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ABSTRACT 

In this  paper,   the truncated compound normal   with   

gamma   distribution   model is formally presented and its 

density function has been derived for defining a mixture 

model(TCNGM) based on this as an extension work to the 

proposed compound normal with gamma mixture(CNGM) 

model introduced in our earlier work for image segmentation. 

Update equations for this model have been derived in the 

context of maximum likelihood estimation(MLE) procedure 

under Expectation Maximization(EM) framework. 
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Distributions, Truncated Distributions, Maximum Likelihood 
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1.  INTRODUCTION 
In   this   paper,   a   formal treatment of  the truncated 

compound normal   with   gamma   distribution   model, its 

density function, and a mixture model based on this(TCNGM) 

is presented as an extension work to the proposed compound 

normal with gamma mixture(CNGM) model introduced in 

[1],[2] for image segmentation. A truncated distribution has 

been introduced in [2] citing the reasons for truncation and the 

problems that are sometimes solved using   such   a  

distribution model.  

1.1 Compound Normal With Gamma 

Distribution 
As given in [3] by Normal L. Johnson et al, a compound 

normal with gamma distribution 

or 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎2 Λ

𝜎−2𝐺𝑎𝑚𝑚𝑎 𝑐𝜒𝑣
2  is formed by ascribing a 

distribution to 𝜎2  i.e., variance by considering it as a random 

variable and fitting a new distribution. The corresponding 

distribution is defined to have a density function given as 

𝑓 𝑥 =

  2𝑐 
−𝑣

2  Γ  
𝑣

2
  

−1

   2𝜋𝜎 
−1

 𝜎−2  
𝑣

2
−1 ∞

0
 . 𝑒𝑥𝑝 − 2𝑐𝜎2 −1 2𝜎2 −1 𝑥 −

𝜇 
2 𝑑𝜎−2                                                  

(1) 

After some mathematical transformations and further 

treatment, Equation (1) reduces to 

𝑓 𝑥 =   
1

𝑐 
1 2 𝐵 1 2  ,𝑣 2  

 1 +
 𝑥−𝜇   

2

𝑐 
 
− 𝑣 +1 2 

            

(2)                             

The compound normal with gamma distribution model that 

has been introduced has formed the basis for our work[1],[2] 

and a mixture model for this is used to solve the image 

segmentation problem. 

1.2 Truncated Distributions  
As stated in [4], truncated distributions are formed by 

restricting the domain of some other probability distribution. 

Truncated distributions are useful to solve problems where the 

values lie above or below a given threshold or within a 

specified range.  

In general, if X is a random variable with density 𝑓𝑥 .   and 

cumulative distribution 𝐹𝑥 .  , then the density of X truncated 

on the left at a and on the right at b is given by[5] 

𝑓𝑥  𝑥 

𝐹𝑥  𝑏 −𝐹𝑥 𝑎  
   (3) 

For example, image segmentation problem may be viewed as 

mixture density estimation problem and since gray level 

images are spatially represented using an eight bit intensity or 

pixel value, the pixels only take values ranging between 0 and 

255, each representing a particular gray value ranging 

between black and white. This  strongly suggests to define a  

truncated mixture model, with 0 ≤ x ≤ 255 in place of the 

more general case of -∞ < x < +∞ for the random variable x 

that represents intensity value, for image segmentation 

because truncated distributions model finite range data well in 

comparison to the more general model.   

1.3 Mixture Distribution 

A brief introduction as given by Mood et al in [5] to the 

concept of contagious distribution or a mixture is given here. 

If   𝑓0 .  , 𝑓1 .  , … , 𝑓𝑛 .  , …  is a sequence of density functions 

which are either all discrete density functions or all 

probability density functions which may or may not depend 

on parameters, and 𝑝0, 𝑝1, … , 𝑝𝑛 , …  is a sequence of 

parameters satisfying  𝑝𝑖 ≥ 0 and   𝑝𝑖 = 1∞
𝑖=0 , then 

  𝑝𝑖𝑓𝑖
∞
𝑖=0  𝑥  is a density function, which is sometimes called 

contagious distribution or a mixture. 

Physical considerations of the random experiment at hand can 

sometimes persuade one to consider modeling the experiment 

with a mixture. The experimenter may know that the 

phenomena that he is observing are a mixture; for example, 

the radioactive particle emissions under observation might be 

a mixture of the emissions of two, or several, different types 

of radioactive materials [5]. 

For example, the current literature on statistical image 

segmentation techniques mostly assumes the data describing 

https://en.wikipedia.org/wiki/Probability_distribution
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the image as a mixture of component distributions, as shown 

in Fig. 1 [6],[7],[8],[9].  

 

Figure 1  An Example Mixture Distribution 

1.4 Clustering As Mixture Density 

Estimation Problem 
Several researchers have viewed clustering as mixture density 

estimation problem in the framework of probabilistic 

modeling for cluster analysis. For example, image 

segmentation may be thought of as a clustering problem. The 

current literature on statistical image segmentation techniques 

mostly assumes the image as of containing a mixture of 

components each of which following normal 

distribution(Normal or Gaussian Mixture) i.e., 𝑁 𝜇, 𝜎2  with 

some weight [6],[7],[8],[9].  In our previous work[1], we 

assumed the image as of containing a mixture of components 

each of which following compound normal with gamma 

distribution(CNGM) i.e.,   

𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎2 Λ

𝜎−2𝐺𝑎𝑚𝑚𝑎 𝑐𝜒𝑣
2    with some weight. And 

the whole image is thought of as following the weighted 

distribution where weighted distribution implies weighted 

average of the constituent components. In that work, we have 

studied the feasibility of CNGM vis-a-vis normal 

mixture(NM) model in consideration to variations of normal 

distribution. 

