Sender $\longleftrightarrow \begin{aligned} & \text { Random codeword } \\ & X_{i}=\left(\mathrm{f}_{\mathrm{i}}(1), \ldots, \mathrm{f}_{\mathrm{i}}(\mathrm{n})\right)\end{aligned}$

$$
\mathrm{Y}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}}+\mathrm{E}_{\mathrm{i}} \square
$$

Pseudo-dimension k Pseudo-basis B
of $\left\{Y_{1}, \ldots, Y_{t+1}\right\}$

R Broadcasts (k, B)

S can receive them correctly by taking the majority vote

because $\mathrm{n}=2 \mathrm{t}+1$

For simplicity,

Pseudo-dimension k=t
 Pseudo-basis $B=\left\{Y_{1}, \ldots, Y_{t}\right\}$

S computes

$$
\left\{E_{i}=Y_{i}-X_{i} \mid Y_{i} \in B\right\}
$$

For simplicity,

Pseudo-dimension k=t
Pseudo-basis $B=\left\{Y_{1}, \ldots, Y_{t}\right\}$

S computes

$$
\begin{aligned}
& \left\{E_{i}=Y_{i}-X_{i} \mid Y_{i} \in B\right\} \\
& =\text { basis of }\left[\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{t}+1}\right]
\end{aligned}
$$

from the definition of pesudo-basis

For simplicity,

Pseudo-dimension k=t
Pseudo-basis $B=\left\{Y_{1}, \ldots, Y_{t}\right\}$

S computes

$$
\begin{aligned}
\left\{\mathrm{E}_{\mathrm{i}}=Y_{\mathrm{i}}-X_{i} \mid\right. & \left.\mid Y_{i} \in B\right\} \\
& =\text { basis of }\left[E_{1}, \ldots, E_{t+1}\right] \\
\text { FORGED } & \left.=U \text { NonZero(these } E_{i}\right)
\end{aligned}
$$

For simplicity,

Pseudo-dimension k=t
Pseudo-basis $B=\left\{Y_{1}, \ldots, Y_{t}\right\}$

S computes

$$
\begin{aligned}
\left\{E_{i}=Y_{i}-X_{i} \mid\right. & \left.Y_{i} \in B\right\} \\
& =\text { basis of }\left[E_{1}, \ldots, E_{t_{+1}}\right] \\
\text { FORGED } & \left.=\cup \text { NonZero(these } E_{i}\right) \\
& =\{\text { all forged channels }\}
\end{aligned}
$$

In the $3^{\text {rd }}$ round

R decrypts c as follows.

R received FORGED

Suppose that FORGED=\{1, .., t\}

R ignores
$X_{t+1}=\left(f_{t+1}(1), \ldots, f_{t+1}(t), f_{t+1}(t+1), \ldots, f_{t+1}(n)\right)$

Perfect Reliability

$$
X_{t+1}=\left(f_{t+1}(1), \ldots, f_{t+1}(t), f_{t+1}(t+1), \ldots, f_{t+1}(n)\right)
$$

R can reconstruct $f_{t+1}(x)$ from these $t+1$ by using Lagrange formula.

Therefore R can decrypt

$$
c=s+f_{t+1}(0)
$$

Perfect Privacy

$X_{t+1}=\left(f_{t+1}(1), \ldots, f_{t+1}(t), f_{t+1}(t+1), \ldots, f_{t+1}(n)\right)$

Enemy knows at most t values. Hence
it has no info. on $f_{t+1}(0)$.
Therefore it has no info. on s.

Rest of This Talk

- Our 3-round PSMT
- Basic 2-round PSMT
- More Efficient 2-round PSMT
- Final 2-round PSMT

For $\mathrm{i}=1, \ldots, \mathrm{n}$

$$
X_{i}=\left(f_{i}(1), \ldots, f_{i}(n)\right)
$$

the coefficients of $f_{i}(x)$ $X_{i}=\left(f_{i}(1), \ldots, f_{i}(n)\right)$

For $\mathrm{i}=1, \ldots, \mathrm{n}$

$$
Y_{i}=X_{i}+E_{i}
$$

channel i

$$
\begin{gathered}
f_{i}^{\prime}(x) \\
X_{i}^{\prime}=\left(f_{i}^{\prime}(1), \ldots, f_{i}^{\prime}(n)\right)
\end{gathered}
$$

For $\mathrm{i}=1, \ldots, \mathrm{n}$

$$
Y_{i}=X_{i}+E_{i}
$$

Note that $\mathrm{d}\left(\mathrm{Y}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}\right) \leqq \mathrm{t}$

$$
\begin{gathered}
f_{i}^{\prime}(x) \\
X_{i}^{\prime}=\left(f_{i}^{\prime}(1), \ldots, f_{i}^{\prime}(n)\right)
\end{gathered}
$$

