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TRUNCATED CONTROL VARIATES FOR WEAK APPROXIMATION
SCHEMES ∗

Denis Belomestny1, Stefan Häfner2 and Mikhail Urusov3

Abstract. In this paper we present an enhancement of the regression-based variance reduction ap-
proaches recently proposed in Belomestny et al. [1] and [4]. This enhancement is based on a truncation
of the control variate and allows for a significant reduction of the computing time, while the complexity
stays of the same order. The performances of the proposed truncated algorithms are illustrated by a
numerical example.

Introduction

Let T > 0 be a fixed time horizon. Consider a d-dimensional diffusion process (Xt)t∈[0,T ] defined by the Itô
stochastic differential equation

dXt = µ(Xt) dt+ σ(Xt) dWt, X0 = x0 ∈ Rd, (0.1)

for Lipschitz continuous functions µ : Rd → Rd and σ : Rd → Rd×m, where (Wt)t∈[0,T ] is a standard m-
dimensional Brownian motion. Our aim is to compute the expectation

u(t, x) := E[f(Xt,x
T )], (0.2)

for some f : Rd → R, where Xt,x denotes the solution to (0.1) started at time t in point x. The standard Monte
Carlo (SMC) estimate for u(0, x) at a fixed point x ∈ Rd has the form

VN0
:=

1

N0

N0∑
i=1

f
(
X

(i)

T

)
(0.3)

for some N0 ∈ N0, where XT is an approximation for X0,x
T constructed via a time discretisation of (0.1) (we

refer to [7] for a nice overview of various discretisation schemes). In the computation of u(0, x) = E[f(X0,x
T )] by

the SMC approach there are two types of error inherent: the (deterministic) discretisation error E[f(X0,x
T )] −

E[f(XT )] and the Monte Carlo (statistical) error, which results from the substitution of E[f(XT )] with the
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sample average VN0 . The aim of variance reduction methods is to reduce the latter statistical error. For
example, in the so-called control variate variance reduction approach one looks for a random variable ξ with
Eξ = 0, which can be simulated, such that the variance of the difference f(XT )− ξ is minimised, that is,

Var[f(XT )− ξ]→ min under Eξ = 0.

Then one uses the sample average

V CVN0
:=

1

N0

N0∑
i=1

[
f
(
X

(i)

T

)
− ξ(i)

]
(0.4)

instead of (0.3) to approximate E[f(XT )]. The use of control variates for computing expectations of functionals
of diffusion processes via Monte Carlo was initiated by Newton [11] and further developed in Milstein and
Tretyakov [8]. In Belomestny et al [1] a novel regression-based approach for the construction of control variates,
which reduces the variance of the approximated functional f(XT ) was proposed. As shown in [1], the “Monte
Carlo approach with the Regression-based Control Variate” (abbreviated below as “RCV approach”) is able to
achieve a higher order convergence of the resulting variance to zero, which in turn leads to a significant complexity
reduction as compared to the SMC algorithm. Other prominent examples of algorithms with this property are
the multilevel Monte Carlo (MLMC) algorithm of [5] and quadrature-based algorithms of [9] and [10]. The
RCV approach becomes especially simple in the case of the so-called weak approximation schemes, i.e., the
schemes, where simple random variables are used in place of Brownian increments, and which became quite
popular in recent years. However, due to the fact that a lot of computations are required for implementing the
RCV approach, its numerical efficiency is not convincing in higher-dimensional examples. The same applies
also to the SRCV algorithm of [4]. In this paper we further enhance the performances of the RCV and SRCV
algorithms by truncating the control variates, leading to a reduction from (2m − 1) to m terms at each time
point in case of the weak Euler scheme and a reduction from (3m2

m(m−1)
2 − 1) to m(m+ 1) = O(m2) terms at

each time point in case of the second order weak scheme. It turns out that, while the computing time is reduced
significantly, we still have a sufficient variance reduction effect such that the complexity is of the same order as
for the original RCV and SRCV approaches.

The paper is organised as follows. In Section 1 we present a smoothness theorem for a general class of
discretisation schemes. Section 2 recalls the construction of control variates for weak schemes of the first
and the second order. The main truncation results are derived in Section 3. In Section 4 we describe a generic
regression algorithm. Section 5 deals with a complexity analysis for the algorithm that is based on the truncated
control variate. Section 6 is devoted to a simulation study. Finally, all proofs are collected in Section 7.