In this paper, we present the truncated version of compound 

normal with gamma distribution as a viable model for solving 

any problem that comes under the scope of cluster analysis. In 

particular, the scope of this paper is to describe the process of 

deriving the analytical expressions for model parameters in 

the context of maximum likelihood estimation which involved 

considerable mathematical rigor. The use of this model for 

solving image segmentation or other similar problems will be 

considered separately. 

2. TRUNCATED COMPOUND 

NORMAL WITH GAMMA MIXTURE 

MODEL 
We know that, for compound normal with gamma 

distribution, the equality that is given below holds.  

𝑓 𝑥 =  

1

𝑐1 2 𝐵 𝑣 2 ,1 2   
  1 +  

 𝑥−𝜇 2

𝑐
 
− 

 𝑣+1 

2
𝑑𝑥 = 1

+∞

−∞
                 (4)                    

       

After transformations (See Appendix), the above equation 

may be re written as 

1

𝐵 1 2 ,𝑣 2  
 𝑡

 
𝑣

2
−1 1

0
 1 − 𝑡 

 
1

2
−1 

𝑑𝑡 = 1        

(5)                                  

where 𝑡 =  1 +
𝑧2

𝑐
 
−1

= 
𝑐

𝑐+𝑧2
 and 𝑧 =  𝑥 − 𝜇  

For the above, the cumulative distribution may be obtained 

[3],   given a value for 𝑧 ≥ 0 or (𝑥 − 𝜇) ≥ 0 (by choosing a 

value for   x) as 

Pr 𝑧𝑣 ≤ 𝑧  = Pr 𝑧𝑣 ≤ 0  + Pr 0 ≤ 𝑧𝑣 ≤ 𝑧   

                          

= Pr 𝑧𝑣 ≤ 0 +
1

𝑐1 2 𝐵 1 2 ,𝑣 2  
  1 +  

𝑦2

𝑐
 
− 

 𝑣+1 

2𝑧

0
𝑑𝑦 

⇒  
1

2
+  

1

2𝐵 1 2 ,𝑣 2  
 𝑤

 
𝑣

2
−1 1

𝑡
 1 − 𝑤  

1

2
−1 

𝑑𝑤  

⇒  
1

2
+ 

1

2
−

1

2𝐵 1 2 ,𝑣 2  
 𝑤

 
𝑣

2
−1 𝑡

0
 1 − 𝑤  

1

2
−1 

𝑑𝑤  

⇒ 1 −  
1

2
 𝐼𝑡  

𝑣

2
 ,

1

2
       

 (6)          

where   𝐼𝑡  
𝑣

2
 ,

1

2
  is incomplete beta function ratio defined as   

𝐼𝑡  
𝑣

2
 ,

1

2
 =

1

𝐵 𝑣 2 ,1 2  
 𝑤

 
𝑣

2
−1  1 − 𝑤  

1

2
−1 𝑡

0
𝑑𝑤         

 (7)                                              

The cumulative distribution for 𝑧 ≤ 0 or (𝑥 − 𝜇) ≤ 0 is   

1 −  1 −  
1

2
 𝐼𝑡  

𝑣

2
 ,

1

2
  =

1

2
 𝐼𝑡  

𝑣

2
 ,

1

2
    

 (8)                

   

The probability density function of Truncated Compound 

Normal with Gamma Mixture(TCNGM) distribution after 

choosing left and right truncating points as a and b is defined 

as in Equation(3) where 

𝑓 𝑥 =  
1

𝑐1 2 𝐵 𝑣 2 ,1 2   
 1 +  

 𝑥−𝜇 2

𝑐
 
− 

 𝑣+1 

2
 is the density 

function defined for the compound normal with gamma 

distribution, 

𝐹 𝑏 =  1 −  
1

2
 𝐼𝑏1

 
𝑣

2
 ,

1

2
     (9)           

is  the cumulative distribution function for some x taking 

value b such that 𝑥 ≥ 𝜇, and 

𝐹 𝑎 =   
1

2
 𝐼𝑎1

 
𝑣

2
 ,

1

2
     

 (10)     

               

is the cumulative distribution function for some x taking value 

a such that 𝑥 ≤ 𝜇. 

In the Equations (9) and (10), 𝑏1 =
𝑐

𝑐+ 𝑏−𝜇 2
 and  𝑎1 =

𝑐

𝑐+ 𝑎−𝜇 2
  

since 𝑡 =
𝑐

𝑐+ 𝑥−𝜇 2
 

Therefore, Equation (3) may be written as   

𝑓 𝑥 =
2

𝑐1 2 𝐵 𝑣 2 ,1 2    2− 𝐼𝑎1
 
𝑣

2
 ,

1

2
 +𝐼𝑏1

 
𝑣

2
 ,

1

2
   

 1 +  
 𝑥−𝜇 2

𝑐
 
− 

 𝑣+1 

2
                                 

     

 (11) 
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or            

𝑓 𝑥 =    
2

𝑐1 2  2𝐵 𝑣 2 ,1 2   − 𝐵𝑎1
 
𝑣

2
 ,

1

2
 +𝐵𝑏1

 
𝑣

2
 ,

1

2
   

 1 +

 
 𝑥−𝜇 2

𝑐
 
− 

 𝑣+1 

2
                               

   (12) 

where    𝐵𝑎1
 
𝑣

2
 ,

1

2
 𝑎𝑛𝑑 𝐵𝑏1

 
𝑣

2
 ,

1

2
   are incomplete beta 

functions. The 𝑓 𝑥  in Equation (12) is the new density 

function for the truncated compound normal with gamma 

distribution with a and b as left and right truncation points. 

