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Truly work-like work extraction via a single-shot
analysis

Johan Aberg'?2

The work content of non-equilibrium systems in relation to a heat bath is often analysed in
terms of expectation values of an underlying random work variable. However, when opti-
mizing the expectation value of the extracted work, the resulting extraction process is subject
to intrinsic fluctuations, uniquely determined by the Hamiltonian and the initial distribution of
the system. These fluctuations can be of the same order as the expected work content per se,
in which case the extracted energy is unpredictable, thus intuitively more heat-like than work-
like. This raises the question of the 'truly’ work-like energy that can be extracted. Here we
consider an alternative that corresponds to an essentially fluctuation-free extraction. We
show that this quantity can be expressed in terms of a one-shot relative entropy measure
introduced in information theory. This suggests that the relations between information theory
and statistical mechanics, as illustrated by concepts like Maxwell's demon, Szilard engines
and Landauer’s principle, extends to the single-shot regime.
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he amount of useful energy that can be harvested from

non-equilibrium systems not only characterizes practical

energy extraction and storage, but is also a fundamental
thermodynamic quantity. Intuitively, we wish to extract ordered
and predictable energy, that is, ‘work’, as opposed to disordered
random energy in the form of ‘heat’. The catch is that, in
statistical systems, the work cost or yield of a given transforma-
tion is typically a random variable!. As an example, one can think
of the friction that an object experiences when forced through a
viscous medium. On a microscopic level, this force resolves into
chaotic molecular collisions and thus results in a random work
cost each time we perform this transformation. This is further
illustrated by experimental tests>™ of ‘fluctuation theorems’,
which characterize the randomness in the work cost (or ‘entropy
production’) of non-equilibrium processes!. These observations
raise the question of a quantitative notion of work content that
truly reflects the idea of work as ordered energy.

Here, we show that standard expressions for the work
content®>™® can correspond to a very noisy and thus heat-like
energy, but we also introduce an alternative that quantifies the
amount of ordered energy that can be extracted. The latter can be
expressed in terms of a non-equilibrium generalization of the free
energy, or equivalently in terms of a one-shot information-
theoretic relative entropy, which quantifies how ‘far’ the given
non-equilibrium system is from thermal equilibrium.

‘Standard’ information theory typically quantifies the resources
needed to perform a given information-theoretic task averaged
over many repetitions, for example, the average number of bits
needed to send many independent messages’. In contrast, ‘one-
shot’ (or ‘single-shot’) information theory rather focuses on single
instances of such tasks (see, for example, refs 10, 11). Given the
strong historical links between standard information theory and
the work extraction problem, via concepts like Szilard engines,
Landauer’s principle and Maxwell’s demon!?13, it is reasonable to
ask whether also one-shot information theory has a counterpart
in statistical mechanics. Together with refs 14-19, the results of
this investigation suggest that this is indeed the case. A direct
consequence of the present investigation is that the results of
refs 14, 15, 19 is brought into a more physical setting, allowing,
for example, systems with non-trivial Hamiltonians, proof of
near-optimality, as well as a connection to fluctuation theorems!.
The latter suggests that the effects we consider become relevant in
the typical regimes of fluctuation theorems. Similar results as in
this study have been obtained independently in ref. 16. See also
recent results in ref. 17 based on ideas in ref. 18. (For further
discussions on the relations to the existing literature, see
Supplementary Note 1.)

Results

Work extraction. The amount of work that a system can perform
while it equilibrates with respect to an environment of tem-
perature T is often®~® expressed as

A(g, k) = kTn(2)D(q||G(h))- (1)

Here q is the state of the system, G(h) its equilibrium state, h the
system Hamiltonian and k Boltzmann’s constant. For the simple
model we employ here, g is a probability distribution over a finite
set of energy levels, and D(q||p) = _,9.108:9, — > .qnlogp,, is
the relative Shannon entropy (Kullback-Leibler divergence)”, and
log, denotes the base 2 logarithm.

