LA-UR-17-28151

Approved for public release; distribution is unlimited.
Title: TRuML: a translator for rule-based modeling languages

Author(s):	Suderman, Ryan T. Hlavacek, William Scott
Intended for:	ACM-BCB, 2017-08-21/2017-08-23 (Cambridge, Massachusetts, United States)

Issued: 2017-09-11

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

TRuML: A translator for rule-based modeling languages
 Ryan Suderman, William S. Hlavacek

Center for
Nonlinear Studies

Dynamical systems biology

Modeling protein interaction networks traditionally done with ODEs or reaction networks

Two prominent issues:
Encoding (knowledge representation)
Complexity

Rule-based modeling

"Site graphs" represent molecules/complexes

Graph-rewriting rules represent sets of reactions

Chylek, L. A., et al, (2014), WIREs: Sys Biol Med Danos, V., et al, (2007), Concur 2007

Rule-based modeling

BioNetGen (BNGL) and Kappa languages
Both have "direct" KMC-based simulation engines

Each has a unique set of analysis tools

a_{T} - sum of all rules' propensities
$a_{i} \quad$ - the propensity of rule i

Translation

TRuML is a tool for translating between Kappa and BNGL

Some model components can be trivially translated:

Others require syntactic modification:
BNGL: $x=\log 10(y+1) / z$
Kappa: \%var: ‘x’ ([log](‘y’ + 1) / [log](10)) / 'z’

Translation

Rules are similar syntactically, but with key differences:

Kappa:

$$
A(y), B(x)->A(y!1), B(x!1) @ k
$$

BNGL:

$$
A(y)+B(x)->A(y!1) \cdot B(x!1) k
$$

Translating identically named sites

BNGL allows molecules with identical sites

Kappa's formalism requires distinct site names
x_{0} D

BNGL patterns involving identical sites must be expanded to accommodate Kappa's site naming conventions

Center for Nonlinear Studies

Translating identically named sites

Consider the immune response
Two types of binding rules:

- Free DF3 binding IgE
- Bound DF3 crosslinking 2 IgEs

BNGL:

IgE(Fab)+DF3(DNP,DNP,DNP) -> IgE(Fab!1).DF3(DNP!1,DNP,DNP) k1 IgE(Fab)+DF3(DNP,DNP!+) -> IgE(Fab!1).DF3(DNP!1,DNP!+) k2

Translating identically named sites

First, the molecule types' sites must be renamed

Patterns containing these molecule types must be combinatorially expanded

```
IgE(Fab!1).DF3(DNP!1,DNP,DNP)
```

	IgE(Fab0! 1), DF3 (DNP0!1, DNP1, DNP2)
	IgE(Fab1!1), DF3 (DNP0, DNP1!1, DNP2)
	IgE(Fab0!1), DF3 (DNP0, DNP1, DNP2!1)
	IgE (Fab1!1), DF3 (DNP0!1, DNP1, DNP2)
	IgE(Fab0!1), DF3 (DNP0, DNP1!1, DNP2)
	IgE(Fab1!1), DF3 (DNP0, DNP1, DNP2!1)

Translating identically named sites

This is not sufficient for certain cases
Consider the crosslinking rule's DF3 reactant:

DF3(DNP, DNP!+)

$$
\begin{aligned}
& \text { DF3(DNP0, DNP1!_) } \\
& \text { DF3(DNP0, DNP2!_) } \\
& \text { DF3(DNP1,DNP0!_) } \\
& \text { DF3(DNP1,DNP2!_) } \\
& \text { DF3(DNP2,DNP0!_) } \\
& \text { DF3(DNP2, DNP1!_) }
\end{aligned}
$$

Translating identically named sites

DF3(DNP0, DNP1!_) $\longrightarrow \mathrm{DF} 3\left(\mathrm{DNP0}, \mathrm{DNP1}!_{-}, \mathrm{DNP} 2!!_{-}\right)$
DF3(DNP0, DNP2!_)
DF3(DNP1, DNP0!_)
DF3(DNP1, DNP2!_)
DF3(DNP2, DNP0!_)
DF3(DNP2, DNP1!_)