3. ANALYTICAL EXPRESSIONS FOR 

MODEL PARAMETERS, 𝛉𝐥 𝛍𝐥, 𝐜𝐥, 𝐯𝐥 , 
FOR TCNGM 

In [1],[2], the steps involved in the maximum likelihood 

estimation [10] of the model parameters  under Expectation 

Maximization framework [11] for a mixture density problem 

have been formally treated in the context of compound normal 

with gamma mixture model. In this section, the analytical 

expressions for the maximum likelihood estimates for model 

parameters,  𝜃𝑙  𝜇𝑙 , 𝑐𝑙 , 𝑣𝑙  which describe partly the parameter 

set Θ are derived in the context of the use of TCNGM under 

EM framework. EM algorithm optimizes the expected value 

of the complete data likelihood using expectation and 

maximization steps iteratively until convergence is reached. 

This optimization function is formally defined as  

𝑄 Θ, Θ𝑔 =   log 𝛼𝑙𝑝𝑙 𝑥𝑖|𝜃𝑙  

𝑁

𝑖=1

𝑀

𝑙=1

𝑝 𝑙|𝑥𝑖 , Θ
𝑔  

=
   log 𝛼𝑙 

𝑁
𝑖=1

𝑀
𝑙=1 𝑝 𝑙|𝑥𝑖 , Θ

𝑔 +

   log 𝑝𝑙 𝑥𝑖|𝜃𝑙  
𝑁
𝑖=1

𝑀
𝑙=1 𝑝 𝑙|𝑥𝑖 , Θ

𝑔                (13)

 where 𝛼𝑙  is the prior probability of lth component of the 

mixture, 𝑝𝑙 𝑥𝑖|𝜃𝑙  is the conditional probability of 𝑥𝑖  

belonging to l and is defined for our model as in Equation (12) 

, and 𝑝 𝑙|𝑥𝑖 , Θ
𝑔  is the posterior probability of component  l 

given 𝑥𝑖  and current estimates of parameters Θ𝑔  and  is 

defined as 

𝑝 𝑙|𝑥𝑖 , Θ
𝑔 =  

𝛼𝑙𝑝𝑙 𝑥𝑖|𝜃𝑙 

 𝛼𝑙𝑝𝑙 𝑥𝑖|𝜃𝑙 
𝑀
𝑙=1

                       (14) 

A similar treatment is also required for the truncated version 

except that the modified version of the likelihood function 

that uses the density function defined as in Equation (12) in 

the previous section is used. This density function for lth 

component  is nothing but 𝑝𝑙 𝑥𝑖|𝜃𝑙  that appears in the second 

term in Equation(13). Hence, in this section, the steps 

involved for deriving analytical expressions for 𝜃𝑙 𝜇𝑙 , 𝑐𝑙 , 𝑣𝑙   
for the truncated version effected by the new density function 

are only shown.  

The partial derivatives with respect to the model parameters 

𝜇𝑙 , 𝑐𝑙 , 𝑎𝑛𝑑 𝑣𝑙 , after equating them to zero[1],[2], are given as:  

𝜕

𝜕𝜇 𝑙
    𝑙𝑜𝑔

2

𝑐𝑙
1 2  2𝐵 

𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 1 +𝑁
𝑖=1

𝑀
𝑙=1

 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
 
− 

 𝑣𝑙+1 

2
 𝑝 𝑙|𝑥𝑖 , Θ

g  = 0   (15) 

𝜕

𝜕𝑐𝑙
    𝑙𝑜𝑔

2

𝑐𝑙
1 2  2𝐵 

𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 1 +𝑁
𝑖=1

𝑀
𝑙=1

 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
 
− 

 𝑣𝑙+1 

2
 𝑝 𝑙|𝑥𝑖 , Θ

g  = 0   (16) 

𝜕

𝜕𝑣𝑙
    𝑙𝑜𝑔

2

𝑐𝑙
1 2  2𝐵 

𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 1 +𝑁
𝑖=1

𝑀
𝑙=1

 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
 
− 

 𝑣𝑙+1 

2
 𝑝 𝑙|𝑥𝑖 , Θ

g  = 0   (17) 

Or,  for component l, the above equations take the form as: 

𝜕

𝜕𝜇 𝑙
   𝑙𝑜𝑔

2

𝑐𝑙
1 2  2𝐵 

𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 1 +𝑁
𝑖=1

 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
 
− 

 𝑣𝑙+1 

2
 𝑝 𝑙|𝑥𝑖 , Θ

g  = 0    (18) 

𝜕

𝜕𝑐𝑙
   𝑙𝑜𝑔

2

𝑐𝑙
1 2  2𝐵 

𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 1 +𝑁
𝑖=1

 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
 
− 

 𝑣𝑙+1 

2
 𝑝 𝑙|𝑥𝑖 , Θ

g  = 0   (19) 