1. Smoothness theorem for discretisation schemes

In this section we present a technical result for discretisation schemes, which will be very important in the
sequel. To begin with, let J ∈ N denote the time discretisation parameter, we set ∆ := T/J and consider
discretisation schemes defined on the grid {j∆ : j = 0, . . . , J}.

Let us consider a scheme, where d-dimensional approximations X∆,j∆, j = 0, . . . , J , satisfy X∆,0 = x0 and

X∆,j∆ = Φ∆

(
X∆,(j−1)∆, ξj

)
, j = 1, . . . , J, (1.1)

for some Borel measurable functions Φ∆ : Rd+m̃ → Rd, where m̃ ≥ m, and for m̃-dimensional i.i.d. random
vectors ξj = (ξ1

j , . . . , ξ
m̃
j )> with independent coordinates satisfying E

[
ξij
]

= 0 and Var
[
ξij
]

= 1 for all i =
1, . . . , m̃, j = 1, . . . , J . Moreover, let G0 be the trivial σ-field and Gj = σ(ξ1, . . . , ξj), j = 1, . . . , J . In the
chapters below we will focus on different kinds of discretisation schemes, resulting in different convergence
behaviour.
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We now define the random function Gl,j(x) for J ≥ l ≥ j ≥ 0, x ∈ Rd, as follows

Gl,j(x) ≡ Φ∆,l ◦ Φ∆,l−1 ◦ . . . ◦ Φ∆,j+1(x), l > j, (1.2)
Gl,j(x) ≡ x, l = j,

where Φ∆,l(x) := Φ∆ (x, ξl) for l = 1, . . . , J . By Φk∆,l, k ∈ {1, . . . , d}, we denote the k-th component of the
function Φ∆,l. Note that it holds

qj(x) := E [f(X∆,T ) |X∆,j∆ = x] = E [f(GJ,j(x))] . (1.3)

Let us define the operator Dα as follows

Dαg(x) :=
∂|α|g(x)

∂xα1
1 · · · ∂x

αd
d

, (1.4)

where g is a real-valued function, α ∈ Nd0 and |α| = α1 + . . .+ αd (N0 := N ∪ {0}).
In the next theorem we present some smoothness conditions on qj , which will be used several times in the

chapters below.

Theorem 1.1. Let K ∈ {1, 2, 3}. Suppose that f is K times continuously differentiable with bounded partial
derivatives up to order K, Φ∆(·, ξ) is K times continuously differentiable (for any fixed ξ), and that, for any
n ∈ N, l ≥ j, k ∈ {1, . . . , d}, α ∈ Nd0 with 1 ≤ |α| ≤ K, it holds

∣∣∣E [(DαΦk∆,l+1(Gl,j(x))
)n∣∣∣Gl]∣∣∣ ≤ {(1 +An∆), |α| = αk = 1

Bn∆, (|α| > 1) ∨ (αk 6= 1)
(1.5)

with probability one for some constants An > 0, Bn > 0. Moreover, suppose that for any n1, n2 ∈ N, α, β ∈ Nd0,
with |α| = 1, 1 ≤ |β| ≤ K, α 6= β, it holds∣∣∣E [(DαΦk∆,l+1(Gl,j(x))

)n1
(
DβΦk∆,l+1(Gl,j(x))

)n2
∣∣∣Gl]∣∣∣ ≤ En1,n2∆ (1.6)

for some constants En1,n2
> 0. Then we obtain for all j ∈ {0, . . . , J} that qj is K times continuously differen-

tiable with bounded partial derivatives up to order K.

2. Representations for weak approximation schemes

Below we focus on weak schemes of first and second order.

2.1. Weak Euler scheme

In this subsection we treat weak schemes of order 1. Let us consider a scheme, where d-dimensional approx-
imations X∆,j∆, j = 0, . . . , J , satisfy X∆,0 = x0 and

X∆,j∆ = Φ∆(X∆,(j−1)∆, ξj), j = 1, . . . , J, (2.1)

for some functions Φ∆ : Rd+m → Rd, with ξj = (ξ1
j , . . . , ξ

m
j ), j = 1, . . . , J , being m-dimensional iid random

vectors with iid coordinates such that

P
(
ξkj = ±1

)
=

1

2
, k = 1, . . . ,m.
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That is, relating to the framework in Section 1, we have m̃ = m and use the discrete increments ξij , i = 1, . . . ,m.
A particular case is the weak Euler scheme (also called the simplified weak Euler scheme in [7, Section 14.1]) of
order 1, which is given by

Φ∆(x, y) = x+ µ(x) ∆ + σ(x) y
√

∆. (2.2)

Let us recall the functions (cf. (1.3))

qj(x) = E[f(X∆,T )|X∆,j∆ = x].