Overlapping patterns cause an overestimate of a rule's propensity

Additional context is needed

Translating identically named sites

Generally, if multiple identical sites exist and are underspecified in a pattern:
0. Perform combinatorial expansion as before

$$
\text { DF3(DNP, DNP!+) } \rightarrow \begin{aligned}
& \text { DF3(DNP0, DNP1!__) } \\
& \text { DF3(DNP0, DNP2!_) } \\
& \text { DF3(DNP1, DNP0 ! _) } \\
& \text { DF3(DNP1, DNP2!__) } \\
& \text { DF3(DNP2, DNP0!_) } \\
& \text { DF3(DNP2, DNP1!_) }
\end{aligned}
$$

$\mathrm{Fab}_{0} \operatorname{lgE} \quad \mathrm{Fab}_{1}$

Translating identically named sites

Generally, if multiple identical sites exist and are underspecified in a pattern:
0. Perform combinatorial expansion as before

1. Determine all possible states for the site in question

DNPN $\rightarrow \begin{aligned} & \text { DNPN } \\ & \text { DNPN!_ }\end{aligned}$

$D N P_{0} \quad D N P_{1}$
 DF3
 DNP_{2}

Translating identically named sites

Generally, if multiple identical sites exist and are underspecified in a pattern:

0. Perform combinatorial expansion as before

1. Determine all possible states for the site in question
2. Take product of possible states and unspecified Kappa site names for each pattern in the expansion
all sites specified sites unspecified sites

DF3(DNP0,DNP1!_) \rightarrow \{DNP0,DNP1,DNP2\} - \{DNP0,DNP1\} = \{DNP2\}
\{DNP2\} X \{DNPN, DNPN!_\} = \{DNP2, DNP2!_\}

Translating identically named sites

Generally, if multiple identical sites exist and are underspecified in a pattern:
0. Perform combinatorial expansion as before

1. Determine all possible states for the site in question
2. Take product of possible states and unspecified Kappa site names for each pattern in the expansion
$\mathrm{Fab}_{0} \operatorname{lgE} \quad \mathrm{Fab}_{1}$
3. Generate new patterns by adding all unspecified site combinations to each pattern in the expansion

DF3(DNP0,DNP1!_) + \{DNP2, DNP2!_\} \rightarrow

$$
\text { \{DF3(DNP0, DNP1!_,DNP2), DF3(DNP0,DNP1!_,DNP2!_)\} }
$$

Translating identically named sites

Generally, if multiple identical sites exist and are underspecified in a pattern:
0. Perform combinatorial expansion as before

1. Determine all possible states for the site in question
2. Take product of possible states and unspecified Kappa site names for each pattern in the expansion
$\mathrm{Fab}_{0} \lg E$
Fab_{1}
3. Generate new patterns by adding all unspecified site combinations to each pattern in the expansion
4. Prune identical patterns from list

DF3(DNP, DNP!+) \longrightarrow	DF3(DNP0,DNP1!_)	DF3(DNP0, DNP1!_, DNP2)
	DF3(DNP0, DNP2!_)	DF3(DNP0, DNP1!_, DNP2!_)
	DF3(DNP1,DNP0!_)	DF3(DNP0, DNP2!_, DNP1)
	DF3(DNP1,DNP2!_)	DF3(DNP1, DNP0!_, DNP2!_)
	DF3(DNP2,DNP0!_)	DF3(DNP1, DNP0!_, DNP2)
	DF3(DNP2,DNP1!_)	DF3(DNP2, DNP0!_, DNP1!_)

Translating identically named sites

Generally, if multiple identical sites exist and are underspecified in a pattern:
0. Perform combinatorial expansion as before

1. Determine all possible states for the site in question
2. Take product of possible states and unspecified Kappa site names for each pattern in the expansion

$\mathrm{DNP}_{0} \quad \mathrm{DNP}_{1}$ DF3
 DNP 2

$\mathrm{Fab}_{0} \operatorname{IgE~Fab}$
3. Generate new patterns by adding all unspecified site combinations to each pattern in the expansion
4. Prune identical patterns from list