𝜕

𝜕𝑣𝑙
   𝑙𝑜𝑔

2

𝑐𝑙
1 2  2𝐵 

𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 1 +𝑁
𝑖=1

 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
 
− 

 𝑣𝑙+1 

2
 𝑝 𝑙|𝑥𝑖 , Θ

g  = 0     (20) 

3.1 Derivation Of Expression For 𝛍𝐥 
Equation (18) can be rewritten as 

  −
𝜕

𝜕𝜇 𝑙
log  𝑐𝑙

1 2  2𝐵  
𝑣𝑙

2
 ,

1

2
 −  𝐵𝑎1

 
𝑣𝑙

2
 ,

1

2
 +𝑁

𝑖=1

𝐵𝑏1
 
𝑣𝑙

2
 ,

1

2
    +

𝜕

𝜕𝜇 𝑙
 𝑙𝑜𝑔   1 +  

 𝑥𝑖−𝜇 𝑙 
2

𝑐𝑙
 
− 

 𝑣𝑙+1 

2  𝑝  𝑙|𝑥𝑖 , Θ
g =

0  

⇒    −

𝜕

𝜕𝜇 𝑙
 2𝐵 

𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

+  𝑣𝑙 +𝑁
𝑖=1

1  
𝑥𝑖−𝜇 𝑙

𝑐𝑙
   𝑝 𝑙|𝑥𝑖 , Θ

g = 0  

In Appendix, we present the details for the second ‗log‘ term 

approximation and derivation of, for example,   
𝜕

𝜕𝜇 𝑙
 𝐵𝑎1

 
𝑣𝑙

2
 ,

1

2
  . 

⇒   

 
 
 
 
 
 2

𝑐𝑙
1 2 

  
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

 2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

+  𝑣𝑙 +𝑁
𝑖=1

1  
𝑥𝑖−𝜇 𝑙

𝑐𝑙
 
 
 
 
 

 𝑝 𝑙|𝑥𝑖 , Θ
g = 0  
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⇒   

 
 
 
 
 
 2  

𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

𝑐𝑙
1 2  2𝐵 

𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

+  𝑣𝑙 +𝑁
𝑖=1

1  
𝑥𝑖−𝜇 𝑙

𝑐𝑙
 
 
 
 
 

 𝑝 𝑙|𝑥𝑖 , Θ
g = 0  

⇒   

 
 
 
 
 2𝑐𝑙

1 2   
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

 2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

+

 𝑣𝑙 + 1  𝑥𝑖 − 𝜇𝑙  
 
 
 
 

𝑁
𝑖=1  𝑝 𝑙|𝑥𝑖 , Θ

g =

0 ⇒   𝑣𝑙 + 1 𝜇𝑙  𝑝 𝑙|𝑥𝑖 , Θ
g 𝑁

𝑖=1  = 

 

 

  
 
 𝑣𝑙 + 1 𝑥𝑖 +𝑁

𝑖=1

2𝑐𝑙
1 2   

𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

 2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 
 𝑝 𝑙|𝑥𝑖 , Θ

g   

⇒  𝜇𝑙  𝑝 𝑙|𝑥𝑖 , Θ
g 𝑁

𝑖=1  =
 𝑥𝑖

𝑁
𝑖=1  𝑝 𝑙|𝑥𝑖 , Θ

g +

 

2𝑐𝑙
1 2   

𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

 𝑣𝑙+1  2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

𝑁
𝑖=1  𝑝 𝑙|𝑥𝑖 , Θ

g   

∴  𝜇𝑙 =
 𝑥𝑖

𝑁
𝑖=1  𝑝 𝑙|𝑥𝑖 ,Θ

g  

 𝑝 𝑙|𝑥𝑖 ,Θ
g  𝑁

𝑖=1

+

2𝑐𝑙
1 2   

𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

 𝑣𝑙+1  2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 𝑝 𝑙|𝑥𝑖 ,Θ
g  𝑁

𝑖=1

 𝑝 𝑙|𝑥𝑖 ,Θ
g  𝑁

𝑖=1

     or       

  𝜇𝑙 =
 𝑥𝑖

𝑁
𝑖=1  𝑝 𝑙|𝑥𝑖 ,Θ

g  

 𝑝 𝑙|𝑥𝑖 ,Θ
g  𝑁

𝑖=1

+

2𝑐𝑙
1 2 

  
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

 𝑣𝑙+1 𝐵 
𝑣𝑙
2

 ,
1

2
  2− 𝐼𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
1

2
   

     

     (21) 

3.2 Derivation Of Expression For 𝐜𝐥 
Equation (19) can be rewritten as 

  −
𝜕

𝜕𝑐𝑙

log 𝑐𝑙

2
−

𝜕

𝜕𝑐𝑙
𝑙𝑜𝑔  2𝐵  

𝑣𝑙

2
 ,

1

2
 −  𝐵𝑎1

 
𝑣𝑙

2
 ,

1

2
 +𝑁

𝑖=1

𝐵𝑏1
 
𝑣𝑙

2
 ,

1

2
   +

𝜕

𝜕𝑐𝑙
log  1 + 

 𝑥𝑖−𝜇 𝑙 
2

𝑐𝑙
 
− 

 𝑣𝑙+1 

2  𝑝 𝑙|𝑥𝑖 , Θ
g = 0  

⇒ 

  −
1

2𝑐𝑙
−  

𝜕

𝜕𝑐𝑙
 2𝐵 

𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

+  
𝜕

𝜕𝑐𝑙
log  1 +𝑁

𝑖=1

 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
 
− 

 𝑣𝑙+1 

2
 𝑝 𝑙|𝑥𝑖 , Θ

g = 0  

The details of the second ‗log‘ term approximation and 

derivation of, for example,   
𝜕

𝜕𝑐𝑙
 𝐵𝑎1

 
𝑣𝑙

2
 ,

1

2
  are presented in 

Appendix.  Therefore, the above equation changes to 

 

