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TRuML: A translator for rule-based 
modeling languages

Ryan Suderman, William S. Hlavacek



Dynamical systems biology

Modeling protein interaction networks traditionally 
done with ODEs or reaction networks

Two prominent issues:

Encoding (knowledge representation)

Complexity



Rule-based modeling

“Site graphs” represent molecules/complexes

Danos, V., et al, (2007), Concur 2007

Graph-rewriting rules represent sets of reactions

Chylek, L. A., et al, (2014), WIREs: Sys Biol Med
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Rule-based modeling

BioNetGen (BNGL) and Kappa languages

Both have “direct” KMC-based simulation engines

Each has a unique set 
of analysis tools

Danos, V., et al, (2007), LNCS

Sneddon, M. W. et al, (2011), Nat Meth

Gillespie, D. T. (2007). Ann Rev Phys Chem



Translation

TRuML is a tool for translating between Kappa and BNGL

Some model components can be trivially translated:

Kappa:

BNGL:

%agent: A(x,y)

A(x,y)

Others require syntactic modification:

Kappa:

BNGL: x = log10(y + 1) / z

%var: ‘x’ ([log](‘y’ + 1) / [log](10)) / ‘z’



Translation

Rules are similar syntactically, but with key differences:

BNGL:

Kappa:

A(y) + B(x) -> A(y!1).B(x!1) k

A(y),B(x) -> A(y!1),B(x!1) @ k



Translating identically named sites

BNGL allows molecules with identical sites

Kappa’s formalism requires distinct site names

BNGL patterns involving identical sites must be expanded 
to accommodate Kappa’s site naming conventions



Translating identically named sites

Consider the immune response

Two types of binding rules:

BNGL:

- Free DF3 binding IgE

- Bound DF3 crosslinking 2 IgEs

IgE(Fab)+DF3(DNP,DNP,DNP) -> IgE(Fab!1).DF3(DNP!1,DNP,DNP) k1

IgE(Fab)+DF3(DNP,DNP!+) -> IgE(Fab!1).DF3(DNP!1,DNP!+) k2



Translating identically named sites

First, the molecule types’ sites must be 
renamed

Patterns containing these molecule types must 
be combinatorially expanded

IgE(Fab!1).DF3(DNP!1,DNP,DNP)

IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2) 

IgE(Fab1!1),DF3(DNP0,DNP1!1,DNP2) 

IgE(Fab0!1),DF3(DNP0,DNP1,DNP2!1) 

IgE(Fab1!1),DF3(DNP0!1,DNP1,DNP2) 

IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2) 

IgE(Fab1!1),DF3(DNP0,DNP1,DNP2!1)



Translating identically named sites

This is not sufficient for certain cases

DF3(DNP,DNP!+)

Consider the crosslinking rule’s DF3 reactant:

DF3(DNP0,DNP1!_) 

DF3(DNP0,DNP2!_) 

DF3(DNP1,DNP0!_) 

DF3(DNP1,DNP2!_) 

DF3(DNP2,DNP0!_) 

DF3(DNP2,DNP1!_)



Translating identically named sites

DF3(DNP2,DNP1!_)

DF3(DNP2,DNP0!_)

DF3(DNP1,DNP2!_)

DF3(DNP1,DNP0!_)

DF3(DNP0,DNP1!_)

DF3(DNP0,DNP2!_)
DF3(DNP0,DNP1!_,DNP2!_)

Overlapping patterns cause an overestimate of a 
rule’s propensity

Additional context is needed



Translating identically named sites

Generally, if multiple identical sites exist and 
are underspecified in a pattern:

0. Perform combinatorial expansion as before

DF3(DNP,DNP!+)

DF3(DNP0,DNP1!_) 

DF3(DNP0,DNP2!_) 

DF3(DNP1,DNP0!_) 

DF3(DNP1,DNP2!_) 

DF3(DNP2,DNP0!_) 

DF3(DNP2,DNP1!_)



Translating identically named sites

Generally, if multiple identical sites exist and 
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

DNPN
DNPN 

DNPN!_



Translating identically named sites

Generally, if multiple identical sites exist and 
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

2. Take product of possible states and unspecified Kappa site 
names for each pattern in the expansion

DF3(DNP0,DNP1!_) {DNP0,DNP1,DNP2} - {DNP0,DNP1} = {DNP2}

{DNP2} X {DNPN, DNPN!_} = {DNP2, DNP2!_}

all sites specified sites unspecified sites



Translating identically named sites

Generally, if multiple identical sites exist and 
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