If $d\left(Y_{i}, X_{i}^{\prime}\right)>t$, then S broadcasts "ignore channel i"

$$
\begin{gathered}
f_{i}^{\prime}(x) \\
X_{i}^{\prime}=\left(f_{i}^{\prime}(1), \ldots, f_{i}^{\prime}(n)\right)
\end{gathered}
$$

If $d\left(Y_{i}, X_{i}^{\prime}\right)>t$,
then S broadcasts "ignore channel i "
Otherwise
S broadcasts $\Delta_{i}=X_{i}^{\prime}-Y_{i}$

In the $2^{\text {nd }}$ round

In the $2^{\text {nd }}$ round

R first computes FORGED.
R next reconstrcuts each $f_{i}^{\prime}(x)$ as follows.

For each $\mathrm{j} \notin$ FORGED,

- R computes

$$
\begin{aligned}
f_{i}^{\prime}(j) & =\left.\Delta_{i}\right|_{j}+f_{i}(j) \\
& =\left.\left(X_{i}^{\prime}-Y_{i}\right)\right|_{j}+f_{i}(j)
\end{aligned}
$$

- This holds because

$$
f_{i}^{\prime}(j)=\left.X_{i}^{\prime}\right|_{j} \text { and } Y_{i} \mid{ }_{j}=f_{i}(j)
$$

For each $\mathrm{j} \notin$ FORGED,

- R computes

$$
\begin{aligned}
f_{i}^{\prime}(j) & =\left.\Delta_{i}\right|_{j}+f_{i}(j) \\
& =\left.\left(X_{i}^{\prime}-Y_{i}\right)\right|_{j}+f_{i}(j)
\end{aligned}
$$

- This holds because

$$
f_{i}^{\prime}(j)=\left.X_{i}^{\prime}\right|_{j} \text { and } y_{i j} f_{i}(j)
$$

- R can reconstrcut $f_{i}^{\prime}(x)$ from these $f_{i}^{\prime}(j)$ by using Lagrange formula.

Perfect Reliability

Thus R can reconstrcut each $f_{i}^{\prime}(x)$.

Hence R can decrypt

$$
c=s+f_{1}^{\prime}(1)+\ldots+f_{n}^{\prime}(n)
$$

Perfect Privacy

- S broadcasts a pseudo-basis $\left\{Y_{1}, \ldots, Y_{t}\right\}$
- Enemy corrupts t channels.
- Note that

$$
n-t-t=(2 t+1)-t-t=1
$$

- This implies that there remains at least one $f_{i}^{\prime}(i)$ on which the enemy has no information

Perfect Privacy

- Hence in the ciphertext

$$
c=s+f_{1}^{\prime}(1)+\ldots+f_{n}^{\prime}(n),
$$

- the enemy has no information on s.
- Hence
perfect privacy is also satisfied.

Efficiency

	Trans. rate	Sender's Comp.	Receiver's Comp.
Basic scheme	$\mathrm{O}\left(\mathrm{n}^{2} \mathrm{t}\right)$	poly(n)	poly(n)
More efficient scheme	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	poly(n)	poly(n)
Final scheme	$\mathrm{O}(\mathrm{n})$	poly(n)	poly(n)

Efficiency

	Trans. rate	Sender's Comp.	Receiver's Comp.
Basic scheme	$\mathrm{O}\left(\mathrm{n}^{2} \mathrm{t}\right)$	poly(n)	poly(n)
More efficient scheme	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	poly(n)	poly(n)
Final scheme	$\mathrm{O}(\mathrm{n})$	poly(n)	poly(n)

More Efficient 2-round PSMT

- In our basic scheme,
S sends a single secret s .

More Efficient 2-round PSMT

- In our basic scheme,

S sends a single secret s .

- In the more efficient scheme,
S sends t^{2} secrets s_{i} by running
the basic scheme t times in parallel.

More Efficient 2-round PSMT

- In our basic scheme, S sends a single secret s.
- In the more efficient scheme, S sends t^{2} secrets s_{i} by running the basic scheme t times in parallel.

This implies that the transmission rate is reduced from $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{t}\right)$ to $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Run the basic scheme t times

- For each channel i,
R chooses t polynomials $f_{i+j n}(x)$, where $j=0, \ldots, t-1$.
- In total,
R chooses tn polynomials $f_{i+j n}(x)$.

Among th polynomials $\mathrm{f}_{\mathrm{i}+\mathrm{jn}}(\mathrm{x})$,

- Since the enemy corrupts t channels, she knows t^{2} values of $f_{i+j n}(i)$.