The quantity .A(g,h), and the closely related cost of
information erasure (Landauer’s principle), is often understood
as an expectation value of an underlying random work yield (see,
for example, refs 5,7,20,21). However, this tells us very little about
the fluctuations, and thus the ‘quality’ of the extracted energy.
Here, we show that optimizing the expected gain leads to intrinsic
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fluctuations. These can be of the same order as the expected work
content A(g, h) per se, in which case the work extraction does not
act as a truly ordered energy source. As an alternative, we
introduce the e-deterministic work content, which quantifies the
maximal amount of energy that can be extracted if we demand to
always get precisely this energy each single time we run the
extraction process, apart from a small probability of failure e.
Hence, in contrast to the expected work extraction, where we do
not put any restrictions on how broadly distributed the random
energy gain is, we do in the e-deterministic work extraction
demand that the probability distribution should be very peaked,
that is, very predictable. In other words, the e-deterministic work
content formalizes the idea of an almost perfectly ordered energy
source.

The model. Our analysis is based on a very simple model of a
system interacting with a heat bath of fixed temperature T (see
Fig. 1). Akin to, for example, refs 15, 21, 22, we model the
Hamiltonian of the system as finite set of energy levels
h=(hy,..., hy). The state of the system we regard as a random
variable N, with a probability distribution g=1(qy,...,qy). On
this system, we have two elementary operations.

The first of these two operations changes the energy levels h to
a new set of energy levels /', but leaves the state, and thus the
probability distribution g, intact. We refer to this as level
transformations (LTs). (For a quantum system, this would
essentially correspond to adiabatic evolution with respect to
some external control parameters, that is, in the limit of infinitely
slow changes of the control we alter the energy levels, but not how
they are occupied.) Via the LTs we define what ‘work’ is in our
model. If we perform an LT that changes h to //, and if the system
is in state #, then this results in a work gain h, — k!, (or work cost
h!, — hy). As the work gain depends on the state of the system, a
random state implies a random work gain.

The second elementary operation corresponds to
thermalization, where one can imagine that we connect the
system to the heat bath, let it thermalize and slowly de-connect it
again. We model this by putting the system into the random state
N described by the Gibbs distribution, P(N = n) = G,,(h), where
Gu(h)=e P /Z(h), B=1/(kT) and Z(h)= 3, e P is the
partition function. It is furthermore assumed that the state
(regarded as a random variable) after a thermalization is
independent of the state before.

We construct processes by combining these two types of
elementary operations into any sequence of our choice. The
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Figure 1| The model. The system can be in any of the states 1,...,N, each
assigned an energy level (horizontal lines) h=(h;,...,hy). Two elementary
operations modify the system: (a) LT. This lifts or lowers the energy levels
h to a new configuration K, but leaves the state (circle) intact. If the system
is in state n, the work cost of the LT is defined as W, :h:1 —h,. (b)
Thermalization with respect to a heat bath of temperature T. This changes
the initial probability distribution (bars) g=(g;,...,qn) over the states, into
the Gibbs distribution G(h), but leaves the energy levels h intact, and has no
work cost. We build up processes by combining LTs and thermalizations.
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Figure 2 | ITR processes. In the space of energy level configurations, we
connect an initial configuration hie RN with the final hfe RN by a smooth
path (grey line). Given an L-step discretization of this path, we construct
a sequence of LTs (arrows) sandwiched by thermalizations (circles).

This process has the random work cost W = Z,tg(hx,ﬂ - hf\,,), where

Nis the state at the I-th step, which is Gibbs distributed G In

the limit of an infinitely fine discretization, the expected work cost is
lim; _, o, W = F(h) — F(h). The independence of the work costs of the
subsequent LTs yields lim; _, ,.({ W2> — { W>2) =0, that is, the work cost
is essentially deterministic.

resulting work yield of the process is defined as the sum of the
work yields of all the LTs. (For a more detailed description of the
model, see Supplementary Note 2.) An example is given in Fig. 2,
where we construct the analogue of isothermal reversible (ITR)
processes, which serve as a building block in our
analysis (see Supplementary Note 3). As opposed to other
processes we will consider, the ITRs have essentially fluctuation-
free work costs.

