
LA-UR-17-28151
Approved for public release; distribution is unlimited.

Title: TRuML: a translator for rule-based modeling languages

Author(s): Suderman, Ryan T.

Hlavacek, William Scott

Intended for: ACM-BCB, 2017-08-21/2017-08-23 (Cambridge, Massachusetts, United

States)

Issued: 2017-09-11

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

TRuML: A translator for rule-based
modeling languages

Ryan Suderman, William S. Hlavacek

Dynamical systems biology

Modeling protein interaction networks traditionally
done with ODEs or reaction networks

Two prominent issues:

Encoding (knowledge representation)

Complexity

Rule-based modeling

“Site graphs” represent molecules/complexes

Danos, V., et al, (2007), Concur 2007

Graph-rewriting rules represent sets of reactions

Chylek, L. A., et al, (2014), WIREs: Sys Biol Med

aT

ai

- sum of all rules’ propensities

- the propensity of rule i

iX

j=1

aj > r2 · aT τ =
− log (r1)

aT

Rule-based modeling

BioNetGen (BNGL) and Kappa languages

Both have “direct” KMC-based simulation engines

Each has a unique set
of analysis tools

Danos, V., et al, (2007), LNCS

Sneddon, M. W. et al, (2011), Nat Meth

Gillespie, D. T. (2007). Ann Rev Phys Chem

Translation

TRuML is a tool for translating between Kappa and BNGL

Some model components can be trivially translated:

Kappa:

BNGL:

%agent: A(x,y)

A(x,y)

Others require syntactic modification:

Kappa:

BNGL: x = log10(y + 1) / z

%var: ‘x’ ([log](‘y’ + 1) / [log](10)) / ‘z’

Translation

Rules are similar syntactically, but with key differences:

BNGL:

Kappa:

A(y) + B(x) -> A(y!1).B(x!1) k

A(y),B(x) -> A(y!1),B(x!1) @ k

Translating identically named sites

BNGL allows molecules with identical sites

Kappa’s formalism requires distinct site names

BNGL patterns involving identical sites must be expanded
to accommodate Kappa’s site naming conventions

Translating identically named sites

Consider the immune response

Two types of binding rules:

BNGL:

- Free DF3 binding IgE

- Bound DF3 crosslinking 2 IgEs

IgE(Fab)+DF3(DNP,DNP,DNP) -> IgE(Fab!1).DF3(DNP!1,DNP,DNP) k1

IgE(Fab)+DF3(DNP,DNP!+) -> IgE(Fab!1).DF3(DNP!1,DNP!+) k2

Translating identically named sites

First, the molecule types’ sites must be
renamed

Patterns containing these molecule types must
be combinatorially expanded

IgE(Fab!1).DF3(DNP!1,DNP,DNP)

IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2)

IgE(Fab1!1),DF3(DNP0,DNP1!1,DNP2)

IgE(Fab0!1),DF3(DNP0,DNP1,DNP2!1)

IgE(Fab1!1),DF3(DNP0!1,DNP1,DNP2)

IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2)

IgE(Fab1!1),DF3(DNP0,DNP1,DNP2!1)

Translating identically named sites

This is not sufficient for certain cases

DF3(DNP,DNP!+)

Consider the crosslinking rule’s DF3 reactant:

DF3(DNP0,DNP1!_)

DF3(DNP0,DNP2!_)

DF3(DNP1,DNP0!_)

DF3(DNP1,DNP2!_)

DF3(DNP2,DNP0!_)

DF3(DNP2,DNP1!_)

Translating identically named sites

DF3(DNP2,DNP1!_)

DF3(DNP2,DNP0!_)

DF3(DNP1,DNP2!_)

DF3(DNP1,DNP0!_)

DF3(DNP0,DNP1!_)

DF3(DNP0,DNP2!_)
DF3(DNP0,DNP1!_,DNP2!_)

Overlapping patterns cause an overestimate of a
rule’s propensity

Additional context is needed

Translating identically named sites

Generally, if multiple identical sites exist and
are underspecified in a pattern:

0. Perform combinatorial expansion as before

DF3(DNP,DNP!+)

DF3(DNP0,DNP1!_)

DF3(DNP0,DNP2!_)

DF3(DNP1,DNP0!_)

DF3(DNP1,DNP2!_)

DF3(DNP2,DNP0!_)

DF3(DNP2,DNP1!_)

Translating identically named sites

Generally, if multiple identical sites exist and
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

DNPN
DNPN

DNPN!_

Translating identically named sites

Generally, if multiple identical sites exist and
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

2. Take product of possible states and unspecified Kappa site
names for each pattern in the expansion

DF3(DNP0,DNP1!_) {DNP0,DNP1,DNP2} - {DNP0,DNP1} = {DNP2}

{DNP2} X {DNPN, DNPN!_} = {DNP2, DNP2!_}

all sites specified sites unspecified sites

Translating identically named sites

Generally, if multiple identical sites exist and
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