2. Take product of possible states and unspecified Kappa site 
names for each pattern in the expansion

3. Generate new patterns by adding all unspecified site 
combinations to each pattern in the expansion

DF3(DNP0,DNP1!_) + {DNP2, DNP2!_}

{DF3(DNP0,DNP1!_,DNP2), DF3(DNP0,DNP1!_,DNP2!_)}



Translating identically named sites

Generally, if multiple identical sites exist and 
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

2. Take product of possible states and unspecified Kappa site 
names for each pattern in the expansion

3. Generate new patterns by adding all unspecified site 
combinations to each pattern in the expansion

4. Prune identical patterns from list

DF3(DNP0,DNP1!_) 

DF3(DNP0,DNP2!_) 

DF3(DNP1,DNP0!_) 

DF3(DNP1,DNP2!_) 

DF3(DNP2,DNP0!_) 

DF3(DNP2,DNP1!_)

DF3(DNP,DNP!+)

DF3(DNP0,DNP1!_,DNP2) 

DF3(DNP0,DNP1!_,DNP2!_) 

DF3(DNP0,DNP2!_,DNP1) 

DF3(DNP1,DNP0!_,DNP2!_) 

DF3(DNP1,DNP0!_,DNP2) 

DF3(DNP2,DNP0!_,DNP1!_)



Translating identically named sites

Generally, if multiple identical sites exist and 
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

2. Take product of possible states and unspecified Kappa site 
names for each pattern in the expansion

3. Generate new patterns by adding all unspecified site 
combinations to each pattern in the expansion

4. Prune identical patterns from list

DF3(DNP0,DNP1!_) 

DF3(DNP0,DNP2!_) 

DF3(DNP1,DNP0!_) 

DF3(DNP1,DNP2!_) 

DF3(DNP2,DNP0!_) 

DF3(DNP2,DNP1!_)

DF3(DNP,DNP!+)

DF3(DNP0,DNP1!_,DNP2) 

DF3(DNP0,DNP1!_,DNP2!_) 

DF3(DNP0,DNP2!_,DNP1) 

DF3(DNP1,DNP0!_,DNP2!_) 

DF3(DNP1,DNP0!_,DNP2) 

DF3(DNP2,DNP0!_,DNP1!_)



Translating identically named sites

Generally, if multiple identical sites exist and 
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

2. Take product of possible states and unspecified Kappa site 
names for each pattern in the expansion

3. Generate new patterns by adding all unspecified site 
combinations to each pattern in the expansion

4. Prune identical patterns from list

DF3(DNP,DNP!+)

DF3(DNP0,DNP1!_,DNP2) 

DF3(DNP0,DNP1!_,DNP2!_) 

DF3(DNP0,DNP2!_,DNP1) 

DF3(DNP1,DNP0!_,DNP2!_) 

DF3(DNP1,DNP0!_,DNP2) 

DF3(DNP2,DNP0!_,DNP1!_)

DF3(DNP0,DNP1!_) 

DF3(DNP0,DNP2!_) 

DF3(DNP1,DNP0!_) 

DF3(DNP1,DNP2!_) 

DF3(DNP2,DNP0!_) 

DF3(DNP2,DNP1!_)



Translating identically named sites

Generally, if multiple identical sites exist and 
are underspecified in a pattern:

1. Determine all possible states for the site in question

0. Perform combinatorial expansion as before

2. Take product of possible states and unspecified Kappa site 
names for each pattern in the expansion

3. Generate new patterns by adding all unspecified site 
combinations to each pattern in the expansion

4. Prune identical patterns from list

DF3(DNP,DNP!+)

DF3(DNP0,DNP1!_,DNP2) 

DF3(DNP0,DNP1!_,DNP2!_) 

DF3(DNP0,DNP2!_,DNP1) 

DF3(DNP1,DNP0!_,DNP2!_) 

DF3(DNP1,DNP0!_,DNP2) 

DF3(DNP2,DNP0!_,DNP1!_)

DF3(DNP0,DNP1!_) 

DF3(DNP0,DNP2!_) 

DF3(DNP1,DNP0!_) 

DF3(DNP1,DNP2!_) 

DF3(DNP2,DNP0!_) 

DF3(DNP2,DNP1!_)



Translating identically named sites

Coming back to the immune response rules

BNGL:

IgE(Fab)+DF3(DNP,DNP,DNP) -> IgE(Fab!1).DF3(DNP!1,DNP,DNP) k1

Kappa:

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2) @ k1 

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2) @ k1 

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1,DNP2!1) @ k1 

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab1!1),DF3(DNP0!1,DNP1,DNP2) @ k1 

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab1!1),DF3(DNP0,DNP1!1,DNP2) @ k1 

IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab1!1),DF3(DNP0,DNP1,DNP2!1) @ k1

