

LA-UR-17-28151

Approved for public release; distribution is unlimited.

Title:	TRuML: a translator for rule-based modeling languages
Author(s):	Suderman, Ryan T. Hlavacek, William Scott
Intended for:	ACM-BCB, 2017-08-21/2017-08-23 (Cambridge, Massachusetts, United States)
Issued:	2017-09-11

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

TRuML: A translator for rule-based modeling languages Ryan Suderman, William S. Hlavacek

Modeling protein interaction networks traditionally done with ODEs or reaction networks

Two prominent issues:

Encoding (knowledge representation)

Complexity

"Site graphs" represent molecules/complexes

Graph-rewriting rules represent sets of reactions

Chylek, L. A., et al, (2014), WIREs: Sys Biol Med

Danos, V., et al, (2007), Concur 2007

A

У

Χ

BioNetGen (BNGL) and Kappa languages

Both have "direct" KMC-based simulation engines

TRuML is a tool for translating between Kappa and BNGL

Some model components can be trivially translated:

BNGL: A(x,y)

Kappa: %agent: A(x,y)

Others require syntactic modification:

BNGL: x = log10(y + 1) / z

Kappa: %var: 'x' ([log]('y' + 1) / [log](10)) / 'z'

Rules are similar syntactically, but with key differences:

Kappa:

$$A(y),B(x) \rightarrow A(y!1),B(x!1) @ k$$

BNGL:

A(y) + B(x) -> A(y!1).B(x!1) k

BNGL allows molecules with identical sites

Kappa's formalism requires distinct site names

BNGL patterns involving identical sites must be expanded to accommodate Kappa's site naming conventions

Х

X1

Х

X0

Consider the immune response

Two types of binding rules:

- Free DF3 binding IgE
- Bound DF3 crosslinking 2 IgEs

BNGL:

IgE(Fab)+DF3(DNP,DNP,DNP) -> IgE(Fab!1).DF3(DNP!1,DNP,DNP) k1
IgE(Fab)+DF3(DNP,DNP!+) -> IgE(Fab!1).DF3(DNP!1,DNP!+) k2

First, the molecule types' sites must be renamed

Patterns containing these molecule types must be combinatorially expanded

IgE(Fab!1).DF3(DNP!1,DNP,DNP)

IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2)
IgE(Fab1!1),DF3(DNP0,DNP1!1,DNP2)
IgE(Fab0!1),DF3(DNP0,DNP1,DNP2!1)
IgE(Fab1!1),DF3(DNP0,DNP1!1,DNP2)
IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2!1)

DNP0

Fab₀

DNP

(Fab₁

DF3

DNP₂

IgE

This is not sufficient for certain cases

Consider the crosslinking rule's DF3 reactant:

DF3(DNP,DNP!+)

DF3(DNP0,DNP1!_)
DF3(DNP0,DNP2!_)
DF3(DNP1,DNP0!_)
DF3(DNP1,DNP2!_)
DF3(DNP2,DNP0!_)
DF3(DNP2,DNP1!_)

DF3(DNP0,DNP1!_) DF3(DNP0,DNP2!_) DF3(DNP1,DNP0!_) DF3(DNP1,DNP2!_) DF3(DNP2,DNP0!_) DF3(DNP2,DNP0!_) DF3(DNP2,DNP1!_) Fab_ lgE Fab_1

Overlapping patterns cause an overestimate of a rule's propensity

Additional context is needed

Generally, if multiple identical sites exist and are underspecified in a pattern:

0. Perform combinatorial expansion as before

- 0. Perform combinatorial expansion as before
- 1. Determine all possible states for the site in question

- 0. Perform combinatorial expansion as before
- 1. Determine all possible states for the site in question
- 2. Take product of possible states and unspecified Kappa site names for each pattern in the expansion

	<u>all sites</u>	specified sites	unspecified sites
DF3(DNP0,DNP1!_) →	{DNP0,DNP1,DNP2} -	{DNP0,DNP1}	= {DNP2}
{DNP2} X {DNPN, DNPN	$\{\} = \{DNP2, DNP2\}$	}	