Expected work extraction. Given an initial state N~ with dis-
tribution g, we can reproduce equation (1) within our model. A
cyclic three-step process, as described in Fig. 3, gives the random
work yield

Wyield:lenq,/\f —kTIn GN(h) (2)

By taking the expectation value, we obtain equation (1). The
positivity of relative entropy, D(g||p) >0, can be used to show that
no process can give a better expected work yield (Supplementary
Note 4). One can in a similar fashion determine the minimal
expected work cost for information erasure (see Supplementary
Note 5).

Fluctuations in expected work extraction. How large are the
fluctuations for a process that maximizes the expected work
extraction, and thus achieves A(g, h)? Equation (2) determines
the noise of the specific process in Fig. 3, but it turns out
that it actually specifies the fluctuations for all processes that
optimize the expected work extraction. (For the exact
statement, see Methods, or Supplementary Note 6.) We can
conclude that to analyse the noise in the optimal expected
work extraction, it is enough to consider equation (2). As we
will confirm later, these fluctuations can be of the same order as
A(g, h) itself.

€-deterministic work extraction. As the optimal expected work
extraction suffers from fluctuations, a natural question is how
much (essentially) noise-free energy can be extracted. We say that
a random variable X has the (¢, 0)-deterministic value x, if the
probability to find X in the interval [x —J, x+ ] is larger than
1 — €. Hence, 0 is the precision by which the value x is taken, and
€ the largest probability by which this fails. (See Supplementary
Note 7 for further properties.) We define A5(q, h) as the highest
possible (¢, 0)-deterministic work yield among all processes that
operate on the initial distribution g with initial and final energy
levels h. Next, we define the e-deterministic work content as
A“(q, h) =lims_oA5(g, h), that is, we take the limit of infinite
precision, thus formalizing the idea of an energy extraction that is
essentially free from fluctuations.
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Figure 3 | Expected work extraction. For an initial state N with
distribution g (bars) and energy levels h (horizontal lines), the expected
work content A(q, h) is obtained by a cyclic three-step process. The

idea is to avoid unnecessary dissipation when the system is put in
contact with the heat bath. To this end, we make an LT to a set of energy
levels h for which G(h') =q. The total process is: (a) LT that transforms
h, into h, = —kTIng,. (b) Thermalization, resulting in the Gibbs
distribution G(h') =gq. (¢) ITR process from h' back to h. The resulting
random work yield is Wyejqg =kTIngy — kTInG(h), with expectation
value { Wyieiq» =kTIn(2)D(ql|G(h)).

A%g, h) can be expressed in terms of the c-free energy,
which is defined via restrictions to sufficiently likely subsets of
energy levels. Given a subset A, we define Z(h) = >, _, e~ .
We minimize Zx(h) among all subsets A such that gq(A)=
Sneagn>1—c If A" is such a minimizing set, then the
e-free energy is defined as Fq h)= — kTInZx-(h). (See
Supplementary Note 8 for further explanations.) The concept of
one-shot free energy has been introduced independently in ref. 16.

The distribution of fluctuations 1is clearly important
for determining the value of A%(g, h). It is thus maybe not
surprising that a variation (see Methods) of Crook’s fluctua-
tion theorem?> can be used to prove

A(q,h) ~ F(q,h) —F(h), 3)

where ‘X’ signifies that the equality is true up to a small
error (see Methods, or Supplementary Note 9 and Supplementary
Note 10). The error is small in the sense that it can be regarded
as the energy of a sufficiently likely equilibrium fluctuation
(see Methods and Supplementary Note 11). An example
of a process that gives the right-hand side of equation (3)
is described in Fig. 4. In the case of completely degenerate
energy levels h=(r,...,r), equation (3) reduces to the result
in ref. 14. (See also Supplementary Note 12 and Supplementary
Note 13 for the e-deterministic cost of information
erasure).