1. Rule(s) governing free DF3 binding IgE



Translating identically named sites

2. Rule(s) governing IgE crosslinking by DF3

IgE(Fab)+DF3(DNP,DNP!+) -> IgE(Fab!1).DF3(DNP!1,DNP!+) k2

BNGL:

Kappa:

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2!_) @ k2 

IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2!_) @ k2 

IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2!_) @ k2 

IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2) @ k2 

IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1,DNP2!1) @ k2 

IgE(Fab0),DF3(DNP0!_,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!_,DNP2!1) @ k2 

IgE(Fab0),DF3(DNP0!_,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2!_) @ k2

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2) @ k2 

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1!_,DNP2!1) @ k2 



Translating identically named sites

IgE(Fab)+DF3(DNP,DNP!+) -> IgE(Fab!1).DF3(DNP!1,DNP!+) k2

BNGL:

Kappa:

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2!_) @ k2 

IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2!_) @ k2 

IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2!_) @ k2 

IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2) @ k2 

IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1,DNP2!1) @ k2 

IgE(Fab0),DF3(DNP0!_,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!_,DNP2!1) @ k2 

IgE(Fab0),DF3(DNP0!_,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2!_) @ k2

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2) @ k2 

IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1!_,DNP2!1) @ k2 

2. Rule(s) governing IgE crosslinking by DF3



Simulation results

The complete model also includes fully independent unbinding

BNGL to Kappa and back 
to BNGL translations result 
in identical simulation 
trajectories

All models also capture similar 
aggregate size distributions



Additional considerations

Include Kappa tokens and BNGL populations

Integrate SBML multi extension, other languages
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Molecularity

BNGL operators enforce molecularity on pattern matching

Kappa rules do not (locality)

A(x!_),B() =>

A(x!+).B() =/>

A(x!+).B() =>

A(x!_),B() =>

A(x!+)+B() =>



Grammars

Kappa simple patterns

hpatterni ::= ‘0’ | hmoleculei, [{‘.’, hmoleculei}]

hmoleculei ::= hbNamei, [‘(’, hcompListi ‘)’]

hcompListi ::= hemptyi | hcomponenti, [{‘,’, hcomponenti}]

hcomponenti ::= hbNamei, hcompStatei, hcompBondi

hcompStatei ::= hemptyi | ‘~’, hbNamei

hcompBondi ::= hemptyi | ‘!?’ | ‘!+’ | ‘!’,hintegeri

hpatterni ::= hemptyi | hagenti, [{‘,’, hagenti}]

hagenti ::= hkNamei, ‘(’, hsiteListi, ‘)’

hsiteListi ::= hemptyi | hsitei, [{‘,’, hsitei}]

hsitei ::= hkNamei, hsiteStatei, hbondi

hsiteStatei ::= hemptyi | ‘~’, hkNamei

hbondi ::= hemptyi | ‘!’, hintegeri | ‘!_’ | ‘?’

BNGL simple patterns

Useful regular expressions

hintegeri = [0-9]+
hbNamei = [a-zA-Z][a-zA-Z 0-9]*
hkNamei = [a-zA-Z][a-zA-Z 0-9+-]*
hstringi = .*



Grammars

Kappa simple rules

BNGL simple rules

huniRulei ::= [hbNamei, ‘:’], hpatternListi, ‘->’, hpatternListi, hwsi, hratei,
hnewlinei

hbiRulei ::= [hbNamei, ‘:’], hpatternListi, ‘<->’, hpatternListi, hwsi, hratei,
hratei, hnewlinei

hpatternListi ::= hemptyi | hpatterni, ‘+’, hpatternListi

hratei ::= ? an algebraic expression in BNGL syntax ?

huniRulei ::= [‘‘’, hstringi, ‘’’], hpatterni, ‘->’, hpatterni, ‘@’, hratei, hnewlinei

hbiRulei ::= [‘‘’, hstringi, ‘’’], hpatterni, ‘<->’, hpatterni, ‘@’, hratei, hratei,
hnewlinei

hratei ::= hexpressioni, [‘{’, hexpressioni ’}’]

hexpressioni ::= ? an algebraic expression in Kappa syntax ?



Shao, D,, et al, (2006), Biophys J

Part of a model of 
pheromone signaling in 
baker’s yeast

Readable?

Extensible?



Dynamical systems biology

Modeling protein interaction networks traditionally 
done with ODEs or reaction networks

Two prominent issues:

Encoding (knowledge representation)



Combinatorial complexity

PDGF receptor

10 phosphorylation sites

210  possible states



Combinatorial complexity

Active receptor dimerizes

>500,000 possible states

PDGF receptor

10 phosphorylation sites

210  possible states