2. Take product of possible states and unspecified Kappa site
names for each pattern in the expansion

3. Generate new patterns by adding all unspecified site
combinations to each pattern in the expansion

DF3(DNP0,DNP1!_) + {DNP2, DNP2!_}

{DF3(DNP0,DNP1!_,DNP2), DF3(DNP0,DNP1!_,DNP2!_)}

Translating identically named sites

Generally, if multiple identical sites exist and
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

2. Take product of possible states and unspecified Kappa site
names for each pattern in the expansion

3. Generate new patterns by adding all unspecified site
combinations to each pattern in the expansion

4. Prune identical patterns from list

DF3(DNP0,DNP1!_)

DF3(DNP0,DNP2!_)

DF3(DNP1,DNP0!_)

DF3(DNP1,DNP2!_)

DF3(DNP2,DNP0!_)

DF3(DNP2,DNP1!_)

DF3(DNP,DNP!+)

DF3(DNP0,DNP1!_,DNP2)

DF3(DNP0,DNP1!_,DNP2!_)

DF3(DNP0,DNP2!_,DNP1)

DF3(DNP1,DNP0!_,DNP2!_)

DF3(DNP1,DNP0!_,DNP2)

DF3(DNP2,DNP0!_,DNP1!_)

Translating identically named sites

Generally, if multiple identical sites exist and
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

2. Take product of possible states and unspecified Kappa site
names for each pattern in the expansion

3. Generate new patterns by adding all unspecified site
combinations to each pattern in the expansion

4. Prune identical patterns from list

DF3(DNP0,DNP1!_)

DF3(DNP0,DNP2!_)

DF3(DNP1,DNP0!_)

DF3(DNP1,DNP2!_)

DF3(DNP2,DNP0!_)

DF3(DNP2,DNP1!_)

DF3(DNP,DNP!+)

DF3(DNP0,DNP1!_,DNP2)

DF3(DNP0,DNP1!_,DNP2!_)

DF3(DNP0,DNP2!_,DNP1)

DF3(DNP1,DNP0!_,DNP2!_)

DF3(DNP1,DNP0!_,DNP2)

DF3(DNP2,DNP0!_,DNP1!_)

Translating identically named sites

Generally, if multiple identical sites exist and
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

2. Take product of possible states and unspecified Kappa site
names for each pattern in the expansion

3. Generate new patterns by adding all unspecified site
combinations to each pattern in the expansion

4. Prune identical patterns from list

DF3(DNP,DNP!+)

DF3(DNP0,DNP1!_,DNP2)

DF3(DNP0,DNP1!_,DNP2!_)

DF3(DNP0,DNP2!_,DNP1)

DF3(DNP1,DNP0!_,DNP2!_)

DF3(DNP1,DNP0!_,DNP2)

DF3(DNP2,DNP0!_,DNP1!_)

DF3(DNP0,DNP1!_)

DF3(DNP0,DNP2!_)

DF3(DNP1,DNP0!_)

DF3(DNP1,DNP2!_)

DF3(DNP2,DNP0!_)

DF3(DNP2,DNP1!_)

Translating identically named sites

Generally, if multiple identical sites exist and
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

2. Take product of possible states and unspecified Kappa site
names for each pattern in the expansion

3. Generate new patterns by adding all unspecified site
combinations to each pattern in the expansion

4. Prune identical patterns from list

DF3(DNP,DNP!+)

DF3(DNP0,DNP1!_,DNP2)

DF3(DNP0,DNP1!_,DNP2!_)

DF3(DNP0,DNP2!_,DNP1)

DF3(DNP1,DNP0!_,DNP2!_)

DF3(DNP1,DNP0!_,DNP2)

DF3(DNP2,DNP0!_,DNP1!_)

DF3(DNP0,DNP1!_)

DF3(DNP0,DNP2!_)

DF3(DNP1,DNP0!_)

DF3(DNP1,DNP2!_)

DF3(DNP2,DNP0!_)

DF3(DNP2,DNP1!_)

Translating identically named sites

Coming back to the immune response rules

BNGL:

IgE(Fab)+DF3(DNP,DNP,DNP) -> IgE(Fab!1).DF3(DNP!1,DNP,DNP) k1

Kappa:

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2) @ k1

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2) @ k1

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1,DNP2!1) @ k1

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab1!1),DF3(DNP0!1,DNP1,DNP2) @ k1

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab1!1),DF3(DNP0,DNP1!1,DNP2) @ k1

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab1!1),DF3(DNP0,DNP1,DNP2!1) @ k1