Generally, if multiple identical sites exist and are underspecified in a pattern:

- 0. Perform combinatorial expansion as before
- 1. Determine all possible states for the site in question
- 2. Take product of possible states and unspecified Kappa site names for each pattern in the expansion
- 3. Generate new patterns by adding all unspecified site combinations to each pattern in the expansion

DF3(DNP0,DNP1!_) + {DNP2, DNP2!_} →

{DF3(DNP0,DNP1!_,DNP2), DF3(DNP0,DNP1!_,DNP2!_)}

- 0. Perform combinatorial expansion as before
- 1. Determine all possible states for the site in question
- 2. Take product of possible states and unspecified Kappa site names for each pattern in the expansion
- 3. Generate new patterns by adding all unspecified site combinations to each pattern in the expansion
- 4. Prune identical patterns from list

- 0. Perform combinatorial expansion as before
- 1. Determine all possible states for the site in question
- 2. Take product of possible states and unspecified Kappa site names for each pattern in the expansion
- 3. Generate new patterns by adding all unspecified site combinations to each pattern in the expansion
- 4. Prune identical patterns from list

- 0. Perform combinatorial expansion as before
- 1. Determine all possible states for the site in question
- 2. Take product of possible states and unspecified Kappa site names for each pattern in the expansion
- 3. Generate new patterns by adding all unspecified site combinations to each pattern in the expansion
- 4. Prune identical patterns from list

Generally, if multiple identical sites exist and are underspecified in a pattern:

- 0. Perform combinatorial expansion as before
- 1. Determine all possible states for the site in question
- 2. Take product of possible states and unspecified Kappa site names for each pattern in the expansion
- 3. Generate new patterns by adding all unspecified site combinations to each pattern in the expansion
- 4. Prune identical patterns from list

DF3(DNP0,DNP1!_) DF3(DNP0,DNP2!_) DF3(DNP1,DNP0!_) DF3(DNP1,DNP0!_) DF3(DNP1,DNP2!_) DF3(DNP2,DNP0!_) DF3(DN2,DNP0!_) DF3(DN2,DN2,DNP0!_) DF3(DN2,DN2,DN2,DN2) DF3(DN2,DN2,DN2,DN2) DF3(DN2,DN2,DN2) DF3(DN2,DN2,DN2) DF3(DN2,DN2,DN2) DF3(DN2,DN2,DN2

Coming back to the immune response rules

1. Rule(s) governing free DF3 binding IgE

BNGL:

IgE(Fab)+DF3(DNP,DNP,DNP) -> IgE(Fab!1).DF3(DNP!1,DNP,DNP) k1

Kappa:

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2) IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2) @ k1 IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1,DNP2!1) @ k1 IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab1!1),DF3(DNP0!1,DNP1,DNP2) @ k1 IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab1!1),DF3(DNP0,DNP1!1,DNP2) @ k1

- a k1
- IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab1!1),DF3(DNP0,DNP1,DNP2!1) @ k1

2. Rule(s) governing IgE crosslinking by DF3

BNGL:

IgE(Fab)+DF3(DNP,DNP!+) -> IgE(Fab!1).DF3(DNP!1,DNP!+) k2

Kappa:

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2) @ k2 IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1!_,DNP2!1) @ k2 IgE(Fab0),DF3(DNP0,DNP1!_,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2!_) @ k2 IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2!_) @ k2 IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2!_) @ k2 IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2) @ k2 IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2!_) @ k2 IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!,DNP2!1) @ k2 IgE(Fab0),DF3(DNP0!_,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!_,DNP2!1) @ k2 IgE(Fab0),DF3(DNP0!_,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!_,DNP2!1) @ k2

2. Rule(s) governing IgE crosslinking by DF3

BNGL:

IgE(Fab)+DF3(DNP,DNP!+) -> IgE(Fab!1).DF3(DNP!1,DNP!+) k2

Kappa:

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2) @ k2 IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1!_,DNP2!1) @ k2 IgE(Fab0),DF3(DNP0,DNP1!_,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2!_) @ k2 IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2!_) @ k2 IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2!_) @ k2 IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2!_) @ k2 IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2!_) @ k2 IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!,DNP2!1) @ k2 IgE(Fab0),DF3(DNP0!_,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!_,DNP2!1) @ k2 IgE(Fab0),DF3(DNP0!_,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!_,DNP2!1) @ k2

Simulation results

The complete model also includes fully independent unbinding

37000

BNGL to Kappa and back to BNGL translations result in identical simulation trajectories

NATIONAL LABORATOR

EST. 1943

300

Center for Nonlinear Studies Include Kappa tokens and BNGL populations

Integrate SBML multi extension, other languages

People:

Funding:

Bill Hlavacek Song Feng Yen Ting Lin Eshan Mitra Alex Ionkov

Center for Nonlinear Studies

BNGL operators enforce molecularity on pattern matching

$$A(x!+).B() => x A y x B$$

$$A(x!-),B() => z C$$

$$A(x!+).B() => x A y x B$$

$$A(x!+)+B() => z C$$

$$A(x!-),B() => z C$$

Kappa rules do not (locality)

Grammars

BNGL simple patterns $\langle pattern \rangle ::= `0' | \langle molecule \rangle, [\{`.', \langle molecule \rangle\}]$ $\langle molecule \rangle ::= \langle bName \rangle, [`(', \langle compList \rangle `)']$

 $\langle compList \rangle ::= \langle empty \rangle \mid \langle component \rangle, [\{`,', \langle component \rangle\}]$

 $\langle component \rangle ::= \langle bName \rangle, \langle compState \rangle, \langle compBond \rangle$

 $\langle compState \rangle ::= \langle empty \rangle |$ `~', $\langle bName \rangle$

 $\langle compBond \rangle ::= \langle empty \rangle | `!?' | `!+' | `!', \langle integer \rangle$

Kappa simple patterns $\langle pattern \rangle :::= \langle empty \rangle | \langle agent \rangle, [\{`, ', \langle agent \rangle]]$ $\langle agent \rangle :::= \langle kName \rangle, `(`, \langle siteList \rangle, `)`$ $\langle siteList \rangle :::= \langle empty \rangle | \langle site \rangle, [\{`, ', \langle site \rangle\}]$ $\langle site \rangle :::= \langle kName \rangle, \langle siteState \rangle, \langle bond \rangle$ $\langle siteState \rangle :::= \langle empty \rangle | `-`, \langle kName \rangle$ $\langle bond \rangle :::= \langle empty \rangle | `!', \langle integer \rangle | `!_' | `?`$

Useful regular expressions

 $\langle integer \rangle = [0-9] +$ $\langle bName \rangle = [a-zA-Z][a-zA-Z_0-9]^*$ $\langle kName \rangle = [a-zA-Z][a-zA-Z_0-9+-]^*$ $\langle string \rangle = .*$

Grammars

BNGL simple rules

 $\begin{array}{l} \langle uniRule \rangle ::= [\langle bName \rangle, \ `:'], \ \langle patternList \rangle, \ `->', \ \langle patternList \rangle, \ \langle ws \rangle, \ \langle rate \rangle, \\ \langle newline \rangle \end{array}$

 $\begin{array}{l} \langle biRule \rangle ::= [\langle bName \rangle, \ `:'], \ \langle patternList \rangle, \ `<->', \ \langle patternList \rangle, \ \langle ws \rangle, \ \langle rate \rangle, \\ \langle rate \rangle, \ \langle newline \rangle \end{array}$

 $\langle patternList \rangle ::= \langle empty \rangle \mid \langle pattern \rangle$, '+', $\langle patternList \rangle$

 $\langle rate \rangle ::=$? an algebraic expression in BNGL syntax ?