DF3(DNP, DNP!+) \rightarrow	DF3(DNP0, DNP1!_)	DF3(DNP0, DNP1!_, DNP2)
	DF3(DNP0, DNP2!_)	DF3(DNP0, DNP1!_, DNP2!_)
	DF3(DNP1, DNP0!_)	DF3(DNP0, DNP2!_, DNP1)
	DF3(DNP1, DNP2!_)	DF3(DNP1, DNP0!_, DNP2!_)
	DF3(DNP2,DNP0!_)	DF3(DNP1, DNP0!_, DNP2)
	DF3(DNP2,DNP1!_)	DF3(DNP2, DNP0!_, DNP1!_)

Translating identically named sites

Generally, if multiple identical sites exist and are underspecified in a pattern:
0. Perform combinatorial expansion as before

1. Determine all possible states for the site in question
2. Take product of possible states and unspecified Kappa site names for each pattern in the expansion

$\mathrm{Fab}_{0} \operatorname{IgE~Fab_{1}}$
3. Generate new patterns by adding all unspecified site combinations to each pattern in the expansion
4. Prune identical patterns from list

DF3(DNP, DNP!+) \longrightarrow	DF3(DNP0, DNP1!_)	DF3(DNP0, DNP1!_, DNP2)
	DF3(DNP0, DNP2!_)	DF3(DNP0, DNP1!_, DNP2!_)
	DF3(DNP1, DNP0!_)	DF3(DNP0, DNP2!_, DNP1)
	DF3(DNP1, DNP2!_)	DF3(DNP1, DNP0!_, DNP2!_)
	DF3(DNP2,DNP0!_)	DF3(DNP1, DNP0!_, DNP2)
	DF3(DNP2,DNP1!_)	DF3(DNP2, DNP0!_, DNP1!_)

Translating identically named sites

Generally, if multiple identical sites exist and are underspecified in a pattern:
0. Perform combinatorial expansion as before

1. Determine all possible states for the site in question
2. Take product of possible states and unspecified Kappa site names for each pattern in the expansion

$D N P_{0} \quad D N P_{1}$
 DF3
 DNP ${ }_{2}$

$\mathrm{Fab}_{0} \operatorname{IgE~Fab}$
3. Generate new patterns by adding all unspecified site combinations to each pattern in the expansion
4. Prune identical patterns from list

DF3(DNP, DNP!+) \longrightarrow	DF3(DNP0, DNP1!_)	DF3(DNP0, DNP1!_, DNP2)
	DF3(DNP0, DNP2!_)	DF3(DNP0, DNP1!_, DNP2!_)
	DF3(DNP1,DNP0!_)	DF3(DNP0, DNP2!_, DNP1)
	DF3(DNP1, DNP2!_)	DF3(DNP1, DNP0!_, DNP2!_)
	DF3(DNP2,DNP0!_)	DF3(DNP1, DNP0!_, DNP2)
	DF3(DNP2,DNP1!_)	DF3(DNP2, DNP0!_, DNP1!_)

Translating identically named sites

Coming back to the immune response rules

1. Rule(s) governing free DF3 binding lgE

BNGL:

$$
\operatorname{IgE}(F a b)+D F 3(D N P, D N P, D N P)->\operatorname{IgE}(F a b!1) . D F 3(D N P!1, D N P, D N P) \text { k1 }
$$

Kappa:

```
IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2) @ k1
IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2) @ k1
IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1,DNP2!1) @ k1
IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab1!1),DF3(DNP0!1,DNP1,DNP2) @ k1
IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab1!1),DF3(DNP0,DNP1!1,DNP2) @ k1
IgE(Fab0),DF3(DNP0,DNP1,DNP2) -> IgE(Fab1!1),DF3(DNP0,DNP1,DNP2!1) @ k1
```


Translating identically named sites

2. Rule(s) governing IgE crosslinking by DF3

BNGL:
$\operatorname{IgE}(F a b)+D F 3(D N P, D N P!+)->\operatorname{IgE}(F a b!1) . D F 3(D N P!1, D N P!+) k 2$

Kappa:

```
IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2) @ k2
IgE(Fab0),DF3(DNP0,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1!_,DNP2!1) @ k2
IgE(Fab0),DF3(DNP0,DNP1!_,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2!_) @ k2
IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2!_) @ k2
IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2!_) @ k2
IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2) @ k2
IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1,DNP2!1) @ k2
IgE(Fab0),DF3(DNP0!_,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!_,DNP2!1) @ k2
IgE(Fab0),DF3(DNP0!_,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2!_) @ k2
```