The proposition below summarises important representations for the weak Euler scheme, which were derived
in [1].

Proposition 2.1. The following representation holds

f(X∆,T ) = Ef(X∆,T ) +

J∑
j=1

m∑
r=1

∑
1≤s1<...<sr≤m

aj,r,s(X∆,(j−1)∆)

r∏
i=1

ξsij , (2.3)

where we use the notation s = (s1, . . . , sr). The coefficients aj,r,s : Rd → R can be computed by the formula

aj,r,s(x) = E

[
f(X∆,T )

r∏
i=1

ξsij

∣∣∣∣∣ X∆,(j−1)∆ = x

]
(2.4)

for all j, r, and s as in (2.3). Moreover, we have the following recursion formulas

qj−1(x) =E
[
qj(X∆,j∆)|X∆,(j−1)∆ = x

]
=

1

2m

∑
y=(y1,...,ym)∈{−1,1}m

qj(Φ∆(x, y)),

aj,r,s(x) =
1

2m

∑
y=(y1,...,ym)∈{−1,1}m

[
r∏
i=1

ysi

]
qj(Φ∆(x, y)), (2.5)

for all j ∈ {1, . . . , J}, r ∈ {1, . . . ,m}, 1 ≤ s1 < . . . < sr ≤ m, where qJ ≡ f .
The next proposition (cf. Proposition 3.2 in [1]) shows the properties of the weak Euler scheme combined

with the control variate

M
(1)
∆,T :=

J∑
j=1

m∑
r=1

∑
1≤s1<...<sr≤m

aj,r,s(X∆,(j−1)∆)

r∏
i=1

ξsij , (2.6)

where the coefficients aj,r,s(x) are given by (2.4).

Proposition 2.2. Assume that µ and σ in (0.1) are Lipschitz continuous with components µi, σi,r : Rd → R,
i = 1, . . . , d, r = 1, . . . ,m, being 4 times continuously differentiable with their partial derivatives of order up
to 4 having polynomial growth. Let f : Rd → R be 4 times continuously differentiable with partial derivatives
of order up to 4 having polynomial growth. Provided that (2.2) holds and that, for sufficiently large p ∈ N, the
expectations E|X∆,j∆|2p are uniformly bounded in J and j = 0, . . . , J , we have for this “simplified weak Euler
scheme”

|E [f(XT )− f(X∆,T )]| ≤ c∆,

where the constant c does not depend on ∆. Moreover, it holds Var
[
f(X∆,T )−M (1)

∆,T

]
= 0.
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Discussion. In order to use the control variate M (1)
∆,T in practice, we need to estimate the unknown coefficients

aj,r,s. Thus, practically implementable control variates M̃ (1)
∆,T have the form (2.6) with some estimated functions

ãj,r,s : Rd → R. Notice that they remain valid control variates, i.e. we still have E
[
M̃

(1)
∆,T

]
= 0, which is due to

the martingale transform structure1 in (2.6).

2.2. Second order weak scheme

Now we treat weak schemes of order 2. We consider a scheme, where d-dimensional approximations X∆,j∆,
j = 0, . . . , J , satisfy X∆,0 = x0 and

X∆,j∆ = Φ∆(X∆,(j−1)∆, ξj , Vj), j = 1, . . . , J, (2.7)

for some functions Φ∆ : Rd+m+m×m → Rd. Here,
(S1) ξj = (ξij)

m
i=1 are m-dimensional random vectors,

(S2) Vj = (V ilj )mi,l=1 are random m×m-matrices,
(S3) the pairs (ξj , Vj), j = 1, . . . , J , are i.i.d.,
(S4) for each j, the random elements ξj and Vj are independent,
(S5) for each j, the random variables ξij , i = 1, . . . ,m, are i.i.d. with

P
(
ξij = ±

√
3
)

=
1

6
, P

(
ξij = 0

)
=

2

3
,

(S6) for each j, the random variables V ilj , 1 ≤ i < l ≤ m, are i.i.d. with

P
(
V ilj = ±1

)
=

1

2
,

(S7) V lij = −V ilj , 1 ≤ i < l ≤ m, j = 1, . . . , J ,
(S8) V iij = −1, i = 1, . . . ,m, j = 1, . . . , J .