 
 
 
 
 
 

−
1

2𝑐𝑙
+  

  𝑎−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  𝑏−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

𝑐𝑙𝑐𝑙
1 2  2𝐵 

𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

+𝑁
𝑖=1

 
 𝑣𝑙+1  𝑥𝑖−𝜇 𝑙 

2

2𝑐𝑙
2

 
 
 
 

𝑝 𝑙|𝑥𝑖 , Θg = 0  

⇒  

 
 
 
 
 
 

1 −

2  𝑎−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  𝑏−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

𝑐𝑙
1 2  2𝐵 

𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

−𝑁
𝑖=1

 
 𝑣𝑙+1  𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙  
 
 
 

𝑝 𝑙|𝑥𝑖 , Θg = 0 , or 

 

 
 
 
 
 
 

𝑐𝑙 −

2𝑐𝑙
1 2 

  𝑎−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  𝑏−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

 2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

−𝑁
𝑖=1

  𝑣𝑙 + 1  𝑥𝑖 − 𝜇𝑙 
2

 
 
 
 

𝑝 𝑙|𝑥𝑖 , Θ
g = 0  

⇒  

 
 
 
 
 
 

𝑐𝑙 −

2𝑐𝑙
1 2   𝑎−𝜇 𝑙  

𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  𝑏−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

 2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
    

 
 
 

 𝑝 𝑙|𝑥𝑖 , Θ
g 𝑁

𝑖=1   

=  𝑣𝑙 + 1   𝑥𝑖 − 𝜇𝑙 
2𝑁

𝑖=1 𝑝 𝑙|𝑥𝑖 , Θ
g   

⇒ 𝑐𝑙 −

2𝑐𝑙
1 2   𝑎−𝜇 𝑙  

𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  𝑏−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

 2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

=

 𝑣𝑙+1   𝑥𝑖−𝜇 𝑙 
2𝑁

𝑖=1 𝑝 𝑙|𝑥𝑖 ,Θ
g  

 𝑝 𝑙|𝑥𝑖 ,Θ
g  𝑁

𝑖=1

  

∴ 𝑐𝑙 =
 𝑣𝑙+1   𝑥𝑖−𝜇 𝑙 

2𝑁
𝑖=1 𝑝 𝑙|𝑥𝑖 ,Θ

g  

 𝑝 𝑙|𝑥𝑖 ,Θ
g  𝑁

𝑖=1

+

 

2𝑐𝑙
1 2 

  𝑎−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  𝑏−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

 2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

    or 

𝑐𝑙 =
 𝑣𝑙+1   𝑥𝑖−𝜇 𝑙 

2𝑁
𝑖=1 𝑝 𝑙|𝑥𝑖 ,Θ

g  

 𝑝 𝑙|𝑥𝑖 ,Θ
g  𝑁

𝑖=1

+

 

2𝑐𝑙
1 2 

  𝑎−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  𝑏−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

𝐵 
𝑣𝑙
2

 ,
1

2
  2− 𝐼𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
1

2
   

             (22) 

3.3 Derivation Of Expression For 𝐯𝐥 
Equation (20) can be rewritten as 
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  −
𝜕

𝜕𝑣𝑙
𝑙𝑜𝑔  2𝐵  

𝑣𝑙

2
 ,

1

2
 −  𝐵𝑎1

 
𝑣𝑙

2
 ,

1

2
 + 𝐵𝑏1

 
𝑣𝑙

2
 ,

1

2
   −𝑁

𝑖=1

 
𝜕

𝜕𝑣𝑙
 
𝑣𝑙

2
 log  1 +  

 𝑥𝑖−𝜇 𝑙 
2

𝑐𝑙
  𝑝 𝑙|𝑥𝑖 , Θ

g = 0  

⇒   

𝜕

𝜕𝑣𝑙
 2𝐵 

𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

+ 
1

2
log  1 +𝑁

𝑖=1

 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
  𝑝 𝑙|𝑥𝑖 , Θ

g = 0  

Please see Appendix for the proof for 
𝜕

𝜕𝑣𝑙
𝐵  

𝑣𝑙

2
 ,

1

2
 . 