The above result can be reformulated in terms of an
e-smoothed relative Rényi 0-entropy, defined as D{(q|lp) =
—log,ming(z) > 1-¢ Y jep pj- This relative entropy was (up to
some technical differences) introduced in ref. 24 in the context of
one-shot information theory. (See refs 25, 26 for quantum
versions.) One can see that

F*(q, h) — F(h) =kTn(2)D;(ql|G(h)). (4)

>

Comparisons. An immediate question is how .A(g, h) compares
with A“(g, h), and with the fluctuations in the optimal expected
work extraction. The latter we measure by the s.d. of Wy;q in
equation (2), o(Wyiea) :((W;ield) — (Wyield>2)l/ . We compare
how these three quantities scale with increasing system size

(for example, in number of spins, or other units).
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Our first example is a collection of m systems whose state
distributions are independent and identical, g™(ny,...,n,,) =
q(ny)...q(n,,), and which have non-interacting identical
Hamiltonians, corresponding to energy levels h™(ny,...,n,,) =
h(ny)) + ... + h(ny,). In this case A", hW")=mA(q, h), and
¢(Wyiag) = VmkT In(2)a(q || G(h)), where o(q||r)* =3,44[log
(qn/r,,)]2 — D(q||r)2. By Berry-Esseen’s theorem?”28 (see Methods
and Supplementary Note 14), one can show that A“(q™, h™) is
equal to mA(qg, h) to the leading order in m (see ref. 29 for a
similar result in a resource theory framework). The difference
only appears at the next to leading order. Hence, in these systems
the fluctuations are comparably small, and the dominant
contribution to A%g™, h") is A(q"™, h™). It appears reasonable
to expect similar results for non-equilibrium systems with
sufficiently fast spatial decay of both correlations and
interactions, which may explain why issues concerning A as a
measure of work content appear to have gone largely unnoticed.

A simple modification of the state distribution in the previous
example results in a system with large fluctuations. With
probability 1 —¢ (independent of m), the system is prepared
in the joint ground state 0,..., 0, and with probability ¢ in the
Gibbs distribution. This results in q" ;| =(1—¢€)d; 01,0
+¢eGy (h) - Gy, (h), and yields A(g™, h"™)~ — mkTIn(2)(1 —¢)

log,Go(h), o(Wiyq) ~ —mkTIn(2)\/e(1—¢)log,Go(h) and
A“g™, i)~ — mkT In(2)log,Go(h). Hence, all three quantities
grow proportionally to m.

For a second case of large fluctuations, we choose the
distribution ¢q" ;, =d~ ™, for a collection of d-level
systems. For large m, we assume that the energy levels are
dense enough that they can be replaced by a spectral density.
One example is Wigner's semicirdle law, where f(")(x)

=24/R(m)* — x2/[nR(m)?] for |x| <R(m). With R(m) = v/2d"/?,
this is the asymptotic energy level distribution of large random
matrices from the Gaussian unitary ensemble®?, For the
semicircle distribution A(q™, h™)~R(m), 6(Wyjy4) ~ R(m)/2,
and AY(q"™ ") ~ c(€)R(m), where c(¢) is independent of m.

Discussion

We have here employed what one could refer to as a discrete
classical model. Relevant extensions include a classical phase-
space picture, as well as a quantum setting that allows
superpositions between different energy eigenstates (for example,
in the spirit of refs 16, 29, 31) and where the work-extractor can
possess quantum information about the system!°. An operational
approach, based on what ‘work’ is supposed to achieve, rather
than ad hoc definitions, may yield deeper insights to the question
of the truly work-like energy content.

It is certainly justified to ask for the relevance of the effects we
have considered here. The evident role of fluctuations suggests
that the noise in the expected work extraction should become
noticeable in the same nano-regimes as where fluctuation
theorems are relevant. The considerable experimental progress
on the latter (see, for example, refs 2-4) should reasonably be
applicable also to the former. Also the theoretical aspects of the
link to fluctuation theorems merits further investigations.