Translating identically named sites

2. Rule(s) governing IgE crosslinking by DF3

BNGL:

```
IgE(Fab)+DF3(DNP,DNP!+) -> IgE(Fab!1).DF3(DNP!1,DNP!+) k2
```


Kappa:

```
IgE(Fab0),DF3(DNP0,DNP1!,,DNP2) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2) @ k2
IgE(Fab0),DF3(DNP0,DNP1!,,DNP2) -> IgE(Fab0!1),DF3(DNP0,DNP1!_,DNP2!1) @ k2
IgE(Fab0),DF3(DNP0,DNP1!_,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1!_,DNP2!_)@ k2
IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!1,DNP1,DNP2!_) @ k2
IgE(Fab0),DF3(DNP0,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0,DNP1!1,DNP2!_) @ k2
IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2) @ k2
IgE(Fab0),DF3(DNP0!_,DNP1,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1,DNP2!1) @ k2
IgE(Fab0),DF3(DNP0!_,DNP1!_,DNP2) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!_,DNP2!1)@ k2
IgE(Fab0),DF3(DNP0!_,DNP1,DNP2!_) -> IgE(Fab0!1),DF3(DNP0!_,DNP1!1,DNP2!_) @ k2
```


Simulation results

The complete model also includes fully independent unbinding

BNGL to Kappa and back to BNGL translations result in identical simulation trajectories

All models also capture similar aggregate size distributions

Additional considerations

Include Kappa tokens and BNGL populations

Integrate SBML multi extension, other languages

Acknowledgments

People:

Bill Hlavacek
Song Feng
Yen Ting Lin
Eshan Mitra
Alex Ionkov

Funding:
cun
Center for Nonlinear Studies

- Los Alamos

NATIONAL LABORATORY
—— EST. 1943 ——

Molecularity

BNGL operators enforce molecularity on pattern matching

$$
\begin{aligned}
& A(x!+) \cdot B()=> \\
& A(x!+), B()=> \\
& A(x!+) \cdot B()=/> \\
& A(x!+)+B()=> \\
& A(x!+), B()=>
\end{aligned}
$$

Kappa rules do not (locality)

Grammars

BNGL simple patterns

```
\langlepattern\rangle::= '0' | \langlemolecule\rangle, [{`.', \langlemolecule\rangle}]
\langlemolecule\rangle::= <bName\rangle, ['(',\langlecompList\rangle')']
<compList\rangle::=\langleempty\rangle|\langlecomponent\rangle, [{`,',\langlecomponent\rangle}]
<component\rangle::=\langlebName\rangle,\langlecompState\rangle,\langlecompBond\rangle
<compState\rangle::=\langleempty\rangle| '~},\langlebName
\langlecompBond\rangle ::= <empty\rangle | '!?' |'!+'|'!',\langleinteger }
```


Kappa simple patterns

```
\langlepattern\rangle::= \langleempty\rangle | <agent\rangle, [{`,', \langleagent\rangle}]
\langleagent\rangle ::= \langlekName\rangle,'(',\langlesiteList\rangle,')'
\langlesiteList\rangle::= <empty\rangle|\langlesite\rangle,[{`,',\langlesite\rangle}]
\langlesite\rangle::=\langlekName\rangle,\langlesiteState\rangle,\langlebond\rangle
\langlesiteState\rangle::= \langleempty\rangle | '~},\langlekName
\langlebond\rangle ::= \langleempty\rangle |!', \langleinteger\rangle|'!_'|'?'
```


Useful regular expressions

```
<integer\rangle}=[0-9]
\langlebName\rangle=[a-zA-Z][a-zA-Z_0-9]*
\langlekName\rangle}=[\mathrm{ [a-zA-Z][a-zA-Z_0-9+--]*
<string\rangle=.*
```


Grammars

BNGL simple rules

```
\langleuniRule\rangle::= [\langlebName\rangle, ':'], \langlepatternList\rangle, '->', \langlepatternList\rangle, \langlews\rangle, \langlerate\rangle,
        <newline>
\langlebiRule\rangle::= [\langlebName\rangle, ':'], <patternList\rangle, '<->', <patternList\rangle, \langlews\rangle, \langlerate\rangle,
    <rate\rangle, \langlenewline\rangle
\langlepatternList\rangle::= \langleempty\rangle|\langlepattern\rangle, '+', \langlepatternList\rangle
<rate\rangle::= ? an algebraic expression in BNGL syntax ?
```