Therefore, the above equation changes to 

  
 2 −

1

2
𝐵 

𝑣𝑙
2

 ,
3

2
  − −

1

2
𝐵𝑎1

 
𝑣𝑙
2

 ,
3

2
 + −

1

2
𝐵𝑏1

 
𝑣𝑙
2

 ,
3

2
    

 2𝐵 
𝑣𝑙
2

 ,
1

2
 − 𝐵𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐵𝑏1

 
𝑣𝑙
2

 ,
1

2
   

+  
1

2
log  1 +𝑁

𝑖=1

 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
  𝑝 𝑙|𝑥𝑖 , Θ

g = 0  

⇒ 

  
− 2𝐵 

𝑣𝑙
2

 ,
3

2
 −𝐵 

𝑣𝑙
2

 ,
3

2
  𝐼𝑎1

 
𝑣𝑙
2

 ,
3

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
3

2
   

2 2𝐵 
𝑣𝑙
2

 ,
1

2
 −𝐵 

𝑣𝑙
2

 ,
1

2
  𝐼𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
1

2
   

+  
1

2
log  1 +𝑁

𝑖=1

 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
  𝑝 𝑙|𝑥𝑖 , Θ

g = 0  

∵  
𝜕

𝜕𝑣𝑙
𝐵𝑎1

 
𝑣𝑙

2
 ,

1

2
 = −

1

2
𝐵𝑎1

 
𝑣𝑙

2
 ,

3

2
    

for which, the proof is given  in Appendix 

⇒   
−B 

𝑣𝑙
2

 ,
3

2
  2− 𝐼𝑎1

 
𝑣𝑙
2

 ,
3

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
3

2
   

B 
𝑣𝑙
2

 ,
1

2
  2− 𝐼𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
1

2
   

+ log  1 +𝑁
𝑖=1

 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
  𝑝 𝑙|𝑥𝑖 , Θ

g = 0  

The above equation further leads to 

  
− 2− 𝐼𝑎1

 
𝑣𝑙
2

 ,
3

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
3

2
   

 𝑣𝑙+1  2− 𝐼𝑎1
 
𝑣𝑙
2

 ,
1

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
1

2
   

+𝑁
𝑖=1

 log  1 + 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
  𝑝 𝑙|𝑥𝑖 , Θ

g = 0  

∵
B 

𝑣𝑙
2

 ,
3

2
 

B 
𝑣𝑙
2

 ,
1

2
 

=  
1

 𝑣𝑙+1 
  Please refer to Appendix for the proof. 

The above equation may be written as 

 𝑣𝑙 + 1  log  1 + 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
 𝑁

𝑖=1  𝑝 𝑙|𝑥𝑖 , Θ
g =

 
 2− 𝐼𝑎1

 
𝑣𝑙
2

 ,
3

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
3

2
   

 2− 𝐼𝑎1
 
𝑣𝑙
2

 ,
1

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 𝑝 𝑙|𝑥𝑖 , Θ
g 𝑁

𝑖=1   

∴  𝑣𝑙 =  
 2− 𝐼𝑎1

 
𝑣𝑙
2

 ,
3

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
3

2
   

 2− 𝐼𝑎1
 
𝑣𝑙
2

 ,
1

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 𝑝 𝑙|𝑥𝑖 ,Θ
g  𝑁

𝑖=1

 log  1+ 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
 𝑁

𝑖=1  𝑝 𝑙|𝑥𝑖 ,Θ
g  

−  1 

            (23) 

Therefore, the update equations for  𝜇𝑙 , 𝑐𝑙 , and 𝑣𝑙  after solving 

Equations (18), (19), and (20) are 

𝜇𝑙 =
 𝑥𝑖

𝑁
𝑖=1  𝑝 𝑙|𝑥𝑖 ,Θ

g  

 𝑝 𝑙|𝑥𝑖 ,Θ
g  𝑁

𝑖=1

+

2𝑐𝑙
1 2   

𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

 𝑣𝑙+1 𝐵 
𝑣𝑙
2

 ,
1

2
  2− 𝐼𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
1

2
   

  

 (24)                                   

𝑐𝑙 =
 𝑣𝑙+1   𝑥𝑖−𝜇 𝑙 

2𝑁
𝑖=1 𝑝 𝑙|𝑥𝑖 ,Θ

g  

 𝑝 𝑙|𝑥𝑖 ,Θ
g  𝑁

𝑖=1

+

 

2𝑐𝑙
1 2 

  𝑎−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2 

𝑣𝑙+1
2

+  𝑏−𝜇 𝑙  
𝑐𝑙

𝑐𝑙+ 𝑏−𝜇 𝑙 
2 

𝑣𝑙+1
2

 

𝐵 
𝑣𝑙
2

 ,
1

2
  2− 𝐼𝑎1

 
𝑣𝑙
2

 ,
1

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
1

2
   

      (25) 

 𝑣𝑙 =  
 2− 𝐼𝑎1

 
𝑣𝑙
2

 ,
3

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
3

2
   

 2− 𝐼𝑎1
 
𝑣𝑙
2

 ,
1

2
 +𝐼𝑏1

 
𝑣𝑙
2

 ,
1

2
   

 𝑝 𝑙|𝑥𝑖 ,Θ
g  𝑁

𝑖=1

 log  1+ 
 𝑥𝑖−𝜇 𝑙 

2

𝑐𝑙
 𝑁

𝑖=1  𝑝 𝑙|𝑥𝑖 ,Θ
g  

−  1 

(26)     

4. CONCLUSIONS 
In this paper, a formal treatment of mixture density estimation 

procedure for the truncated compound normal with gamma 

mixture model is presented. The analytical expressions for the 

maximum likelihood estimates for model parameters,  

𝜃𝑙  𝜇𝑙 , 𝑐𝑙 , 𝑣𝑙  which describe partly the parameter set Θ, have 

been derived since the derivation for these parameters 

involved some added complexity than  that for  the un 

truncated one. The derived expressions are similar in form to 

compound normal with gamma mixture model except that 

these include some additional terms due to the truncation done 

with respect to the left and right truncation defined by ‗a‘ and 

‗b‘ respectively. These expressions can be embedded into the 

Expectation Maximization framework for solving  mixture 

density estimation problem. The EM framework for this 

truncated mixture model that can be used to solve mixture 

density estimation problems like image segmentation and 

other clustering problems is considered as an extension to the 

work presented in this paper . 
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6. APPENDIX 
I. To Take Linear Term As Approximation For 