Among tn polynomials $\mathrm{f}_{\mathrm{i}+\mathrm{jn}}(\mathrm{x})$,

- Since the enemy corrupts t channels, she knows t^{2} values of $f_{i+i n}(i)$.
- S broadcasts a pseudo-basis $\left\{\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{i}}\right\}$

Among th polynomials $\mathrm{f}_{\mathrm{i}+\mathrm{jn}}(\mathrm{x})$,

- Since the enemy corrupts t channels, she knows t^{2} values of $f_{i+j n}(i)$.
- S broadcasts a pseudo-basis $\left\{Y_{1}, \ldots, Y_{t}\right\}$
- There remains t^{2} uncorrupted $\mathrm{f}_{\mathrm{i}+\mathrm{j}}{ }^{\text {' }}$ (i)s because

$$
t n-t^{2}-t=t(2 t+1)-t^{2}-t=t^{2}
$$

Enemy has no info. on these t^{2} values

Randomness Extractor

- is used to extracst these t^{2} values
- S uses them as one-time pad to encrypt t^{2} secrets

Randomness Extractor

- Suppose that Enemy has no info. on t^{2} out of th elements $r_{0}, \ldots, r_{t n-1}$.
- Let

$$
R(x)=r_{0}+r_{1} x+\ldots+r_{t n-1} x^{t n-1}
$$

- Then Enemy has no info. on

$$
R(1), \ldots, R\left(t^{2}\right)
$$

Consequently,

- In the more efficient scheme, S can send t^{2} secrets s_{i} by running the basic scheme t times in parallel.

This implies that the transmission rate is reduced from $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{t}\right)$ to $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Efficiency

	Trans. rate	Sender's Comp.	Receiver's Comp.
Basic scheme	$\mathrm{O}\left(\mathrm{n}^{2} \mathrm{t}\right)$	poly(n)	poly(n)
More efficient scheme	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	poly(n)	poly(n)
Final scheme	$\mathrm{O}(\mathrm{n})$	poly(n)	poly(n)

Efficiency

	Trans. rate	Sender's Comp.	Receiver's Comp.
Basic scheme	$\mathrm{O}\left(\mathrm{n}^{2} \mathrm{t}\right)$	poly(n)	poly(n)
More efficient scheme	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	poly(n)	poly(n)
Final scheme	$\mathrm{O}(\mathrm{n})$	poly(n)	poly(n)

Most Costly Part

- S broadcasts $\Delta_{1}, \ldots \Delta_{\mathrm{t}}$, where $\left|\Delta_{i}\right| \leqq \mathrm{t}$.
- The communication cost to broadcast each Δ_{i} is tn .
- We will show how to reduce it to $O(n)$.

Modify the $2^{\text {nd }}$ round as follows.

- S first computes the pseudo-dimension k .
- If | $\Delta_{i} \mid>k$,
S broadcasts "ignore channel i ".

Otherwise S sends Δ_{i} as follows

- $\left|\Delta_{i}\right| \leqq k$
- Sknows the pseudo-dimension k .
- R knows FORGED=\{k forged channels\}

Generalized Broadcast

- Suppose that S wants to send $k+1$ elements a_{0}, \ldots, a_{k}.
- S constructs $A(x)$ such that

$$
A(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k}
$$

- S sends $A(i)$ througth channel i for $\mathrm{i}=1, \ldots, \mathrm{n}$.
- This communication cost is n.

R receives as follows.

- Suppose that FORGED=\{1, .., k\}.
- R ignores FORGED and considers a shortened codeword

$$
[A(k+1), \ldots, A(n)]
$$

- It turns out that

$$
d=2(t-k)+1
$$

R receives as follows.

- Hence R can correct t-k errors.
- On the other nhand,
since there are k forged channels,
Enemy can forge more t-k channels.
- Therefore
R can receive a_{0}, \ldots, a_{k} correctly.

Transmission Rate

- By using this technique, the cost of sending each Δ_{i} is reduced from tn to n.
- This implies that the transmission rate is reduced from $\mathrm{O}\left(\mathrm{n}^{2}\right)$ to $\mathrm{O}(\mathrm{n})$.

Efficiency

	Trans. rate	Sender's Comp.	Receiver's Comp.
Basic scheme	$\mathrm{O}\left(\mathrm{n}^{2} \mathrm{t}\right)$	poly(n)	poly(n)
More efficient scheme	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	poly(n)	poly(n)
Final scheme	$\mathrm{O}(\mathrm{n})$	poly(n)	poly(n)

Summary

- We solved the open problem raised by Agarwal, Cramer and de Haan at CRYPTO 2006.

2-round PSMT for $n=2 t+1$

	Trans. rate	Sender's comp.	Receiver's comp.
Agarwal et al.'s schme	O(n)	exponential	exponential
Proposed scheme	O(n)	poly(n)	poly(n)

Thank you !