1. Rule(s) governing free DF3 binding IgE

Translating identically named sites

2. Rule(s) governing IgE crosslinking by DF3

IgE(Fab)+DF3(DNP,DNP!+) -> IgE(Fab!1).DF3(DNP!1,DNP!+) k2

BNGL:

Kappa:

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2!_) @ k2

IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2!_) @ k2

IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2!_) @ k2

IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2) @ k2

IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1,DNP2!1) @ k2

IgE(Fab0),DF3(DNP0!_,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!_,DNP2!1) @ k2

IgE(Fab0),DF3(DNP0!_,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2!_) @ k2

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2) @ k2

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1!_,DNP2!1) @ k2

Translating identically named sites

IgE(Fab)+DF3(DNP,DNP!+) -> IgE(Fab!1).DF3(DNP!1,DNP!+) k2

BNGL:

Kappa:

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2!_) @ k2

IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2!_) @ k2

IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2!_) @ k2

IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2) @ k2

IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1,DNP2!1) @ k2

IgE(Fab0),DF3(DNP0!_,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!_,DNP2!1) @ k2

IgE(Fab0),DF3(DNP0!_,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2!_) @ k2

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2) @ k2

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1!_,DNP2!1) @ k2

2. Rule(s) governing IgE crosslinking by DF3

Simulation results

The complete model also includes fully independent unbinding

BNGL to Kappa and back
to BNGL translations result
in identical simulation
trajectories

All models also capture similar
aggregate size distributions

Additional considerations

Include Kappa tokens and BNGL populations

Integrate SBML multi extension, other languages

Acknowledgments

Bill Hlavacek

Song Feng

Yen Ting Lin

Eshan Mitra

Alex Ionkov

People: Funding:

Molecularity

BNGL operators enforce molecularity on pattern matching

Kappa rules do not (locality)

A(x!_),B() =>

A(x!+).B() =/>

A(x!+).B() =>

A(x!_),B() =>

A(x!+)+B() =>

Grammars

Kappa simple patterns

hpatterni ::= ‘0’ | hmoleculei, [{‘.’, hmoleculei}]

hmoleculei ::= hbNamei, [‘(’, hcompListi ‘)’]

hcompListi ::= hemptyi | hcomponenti, [{‘,’, hcomponenti}]

hcomponenti ::= hbNamei, hcompStatei, hcompBondi

hcompStatei ::= hemptyi | ‘~’, hbNamei

hcompBondi ::= hemptyi | ‘!?’ | ‘!+’ | ‘!’,hintegeri

hpatterni ::= hemptyi | hagenti, [{‘,’, hagenti}]

hagenti ::= hkNamei, ‘(’, hsiteListi, ‘)’

hsiteListi ::= hemptyi | hsitei, [{‘,’, hsitei}]

hsitei ::= hkNamei, hsiteStatei, hbondi

hsiteStatei ::= hemptyi | ‘~’, hkNamei

hbondi ::= hemptyi | ‘!’, hintegeri | ‘!_’ | ‘?’

BNGL simple patterns

Useful regular expressions

hintegeri = [0-9]+
hbNamei = [a-zA-Z][a-zA-Z 0-9]*
hkNamei = [a-zA-Z][a-zA-Z 0-9+-]*
hstringi = .*

Grammars

Kappa simple rules

BNGL simple rules

huniRulei ::= [hbNamei, ‘:’], hpatternListi, ‘->’, hpatternListi, hwsi, hratei,
hnewlinei

hbiRulei ::= [hbNamei, ‘:’], hpatternListi, ‘<->’, hpatternListi, hwsi, hratei,
hratei, hnewlinei

hpatternListi ::= hemptyi | hpatterni, ‘+’, hpatternListi

hratei ::= ? an algebraic expression in BNGL syntax ?

huniRulei ::= [‘‘’, hstringi, ‘’’], hpatterni, ‘->’, hpatterni, ‘@’, hratei, hnewlinei

hbiRulei ::= [‘‘’, hstringi, ‘’’], hpatterni, ‘<->’, hpatterni, ‘@’, hratei, hratei,
hnewlinei

hratei ::= hexpressioni, [‘{’, hexpressioni ’}’]

hexpressioni ::= ? an algebraic expression in Kappa syntax ?

Shao, D,, et al, (2006), Biophys J

Part of a model of
pheromone signaling in
baker’s yeast

Readable?

Extensible?

Dynamical systems biology

Modeling protein interaction networks traditionally
done with ODEs or reaction networks

Two prominent issues:

Encoding (knowledge representation)

Combinatorial complexity

PDGF receptor

10 phosphorylation sites

210 possible states

Combinatorial complexity

Active receptor dimerizes

>500,000 possible states

PDGF receptor

10 phosphorylation sites

210 possible states