𝒍𝒏 𝒛 (Sections 3.1 and 3.2 of the  paper have reference to 

this) 

Since for any real number  z that satisfies  0<z<2, the 

following formula holds: 

ln 𝑧 =  𝑧 − 1 −
 𝑧−1 2

2
+

 𝑧−1 3

3
−

 𝑧−1 4

4
+ ⋯  

Taking linear term as approximation, 

ln 𝑧 =  𝑧 − 1        
 (A1)                                                       

II. To Prove That     
𝜕 log 𝐵 1 2, 𝑣𝑙 2  

𝜕𝑣𝑙
=  

−1

2 𝑣𝑙+1 
  

(Section 3.3 of the paper has reference to this) 

We know that  
𝜕 log 𝐵 1 2  ,𝑣𝑙 2  

𝜕𝑣𝑙
=

𝜕

𝜕𝑣𝑙
𝐵 1 2  ,𝑣𝑙 2  

𝐵 1 2  ,𝑣𝑙 2  
 

Since we know that beta function 𝐵 𝑎, 𝑏  is defined as 
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𝐵 𝑎, 𝑏 =  𝑥𝑎−1 1 − 𝑥 𝑏−1𝑑𝑥
1

0
 for 𝑎 > 0, 𝑏 > 0

 (A2)       

 
𝜕

𝜕𝑣𝑙
𝐵 1 2  , 𝑣𝑙 2  =  

𝜕

𝜕𝑣𝑙
 1 − 𝑥 −1 2 𝑥 𝑣𝑙−2 2 𝑑𝑥

1

0
 

 (A3)                   

To solve the above equation, we have to first solve  
𝜕

𝜕𝑣𝑙
𝑥 𝑣𝑙−2 2  

Let  𝑦 = 𝑥 𝑣𝑙−2 2  ⇒ log 𝑦 = log 𝑥 𝑣𝑙−2 2 =
 𝑣𝑙−2 

2
log 𝑥  

⇒
1

𝑦
𝑑𝑦 =  

log 𝑥

2
𝑑𝑣𝑙  ⇒

𝑑𝑦

𝑑𝑣𝑙
 = 𝑦

log 𝑥

2
   

∴
𝜕

𝜕𝑣𝑙
𝑥 𝑣𝑙−2 2 = 𝑥 𝑣𝑙−2 2  

log 𝑥

2
  

Hence Equation (A3) can be written as 

𝜕

𝜕𝑣𝑙
𝐵 1 2  , 𝑣𝑙 2  =  𝑥 𝑣𝑙−2 2  

log 𝑥

2
  1 − 𝑥 −1 2 𝑑𝑥

1

0

 

Taking linear term as approximation of log 𝑥 as  𝑥 − 1 , 

given by Equation (A1), the above equation becomes 

𝜕

𝜕𝑣𝑙
𝐵 1 2  , 𝑣𝑙 2  =  𝑥 𝑣𝑙−2 2  

𝑥 − 1

2
  1 − 𝑥 −1 2 𝑑𝑥

1

0

 

⇒  −
1

2
 𝑥 𝑣𝑙−2 2  1 − 𝑥 −1 2 𝑑𝑥

1

0

 

⇒ −
1

2
 𝑥

𝑣𝑙
2
−1 1 − 𝑥 

3
2
−1𝑑𝑥

1

0

 

⇒ −
1

2
𝐵 𝑣𝑙 2  , 3 2    (Section 3.3 of 

the paper has reference to this)  

∴
𝜕

𝜕𝑣𝑙
𝐵 1 2  , 𝑣𝑙 2  =  −

1

2
𝐵 𝑣𝑙 2  , 3 2   

 (A4)     

   Hence 
𝜕 log 𝐵 1 2  ,𝑣𝑙 2  

𝜕𝑣𝑙
=

𝜕

𝜕𝑣𝑙
𝐵 1 2  ,𝑣𝑙 2  

𝐵 1 2  ,𝑣𝑙 2  
=

−
1

2
𝐵 𝑣𝑙 2  ,3 2  

𝐵 1 2  ,𝑣𝑙 2  
  

= −
1

2

Γ 
𝑣𝑙
2
 Γ 

3

2
 

Γ 
𝑣𝑙
2

+
3

2
 

Γ 
𝑣𝑙
2

+
3

2
 

Γ 
𝑣𝑙
2
 Γ 

1

2
 

=  −
1

2

Γ 
1

2
+1 

Γ 
1

2
 

Γ 
𝑣𝑙
2

+
1

2
 

Γ 
𝑣𝑙
2

+
1

2
+1 

=

−
1

2

1

2
Γ 

1

2
 

Γ 
1

2
 

Γ 
𝑣𝑙
2

+
1

2
 

 𝑣𝑙+1 

2
Γ 

𝑣𝑙
2

+
1

2
 

= 
−1

2 𝑣𝑙+1 
  

Since 𝐵 𝑎, 𝑏 = 𝐵 𝑏, 𝑎 =  
Γ 𝑎 Γ 𝑏 

Γ 𝑎+𝑏 
   

 (A5)     

   

and the gamma function, denoted by Γ .  , is defined by  

Γ 𝑡 =   𝑥 𝑡−1 ∞

0
𝑒−𝑥𝑑𝑥  for 𝑡 > 0  

 (A6)        

The following definitions about gamma function are taken 

from [5] as given by Mood et al. 