Kappa simple rules

```
\langleuniRule\rangle::= [``',\langlestring\rangle, '`], \langlepattern\rangle, '->', \langlepattern\rangle, `@', \langlerate\rangle, \langlenewline\rangle
\langlebiRule\rangle::= ['`',\langlestring\rangle,`'], \langlepattern\rangle, '<->', <pattern\rangle, '@', \langlerate\rangle, \langlerate\rangle,
    <newline>
\langlerate\rangle::=\langleexpression\rangle, ['{',\langleexpression\rangle'}']
expression\rangle ::= ? an algebraic expression in Kappa syntax ?
```


Part of a model of pheromone signaling in baker's yeast

Readable?

Extensible?

ODE functions:

$\frac{d[S t e 2]}{d t}=-k 1\left[\alpha-\right.$ factor $^{2}[S t e 2]+k 2\left[S t e 2_{\text {actue }}\right]-k 7[S t e 2]+\frac{k 4\left[\text { Ste } 12_{\text {actuec }}\right]^{2}}{k 5^{2}+\left(S t e 12_{\text {actuc }}\right]^{2}}+k 6$
$\frac{d\left[S t e 2_{\text {active }}\right]}{d t}=k 1[\alpha-$ factor $][S t e 2]-k 2\left[\right.$ Ste $\left.2_{\text {active }}\right]-k 3\left[\right.$ Ste $\left.2_{\text {active }}\right]$
$\frac{d\left[\text { Sst } 2_{\text {active }]}\right]}{d t}=\frac{k 44\left[\text { Ste } 12_{\text {active }}\right]^{2}}{k 45^{2}+\left[S t e 12_{\text {actrve }}\right)^{2}}-k 46\left[\right.$ Sst $\left.2_{\text {active }}\right]$
$\frac{d[G]}{d t}=-k 8\left[\right.$ Ste $\left.2_{\text {acteve }}\right][G]+k 15\left[G_{a} d\right]\left[G_{\beta} \gamma\right]+\frac{k 9\left[\text { Ste } 12_{\text {active }}\right]^{2}}{k 10^{2}+\left[\text { Ste } 12_{\text {actec }}\right]^{2}}-k 12[G]+k 11$
$\frac{\mathrm{d}\left[G_{\alpha} t\right]}{d t}=k 8\left[S t e 2_{\text {acteve }}\right][G]-k 13\left[G_{\alpha} t\right]-k 14\left[G_{\alpha} t\right]\left[S s t 2_{a c t i v e}\right]$
$\frac{d\left[G_{\alpha} d\right]}{d t}=k 13\left[G_{\alpha} t\right]+k 14\left[G_{a} t\right]\left[S_{s t} 2_{\alpha a c t v e}\right]-k 15\left[G_{a} d\right]\left[G_{\beta} \gamma\right]$
$\frac{d\left[G_{\rho} \gamma\right]}{d t}=k 8\left[S t e 2_{\text {actuve }}\right][G]-k 15\left[G_{\alpha} d\right]\left[G_{\beta} \gamma\right]-k 40\left[G_{\beta} \gamma\right]\left[\right.$ Far1pp $\left.p_{\text {out }}\right]+k 41\left[\right.$ Far $\left.1 p p_{\text {out }} G_{\beta} \gamma\right] 20-k 18\left[G_{\beta} \gamma\right][S t e 20]+k 19\left[G_{\beta} \gamma S t e 20\right]$ $\frac{d[\text { Ste } 20]}{d}=-k 18\left[G_{\beta} \gamma\right]\left[\right.$ Ste20] $+k 19\left[G_{\beta} \gamma S t e 20\right]$
$\frac{d\left[G_{\beta} \gamma S t e 20\right]}{d t}=k 18\left[G_{\beta} \gamma\right][S t e 20]-k 19\left[G_{\beta} \gamma S t e 20\right]-k 16\left[G_{\beta} \gamma S t e 20\right] B 1+k 17 C 1-k 16\left[G_{\beta} \gamma S t e 20\right] B 2+k 17 C 2-k 16\left[G_{\beta} \gamma S t e 20\right] B 3+k 17 C 3-$