Kappa simple rules

\$\langle uniRule \rangle ::= [```, \langle string \rangle, ``], \langle pattern \rangle, '->', \langle pattern \rangle, '@', \langle rate \rangle, \langle newline \rangle\$
\$\langle to investment \langle i:= \langle expression \rangle, [`\forage i, \langle expression \rangle, [`\forage i, \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle rate \rangle ::= \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, [`\forage i, \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, '\forage i]\$
\$\langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, '\forage i]\$
\$\langle i = \langle expression \rangle, '\forage i]\$
\$\langle expression \rangle i = \langle expression \rangle i]\$
\$\langle i = \langle expression \rangle i]\$
\$\langle i = \langle expresi

 $\langle expression \rangle ::=$? an algebraic expression in Kappa syntax ?

Part of a model of pheromone signaling in baker's yeast

Readable?

Extensible?

$\frac{d[Ste2]}{dt} = -k1[\alpha - factor][Ste2] + k2[Ste2_{active}] - k7[Ste2] + \frac{k4[Ste12_{active}]^2}{k5^2 + [Ste12_{active}]^2} + k6$
$\frac{d[Ste2_{active}]}{d[Ste2_{active}]} = k1[\alpha - factor][Ste2] - k2[Ste2_{active}] - k3[Ste2_{active}]$
$\frac{\frac{dt}{d[Sst2_{active}]}}{\frac{dt}{dt}} = \frac{k44[Ste12_{active}]^2}{k45^2 + [Ste12_{active}]^2} - k46[Sst2_{active}]$
$\frac{d[G]}{dt} = -k8[Ste2_{active}][G] + k15[G_{\alpha}d][G_{\beta}\gamma] + \frac{k9[Ste12_{active}]^2}{k10^2 + [Ste12_{active}]^2} - k12[G] + k11$
$\frac{d[G_{\alpha}t]}{dt} = k8[Ste2_{active}][G] - k13[G_{\alpha}t] - k14[G_{\alpha}t][Sst2_{active}]$ $\frac{d[G_{\alpha}d]}{d[G_{\alpha}d]} = k13[G_{\alpha}t] + k14[G_{\alpha}t][Sst2_{active}] - k15[G_{\alpha}d][G_{\alpha}\alpha]$
$\frac{dt}{dt} = \frac{1}{2} \left[\frac{1}{2} $
$\frac{d[G_{\beta}\gamma]}{dt} = k8[Ste2_{active}][G] - k15[G_{\alpha}d][G_{\beta}\gamma] - k40[G_{\beta}\gamma][Far1pp_{out}] + k41[Far1pp_{out}G_{\beta}\gamma]20 - k18[G_{\beta}\gamma][Ste20] + k19[G_{\beta}\gamma Ste20] + k19$
$\frac{d[Ste20]}{dt} = -k18[G_{\beta}\gamma][Ste20] + k19[G_{\beta}\gamma Ste20]$