We have seen that the e-deterministic work content to the
leading order becomes equal to the expected work content for
systems with identical non-interacting Hamiltonians and iden-
tical uncorrelated state distributions. However, we have also
demonstrated by simple examples that the expected work
extraction can become very noisy when we deviate from this
simple setup. In these cases, the expected work extraction thus
fails to capture our intuitive notion of work as ordered energy,
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while the e-deterministic work extraction is predictable by
construction. One might object that many realistic systems are
approximately non-interacting and approximately uncorrelated,
and thus presumably show no significant difference between the
e-deterministic and the expected work extraction. However, as we
here consider a general non-equilibrium setting, there is no
particular reason to assume, for example, weak correlations. It is
maybe also worth to point out that the fluctuations in the
expected work extraction can be large also outside the
microscopic regime, as this only requires a sufficiently ‘violent’
relation between the non-equilibrium state and the Hamiltonian
of the system. As opposed to the expected work content, the
¢-deterministic work content retains its interpretation as the
ordered energy. It is no coincidence that this is much analogous
to how single-shot information theory generalizes standard
information theory!®!!, In this spirit, the present study, along
with refs 14-19, can be viewed as the first glimpse of a ‘single-shot
statistical mechanics’.

Methods

Randomness in optimal expected work extraction. In the main text, we briefly
mentioned the fact that processes that optimize the expected work extraction
converge to the random variable in equation (2). We can phrase this result

more precisely as follows. For a process P that operates on an initial state N’
with distribution g, we let Wy;a(P, N) denote the corresponding random work
yield. We here consider cyclic processes that starts and ends in the energy levels
h. I (Pp) s~ is a family of processes such that limp, _, o { Wyiera(Ppw N) ) =
A(g, h), then Wy;a(P,, N) = kTIngy — kT InG (k) in probability. (For a
proof see Supplementary Note 6).

Bounds on the e-deterministic work content. The exact statement of
equation (3) is

0 < A(q,h) — F(q,h) + F(h) < —kTIn(1 —¢). (5)

In Supplementary Note 11, it is shown that — kTIn(1 — ¢) is an upper bound to
the e-deterministic work content of equilibrium systems. Equation (5) thus
determines the value of A“(g, h) up to an error with the size of a sufficiently
probable equilibrium fluctuation. We obtain the lower bound in equation (5) by the
process described in Fig. 4. The upper bound is obtained by a combination of a
variation (Supplementary Note 10, Supplementary Equation (S73)) on Crook’s
fluctuation theorem?? and a work bound for LTs (Supplementary Note 10). For a
discussion on an alternative single-shot work extraction quantity, and its relation to
A°, see Supplementary Note 15.
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Figure 4 | e-deterministic work extraction. For a state distribution g

and energy levels h, let A" be a subset of the energy levels such that
FE(g, h) = — kTInZ-(h). (@) LT that lifts all energy levels not in A” to a
very high value, that is, b, =h, if ne A", while h, =h, +E if n¢ A",

(b) Thermalization, resulting in the Gibbs distribution G(h'). (¢) ITR process
from h' back to h, which gives the essentially deterministic work yield
F(H') — F(h). In the limit E— + o0, this process gives the work yield

F¢(g, h) — F(h) with a probability larger than 1—¢. This is a lower

bound to A%(qg, h), but is also close to it for small .
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Expansion of .A€ in the multi-copy case. In the case of a state distribution
q"™(ny,...;nm) = q(ny)...q(n,,), and energy levels h"™(n,,...,ny,) =h(n;) + ... +
h(n,), the e-deterministic work content has the expansion

A(g" 1) = mA(q, h) +/mkTIn(2)® " (€)o(q]|G(h))
+o(v/m),

where o(y/m) is a correction term that grows slower than \/m, and ® 1 is the
inverse of the cumulative distribution function of the standard normal distribution.
The smaller our error tolerance ¢, the more the correction term lowers the value of
A4g™, h'™) as comgared with A(g™, h™). This expansion is proved via Berry-
Esseen’s theorem?”:28, which determines the convergence rate in the central limit
theorem (see Supplementary Note 14).
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