$\frac{d[S t e 11]}{}=p 1_{K K K}[S t e 11 p M A P K K K-P]+o f f_{K K K}(C 2+C 8+C 11+C 12+C 15+C 20+C 22+C 23+C 26+B 2+B 8+B 11+B 12+B 15+B 20+B 22+$ ${ }_{B 23}^{d t}{ }^{d t}$) $\underline{\mathrm{d}[\text { Stel1p }]}=-a 1_{\text {KKK }}[$ Ste11p $]\left([\text { MAPK KK }-P]_{0}-[\right.$ Ste11pMAPKKK $-P]-[$ Ste11ppMAPKKK $\left.-P]\right)+d 1_{\text {кKK }}[$ Ste11pMAPKKK $-P]+$ $p 2 \kappa \kappa K \mid S t e 11 p p M A P K K K-P)$
$d S t e l 1 p M A P K K K$
 $\frac{d[\text { Stel1pp }]}{d t}=-a 2_{\text {KKK }}[$ Ste11pp $][$ MAPKKK - P $] 0-[$ Ste11pMAPKKK $-P]-[$ Ste11ppMAPKKK $\left.-P]\right)+d 2_{\text {KKK }}[$ Ste11ppMAPKKK -
 $C 6+C 7+C 16+C 17+C 18+C 19+B 1+B 4+B 5+B 6+B 7+B 16+B 17+B 18+B 19)$ $\xrightarrow[{d[\text { Ste11ppMAPK KK }-P}]]{ }=$

 $B 2+B 3+B 6+B 7+B 12+B 13+B 14+B 15)-k 24[$ Stet $]\left[\right.$ Fus $\left.3_{\text {out }}\right]+k 25\left[\right.$ [Fus $\left.3_{\text {out }} S t e 7\right]$
d Ste $11 p p]$
${ }^{d[S t e T \bar{T}]}$
$\frac{d t}{}=-a 1_{\kappa \kappa}\left([\text { MAPK K }-P]_{0}-[\right.$ SteTpMAPKK $-P]-[$ SteTppMAPKK $\left.-P]\right)[$ Ste $7 p]+d 1_{\kappa \kappa}[$ Stetp $M A P K K-P]+$

$\frac{d t}{d[\text { SteTpSte11pp }]}=a 4_{\kappa \kappa}[$ Ste 11 pp $][$ SteTp $]-\left(d 4_{\kappa K}+p 4_{\kappa \kappa}\right)[$ Stel1 ppSte7p $]$
$\frac{d[\text { SteTpp }]}{d t}=-a 2_{\kappa \kappa}[$ SteTpp $]\left([\text { MAPK K }- \text { P }]_{0}-[\right.$ SteTpMAPKK $-P]-[$ SteTppMAPKK $\left.-P]\right)+d 2_{K K}[$ SteTppMAPK K $-P]+$
 of $f_{K K}(C 5+C 10+C 11+C 17+C 22+C 24+B 5+B 10+B 11+B 17+B 22+B 24)+* * o f f_{K K}^{\prime}(C 18+C 26+C 27+B 18+B 26+B 27)-k 27[S t e \tau p p]$
$d[S t e 7 p p M A P K K-P]$

 $B 1+B 2+B 3+B 4+B 5+B 8+B 9+B 10+B 11)-k 24[S t e 7]\left[F u s 3_{\text {out }}\right]+k 25\left[F u s 3_{\text {out }} S t e 7\right]+k 47\left[F u s 3_{\text {n }}\right]-k 48\left[F u s 3_{\text {out }}\right]+\frac{k 32\left[\text { Ste1 } 2_{\text {octtve }}{ }^{2}\right.}{k 5^{2}+\left[S t e 12_{\text {active }}\right]^{2}}$ $\frac{d\left[\text { Fus } 3_{\text {out }} S t e 11 p p\right]}{d t}=a 3_{K}[$ Ste $7 p p]\left[F u s 3_{o u t}\right]-\left(d 3_{K}+p 3_{K}\right)\left[\right.$ Ste Tpp $^{\text {P }}$ us $\left.3_{\text {out }}\right]$
$\frac{d\left[F u s 3 p_{\text {out }}\right]}{d t}=-a 1_{\kappa}\left[\right.$ Fus $\left.3 p_{\text {out }}\right]\left[\right.$ MAPK $\left.-P_{\text {out }}\right]+d 1_{\kappa}\left[\right.$ Fus $\left.3 p_{\text {out }} M A P K-P_{\text {out }}\right]+p 3_{\kappa}\left[\right.$ Ste $\left.7 p p F u s 3_{o u t}\right]-a 4_{\kappa}[$ SteTpp $]\left[\right.$ Fus $\left.3 p_{\text {out }}\right]+$