$\frac{d[G_{\beta}\gamma Ste20]}{dt} = k18[G_{\beta}\gamma][Ste20] - k19[G_{\beta}\gamma Ste20] - k16[G_{\beta}\gamma Ste20]B1 + k17C1 - k16[G_{\beta}\gamma Ste20]B2 + k17C2 - k16[G_{\beta}\gamma Ste20]B3 + k17C3 - k16[G_{\beta}\gamma Ste20]B1 + k17C1 - k16[G_{\beta}\gamma Ste20]B2 + k17C2 - k16[G_{\beta}\gamma Ste20]B3 + k17C3 - k16[G_{\beta}\gamma Ste20]B1 + k17C1 - k16[G_{\beta}\gamma Ste20]B2 + k17C2 - k16[G_{\beta}\gamma Ste20]B3 + k17C3 - k16[G_{\beta}\gamma Ste20]B1 + k17C1 - k16[G_{\beta}\gamma Ste20]B2 + k17C2 - k16[G_{\beta}\gamma Ste20]B3 + k17C3 - k16[G_{\beta}\gamma Ste20]B1 + k17C1 - k16[G_{\beta}\gamma Ste20]B2 + k17C2 - k16[G_{\beta}\gamma Ste20]B3 + k17C3 - k16[G_{\beta}\gamma Ste20]B1 + k17C1 - k16[G_{\beta}\gamma Ste20]B2 + k17C2 - k16[G_{\beta}\gamma Ste20]B3 + k17C3 - k16[G_{\beta}\gamma Ste20]B1 + k17C1 - k16[G_{\beta}\gamma Ste20]B2 + k17C2 - k16[G_{\beta}\gamma Ste20]B3 + k17C3 - k16[G_{\beta}\gamma Ste20]B1 + k17C1 - k16[G_{\beta}\gamma Ste20]B2 + k17C2 - k16[G_{\beta}\gamma Ste20]B3 + k17C3 - k16[G_{\beta}\gamma Ste20]B1 + k17C3 $
$ k16[G_{\beta\gamma}Ste20]B4 + k17C4 - k16[G_{\beta\gamma}Ste20]B5 + k17C5 - k16[G_{\beta\gamma}Ste20]B6 + k17C6 - k16[G_{\beta\gamma}Ste20]B7 + k17C7 - k16[G_{\beta\gamma}Ste20]B8 + k17C8 - k16[G_{\beta\gamma}Ste20]B1 + k17C11 - k16[G_{\beta\gamma}Ste20]B12 + k17C12 - k16[G_{\beta\gamma}Ste20]B13 + k17C13 - k16[G_{\beta\gamma}Ste20]B10 + k17C10 - k16[G_{\beta\gamma}Ste20]B11 + k17C11 - k16[G_{\beta\gamma}Ste20]B12 + k17C12 - k16[G_{\beta\gamma}Ste20]B13 + k17C13 - k16[G_{\beta\gamma}Ste20]B14 + k17C14 - k16[G_{\beta\gamma}Ste20]B15 + k17C15 - k16[G_{\beta\gamma}Ste20]B20 + k17C16 - k16[G_{\beta\gamma}Ste20]B17 + k17C17 - k16[G_{\beta\gamma}Ste20]B18 + k17C18 - k16[G_{\beta\gamma}Ste20]B19 + k17C19 - k16[G_{\beta\gamma}Ste20]B20 + k17C20 - k16[G_{\beta\gamma}Ste20]B21 + k17C21 - k16[G_{\beta\gamma}Ste20]B22 + k17C22 - k16[G_{\beta\gamma}Ste20]B23 + k17C23 - k16[G_{\beta\gamma}Ste20]B24 + k17C24 - k16[G_{\beta\gamma}Ste20]B25 + k17C25 - k16[G_{\beta\gamma}Ste20]B26 + k17C26 - k16[G_{\beta\gamma}Ste20]B27 + k17C27 - k16[G_{\beta\gamma}Ste20]B24 - k17C24 - k16[G_{\beta\gamma}Ste20]B25 + k17C25 - k16[G_{\beta\gamma}Ste20]B26 + k17C26 - k16[G_{\beta\gamma}Ste20]B27 + k17C27 - k16[G_{\beta\gamma}Ste20]B24 - k17C24 - k16[G_{\beta\gamma}Ste20]B25 + k17C25 - k16[G_{\beta\gamma}Ste20]B26 + k17C26 - k16[G_{\beta\gamma}Ste20]B27 + k17C27 - k16[G_{\beta\gamma}Ste20]B24 - k17C24 - k16[G_{\beta\gamma}Ste20]B25 - k17C25 - k16[G_{\beta\gamma}Ste20]B26 - k17C26 - k16[G_{\beta\gamma}Ste20]B27 + k17C27 - k16[G_{\beta\gamma}Ste20]B27 - k16[G_{\beta\gamma}Ste20]B27 + k17C27 - k16[G_{\beta\gamma}Ste20]B27 - k16[G_{\beta\gamma}Ste20]B27 - k16[G_{\beta\gamma}Ste20]B27 + k17C27 - k16[G_{\beta\gamma}Ste20]B27 - k16[G_{\beta\gamma}Ste20]B27 + k17C27 - k16[G_{\beta\gamma}Ste20]B27 - k$
$\frac{dt}{dt} = p_{1KKK}[stel1pMAPKKK-P] + of f_{KKK}(C2+C8+C11+C12+C15+C20+C22+C23+C26+B2+B8+B11+B12+B15+B20+B22+D23+C26+B2+B3+B11+B12+B15+B20+B22+D3+D23+D23+D23+D23+D23+D23+D23+D23+D2$
$\frac{B23+B26)-on_{KKK}[Ste11](C4+C6+C7+C1+C16+C17+C18+C19+C5+B4+B6+B7+B1+B16+B17+B18+B19+B5)-k26[Ste11][Fus3pp_{out}]}{d[Ste11p]} = -a1_{KKK}[Ste11p]([MAPKKK-P]_{0}-[Ste11pMAPKKK-P]-[Ste11pMAPKKK-P])+d1_{KKK}[Ste11pMAPKKK-P] + (Ste11pMAPKKK-P] + (Ste11pMAPKKK-P]) + (Ste11pMAPKKK-P] + (Ste11pMAPKKK-P]) + (Ste11pMAPKKK-P] + (Ste11pMAPKKK-P) + (Ste11pMAPKKK$
$\frac{dt}{p2_{KK_K}[Stel1pMAPKKK - P]}$ $\frac{dt}{d[Stel1pMAPKKK - P]}$
$\frac{dt}{dt} = a1_{KKK}[Ste11p]([MAPKKK - P]_0 - [Ste11pMAPKKK - P] - [Ste11ppMAPKKK - P]) - (d1_{KKK} + p1_{KKK})[Ste11pMAPKKK - P]$
$\frac{d[Stel1pp]}{d[Stel1pp]} = -a_{2KKK}[Stel1pp]([MAPKKK - P]_0 - [Stel1pMAPKKK - P] - [Stel1ppMAPKKK - P]) + d_{2KKK}[Stel1ppMAPKKK - P] - [Stel1ppMAPKKK - P] - [Stel1ppMAPKKK - P]) + d_{2KKK}[Stel1ppMAPKKK - P] - [Stel1ppMAPKKK - P] - [Stel1pMAPKKK - P] - [Stel1pMAPKKKK - P] - [Stel1pMAPKKK - P] - [Stel1pMAPKKKK - P] - [Stel1pMAPKKK - P] - [Stel1pMAPKKKK - P] - [Stel1pMAPKKKKK - P] - [Stel1pMAPKKKK - P] - [St$
$ \begin{array}{l} dt \\ P] & - a_{3\kappa\kappa}[Ste11pp][Ste7] + (d_{3\kappa\kappa} + p_{3\kappa\kappa})[Ste11ppSte7] - a_{4\kappa\kappa}[Ste11pp][Ste7p] + (d_{4\kappa\kappa} + p_{4\kappa\kappa})[Ste11ppSte7p] + * off_{\kappa\kappa\kappa}(C3 + C10 + C9 + C13 + C14 + C21 + C24 + C25 + C27 + B3 + B10 + B9 + B13 + B14 + B21 + B24 + B25 + B27) - * * on_{\kappa\kappa\kappa}[Ste11pp](C1 + C4 + C5 + C6 + C7 + C16 + C17 + C18 + C19 + B1 + B4 + B5 + B6 + B7 + B16 + B17 + B18 + B19) \\ \hline d[Ste11ppMAPKKK - P] = \\ \end{array} $