 Γ 𝑡  is nothing more than a notation for the definite integral 

that appears on the right hand side of Equation (6). Integration 

by parts yields 

Γ 𝑡 + 1 = 𝑡Γ 𝑡       
 (A7)     

  

and hence, if 𝑡 = 𝑛(an integer), Γ 𝑛 + 1 = 𝑛!. 

If 𝑛 is an integer,  

Γ  𝑛 +
1

2
 =  

1.3.5… 2𝑛−1 

2𝑛  𝜋, and in  particular  Γ  
1

2
 =

2Γ  
3

2
 =   𝜋. 

III.  To Derive Partial Derivatives Of Incomplete 

Beta Functions With Respect To 𝝁𝒍 , 𝒄𝒍 , and 𝒗𝒍 . 
Here, the partial derivatives of incomplete beta functions with 

respect to 𝜇𝑙 , 𝑐𝑙 , and 𝑣𝑙   for solving Equations (18), (19), (20) 

related to the truncated normal with gamma mixture 

distribution have been derived for the purpose of their use in 

sections 3.1, 3.2, and 3.3 of the paper. 

𝑏1 =
𝑐

𝑐+ 𝑏−𝜇 2
 and  𝑎1 =

𝑐

𝑐+ 𝑎−𝜇 2
  since 𝑡 =

𝑐

𝑐+ 𝑥−𝜇 2
, details 

of which can be seen sections 5.2 and 5.3 in the said chapter. 

𝜕

𝜕𝜇 𝑙
𝐵𝑎1

 
𝑣𝑙

2
 ,

1

2
 =  

𝜕

𝜕𝜇 𝑙
 𝑦

𝑣𝑙
2
−1 1 − 𝑦 

1

2
−1𝑎1

0
𝑑𝑦   

=  
𝜕

𝜕𝜇 𝑙
 𝑦

𝑣𝑙
2
−1 1 − 𝑦 

1

2
−1

𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2

0
𝑑𝑦   

 (A8)      

The above equation  is in the form of 
𝜕

𝜕𝑥
 𝑓 𝑥 
𝜓 𝑥 

0
𝑑𝑥 , which 

is equal to 𝑓 𝜓 𝑥  𝜓′ 𝑥  

Therefore, the solution for  Equation (A8) is 

 
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
 

𝑣𝑙
2
−1

 1 −
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
 
−

1

2 𝑑

𝑑𝜇 𝑙
 

𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
   

⇒  
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
 

𝑣𝑙
2
−1

 1 −
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
 
−

1

2 2𝑐𝑙 𝑎−𝜇 𝑙 

 𝑐𝑙+ 𝑎−𝜇 𝑙 
2 2

  

since 
𝑑

𝑑𝜇 𝑙
 

𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
 =  

𝑐𝑙
′ 𝑐𝑙+ 𝑎−𝜇 𝑙 

2 −𝑐𝑙 𝑐𝑙+ 𝑎−𝜇 𝑙 
2 ′

 𝑐𝑙+ 𝑎−𝜇 𝑙 
2 2

 = 
2𝑐𝑙 𝑎−𝜇 𝑙 

 𝑐𝑙+ 𝑎−𝜇 𝑙 
2 2

  

Upon simplification, the above equation may be written as 

 
𝜕

𝜕𝜇 𝑙
𝐵𝑎1

 
𝑣𝑙

2
 ,

1

2
 =

2

𝑐𝑙
1 2 

 
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
 

𝑣𝑙+1

2
   

 (A9)     

Similarly 
𝜕

𝜕𝑐𝑙
𝐵𝑎1

 
𝑣𝑙

2
 ,

1

2
 =

 
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
 

𝑣𝑙
2
−1

 1 −
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
 
−

1

2 𝑑

𝑑𝑐𝑙
 

𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
   

⇒  
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
 

𝑣𝑙
2
−1

 1 −
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
 
−

1

2  𝑎−𝜇 𝑙 
2

 𝑐𝑙+ 𝑎−𝜇 𝑙 
2 2

 

since 
𝑑

𝑑𝑐𝑙
 

𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
 =  

𝑐𝑙
′ 𝑐𝑙+ 𝑎−𝜇 𝑙 

2 −𝑐𝑙 𝑐𝑙+ 𝑎−𝜇 𝑙 
2 ′

 𝑐𝑙+ 𝑎−𝜇 𝑙 
2 2

 = 
 𝑎−𝜇 𝑙 

2

 𝑐𝑙+ 𝑎−𝜇 𝑙 
2 2

 

Upon simplification, the above equation may be written as 

𝜕

𝜕𝑐𝑙
𝐵𝑎1

 
𝑣𝑙

2
 ,

1

2
 =

 𝑎−𝜇 𝑙 

𝑐𝑙𝑐𝑙
1 2 

 
𝑐𝑙

𝑐𝑙+ 𝑎−𝜇 𝑙 
2
 

𝑣𝑙+1

2
               

(A10)      

In respect of  
𝜕

𝜕𝑣𝑙
𝐵𝑎1

 
𝑣𝑙

2
 ,

1

2
  , Equation (A4) holds good. 

∴
𝜕

𝜕𝑣𝑙
𝐵𝑎1

 
𝑣𝑙

2
 ,

1

2
 =  −

1

2
𝐵𝑎1

 𝑣𝑙 2  , 3 2                

(A11)       
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