$\frac{d t}{d t}=a 1_{\kappa}\left[F u s 3 p_{\text {out }}\right]\left[\right.$ MAPK $\left.-P_{\text {out }}\right]-\left(d 1_{\kappa}+p_{1}\right)\left[F u s 3 p_{\text {out }} M A P K-P_{\text {out }}\right]$
$\frac{d\left[F u s 3 p_{\text {out }} S T \text { Stetpp }\right]}{d t}=a 4_{K}[S t e \tau p p]\left[F u s 3 p_{\text {out }}\right]-\left(d 4_{\kappa}+p 4_{K}\right)\left[\right.$ Ste T pp $\left.F u s 3 p_{\text {out }}\right]$
$\frac{d t}{d\left[F u s 3 p p_{\text {out }}\right]}=-a 2_{K}\left[F u s 3 p p_{\text {out }}\right]\left[\right.$ MAPK $\left.-P_{\text {out }}\right]+d 2_{\kappa}\left[F u s 3 p p_{\text {out }} M A P K-P_{\text {out }}\right]+p 4_{\kappa}\left[\right.$ SteTppFus $\left.3 p_{\text {out }}\right]+* * o f f_{K}(C 7+C 14+C 15+$ dt
$C 18+C 19+C 23+C 25+C 26+C 27+B 7+B 14+B 15+B 18+B 19+B 23+B 25+B 26+B 27)+k 49\left[F u s 3 p p_{\text {tn }}\right]-k 50\left[F u s 3 p p_{\text {out }}\right]$ $\frac{d\left[F u s 3 p p_{o u t} M A P K-P_{\text {out }}\right]}{d t}=a 2_{K}\left[F u s 3 p p_{\text {out }}\right]\left[M A P K-P_{\text {out }}\right]-\left(d 2_{K}+2^{2}\right)\left[F u s 3 p p_{\text {out }} M A P K-P_{\text {out }}\right]$
$\frac{d\left[M A P K-P_{\text {out }}\right]}{d t}=-a 1_{\kappa}\left[F u s 3 p_{\text {out }}\right]\left[M A P K-P_{\text {out }}\right]+\left(d 1_{\kappa}+p 1_{\kappa}\right)\left[F u s 3 p_{\text {out }} M A P K-P_{\text {out }}\right]-a 2_{\kappa}\left[F u s 3 p p_{\text {out }}\right]\left[M A P K-P_{\text {out }}\right]+\left(p 2_{\kappa}+\right.$ $\left.d 2_{K}\right)\left[F u s 3 p p_{\text {out }} M A P K-P_{\text {out }}\right]+\frac{k 31\left[\text { Ste } 12_{\text {actute }}\right]^{2}}{k 5^{2}+\left[\text { Ste } 12_{\text {actrve }}\right]^{2}}$
$\frac{d\left[F u s 3_{\text {out }} S t e \tau\right]}{d t}=k 24[$ Ste7 $]\left[\right.$ Fus $\left.3_{\text {out }}\right]-k 25\left[\right.$ Fus $3_{\text {out }}$ Ste 7$] \quad$ Shao, D, et al, (2006), Biophys J

Dynamical systems biology

Modeling protein interaction networks traditionally done with ODEs or reaction networks

Two prominent issues:
Encoding (knowledge representation)

Combinatorial complexity

PDGF receptor

10 phosphorylation sites

2^{10} possible states

Combinatorial complexity

10 phosphorylation sites
2^{10} possible states
Active receptor dimerizes
>500,000 possible states