$a2_{KKK}[Ste11pp]([MAPKKK - P]_0 - [Ste11pMAPKKK - P] - [Ste11ppMAPKKK - P]) - (d2_{KKK} + p2_{KKK})[Ste11ppMAPKKK - P]$
$\frac{d[Ste7]}{dt} = -a3_{KK}[Ste7][Ste11pp] + d3_{KK}[Ste11ppSte7] + p1_{KK}[Ste7pMAPKK - P] + off_{KK}(C4 + C8 + C9 + C16 + C19 + C20 + C21 + C20 + C21 + C20 + C21 + C20 + C2$
$ \begin{array}{l} C23+C25+B4+B8+B9+B16+B19+B20+B21+B23+B25)-on_{KK}[Ste7](C1+C2+C3+C6+C7+C12+C13+C14+C15+B1+B2+B3+B6+B7+B12+B13+B14+B15)-k24[Ste7][Fus3_{out}]+k25[Fus3_{out}Ste7]\\ \hline \\ \frac{d[Ste7Ste11pp]}{dt} = a_{3KK}[Ste11pp][Ste7]-(d_{3KK}+p_{3KK})[Ste11ppSte7] \end{array} $
$\frac{dt}{d[ste7p]} = -a_{1KK} ([MAPKK - P]_0 - [Ste7pMAPKK - P] - [Ste7ppMAPKK - P])[Ste7p] + d_{1KK} [Ste7pMAPKK - P] + d_{1KK} [$
$p_{3_{KK}}^{ac}[Ste11ppSte7] - a_{4_{KK}}[Ste7p][Ste11pp] + d_{4_{KK}}[Ste11ppSte7p] + p_{2_{KK}}[Ste7ppMAPKK - P]$
$\frac{d[Ste7pMAPKK-P]}{dt} = a1_{KK}[Ste7p]([MAPKK-P]_0 - [Ste7pMAPKK-P] - [Ste7ppMAPKK-P]) - (d1_{KK} + p1_{KK})[Ste7pMAPKK-P] - [Ste7pMAPKK-P] - [Ste7pMAPKK-P]$
$\frac{d[Ste7pSte11pp]}{dt} = a4_{KK}[Ste11pp][Ste7p] - (d4_{KK} + p4_{KK})[Ste11ppSte7p]$
$\frac{d[Ste7pp]}{dt} = -a2_{KK}[Ste7pp]([MAPKK - P]_0 - [Ste7pMAPKK - P] - [Ste7ppMAPKK - P]) + d2_{KK}[Ste7ppMAPKK - P] + d2_{KK}[Ste7pMAPKK - P] + d2_{KK}[S$
$ \begin{array}{l} a a \\ p 4_{KK}[Ste11ppSte7p] - a 3_{K}[Ste7pp][Fus3_{out}] + (d 3_{K} + p 3_{K})[Ste7ppFus3_{out}] - a 4_{K}[Ste7pp][Fus3p_{out}] + (d 4_{K} + p 4_{K})[Ste7ppFus3p_{out}] + * \\ o f f_{KK}(C5 + C10 + C11 + C17 + C22 + C24 + B5 + B10 + B11 + B17 + B22 + B24) + * * o f f'_{KK}(C18 + C26 + C27 + B18 + B26 + B27) - k27[Ste7pp] \\ \end{array} $
$\frac{d[Ste7ppMAPKK-P]}{dt} = a2_{KK}[Ste7pp]([MAPKK-P]_0 - [Ste7pMAPKK-P] - [Ste7ppMAPKK-P]) - (d2_{KK} + p2_{KK})[Ste7ppMAPKK-P] - [Ste7ppMAPKK-P] - [Ste7pp$
$\frac{d[Fus_{out}]}{d[Fus_{out}]} = -a_{K}[Ste7pp][Fus_{out}] + d_{K}[Ste7ppFus_{out}] + p_{1K}[Fus_{0out}MAPK - P_{out}] + off_{K}(C6 + C12 + C13 + C16 + C17 + C20 + C17 + C20 + C16 + C17 + C20 + C20$
$\frac{dt}{C21 + C22 + C24 + B6 + B12 + B13 + B16 + B17 + B20 + B21 + B22 + B24) - on_{K}[Fus_{out}](C1 + C2 + C3 + C4 + C5 + C8 + C9 + C10 + C11 + B1 + B2 + B3 + B4 + B5 + B8 + B9 + B10 + B11) - k24[Ste7][Fus_{out}] + k25[Fus_{out}Ste7] + k47[Fus_{3tn}] - k48[Fus_{out}] + \frac{k32[Ste12_{active}]^2}{k5^2 + [Ste12_{active}]^2}$
$B1 + B2 + B3 + B4 + B5 + B8 + B9 + B10 + B11) - k24[Ste7][Fus3_{out}] + k25[Fus3_{out}Ste7] + k47[Fus3_{in}] - k48[Fus3_{out}] + \frac{k32[Ste12_{active}]^2}{k5^2 + [Ste12_{active}]^2} + \frac{k32[Ste12_{active}]^2} $
$\frac{d[Fus3_{out}Ste11pp]}{dt} = a3_K[Ste7pp][Fus3_{out}] - (d3_K + p3_K)[Ste7ppFus3_{out}]$
$\frac{d[Fus3p_{out}]}{dt} = -a1_K[Fus3p_{out}][MAPK - P_{out}] + d1_K[Fus3p_{out}MAPK - P_{out}] + p3_K[Ste7ppFus3_{out}] - a4_K[Ste7pp][Fus3p_{out}] + d1_K[Fus3p_{out}] + d1_K[Fus3p_{out}$
$\frac{d4_{K}[Ste7ppFus3p_{out}] + p2_{K}[Fus3p_{out}MAPK - P_{out}]}{dt} = a1_{K}[Fus3p_{out}][MAPK - P_{out}] - (d1_{K} + p1_{K})[Fus3p_{out}MAPK - P_{out}]$
$\frac{dt}{d[Fus3p_{out}STe^{7}pp]} = a4_{K}[Ste^{7}pp][Fus3p_{out}] - (d4_{K} + p4_{K})[Ste^{7}ppFus3p_{out}]$
$\frac{dt}{dt} = -a_{K}[Fus3pp_{out}] (MAPK - P_{out}] + d_{K}[Fus3pp_{out}MAPK - P_{out}] + p_{K}[Ste7ppFus3p_{out}] + * off_{K}(C7 + C14 + C15 + $
$\frac{dt}{dt} = -a_{2_{K}}[r usspp_{out}](MAPK - P_{out}] + a_{2_{K}}[r usspp_{out}]MAPK - P_{out}] + p_{4_{K}}[sterppr ussp_{out}] + **off_{K}(Cr + C14 + C13 + C18 + C19 + C23 + C25 + C26 + C27 + B7 + B14 + B15 + B18 + B19 + B23 + B25 + B26 + B27) + k49[Fus3pp_{ut}] - k50[Fus3pp_{out}] + \frac{d[Fus3pp_{out}]}{dt} + \frac{d[Fus3pp_{out}]}{dt} = a_{2_{K}}[Fus3pp_{out}][MAPK - P_{out}] - (d_{2_{K}} + p_{2_{K}})[Fus3pp_{out}]MAPK - P_{out}]$
$\frac{d[MAPK - P_{out}]}{dt} = -a1_K [Fus3p_{out}][MAPK - P_{out}] + (d1_K + p1_K)[Fus3p_{out}MAPK - P_{out}] - a2_K [Fus3p_{out}][MAPK - P_{out}] + (p2_K + k31[Stel2active]^2]$
$\frac{d2_{K}}{[Fus3pp_{out}MAPK - P_{out}]} + \frac{k31[Stel2_{active}]^2}{k5^2 + [Stel2_{active}]^2}$
$\frac{d[Fus_{3out}Ste7]}{d[Ste7]} = k24[Ste7][Fus_{3out}] - k25[Fus_{3out}Ste7]$ Shao, D,, et al, (2006), Biophys J

Center for

Nonlinear Studies

ODE functions:

Modeling protein interaction networks traditionally done with ODEs or reaction networks

Two prominent issues:

Encoding (knowledge representation)

Combinatorial complexity

PDGF receptor

10 phosphorylation sites

2¹⁰ possible states

Combinatorial complexity

PDGF receptor

10 phosphorylation sites

2¹⁰ possible states

Active receptor dimerizes

>500,000 possible states