Hence, the matrices Vj can be generated by means of m(m−1)
2 i.i.d. random variables. That is, relating to

the framework in Section 1, we have m̃-dimensional random vectors ξ̃j := ((ξij)i=1,...,m, (V
il
j )1≤i<l≤m) with

m̃ = m+ m(m−1)
2 = m(m+1)

2 .

Remark 2.3. In order to obtain a second order weak scheme in the multidimensional case, we need to in-
corporate additional random elements Vj into the structure of the scheme. This is the reason why we now
consider (2.7) instead of (2.1). For instance, to get the second order weak scheme (also called the simplified
order 2 weak Taylor scheme) of [7, Section 14.2] in the multidimensional case, we need to define the functions
Φ∆(x, y, z), x ∈ Rd, y ∈ Rm, z ∈ Rm×m, as explained below. First we define the function Σ: Rd → Rd×d by
the formula

Σ(x) = σ(x)σ(x)>

and recall that the coordinates of vectors and matrices are denoted by superscripts, e.g. Σ(x) = (Σkl(x))dk,l=1,
Φ∆(x, y, z) = (Φk∆(x, y, z))dk=1. Let us introduce the operators Lr, r = 0, . . . ,m, that act on sufficiently smooth

1This phrase means that the discrete-time process M̃ = (M̃l)l=0,...,J , where M̃0 = 0 and M̃l is defined like the right-hand side
of (2.6) but with

∑J
j=1 being replaced by

∑l
j=1 and aj,r,s by ãj,r,s is a martingale, which is a straightforward calculation.
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functions g : Rd → R as follows:

L0g(x) :=

d∑
k=1

µk(x)
∂g

∂xk
(x) +

1

2

d∑
k,l=1

Σkl(x)
∂2g

∂xl∂xk
(x),

Lrg(x) :=

d∑
k=1

σkr(x)
∂g

∂xk
(x), r = 1, . . . ,m.

The r-th coordinate Φr∆, r = 1, . . . , d, in the simplified order 2 weak Taylor scheme of [7, Section 14.2] is now
given by the formula

Φr∆(x, y, z) = xr +

m∑
k=1

σrk(x) yk
√

∆ (2.8)

+

µr(x) +
1

2

m∑
k,l=1

Lkσrl(x)(ykyl + zkl)

∆

+
1

2

m∑
k=1

[
L0σrk(x) + Lkµr(x)

]
yk ∆3/2 +

1

2
L0µr(x) ∆2,

provided the coefficients µ and σ of (0.1) are sufficiently smooth. We will need to work explicitly with (2.8) at
some point, but all results in this subsection assume structure (2.7) only.

Let us define the index sets

I1 = {1, . . . ,m}, I2 =
{

(k, l) ∈ I2
1 : k < l

}
and the system

A = {(U1, U2) ∈ P(I1)× P(I2) : U1 ∪ U2 6= ∅} ,

where P(I) denotes the set of all subsets of a set I. For any U1 ⊆ I1 and o ∈ {1, 2}U1 , we write o as o = (or)r∈U1 .
Below we use the convention that a product over the empty set is always one.

For k ∈ N0, Hk : R→ R stands for the (normalized) k-th Hermite polynomial, i.e.

Hk(x) :=
(−1)k√
k!

e
x2

2
dk

dxk
e−

x2

2 , x ∈ R.

We remark that, in particular, H0 ≡ 1, H1(x) = x and H2(x) = 1√
2
(x2 − 1).

As in Subsection 2.1, we summarise important representations from [1] below.

Proposition 2.4. It holds

f(X∆,T ) = Ef(X∆,T ) +

J∑
j=1

∑
(U1,U2)∈A

∑
o∈{1,2}U1

aj,o,U1,U2
(X∆,(j−1)∆)

∏
r∈U1

Hor (ξ
r
j )

∏
(k,l)∈U2

V klj , (2.9)

where the coefficients aj,o,U1,U2 : Rd → R can be computed by the formula

aj,o,U1,U2(x) = E

f(X∆,T )
∏
r∈U1

Hor (ξ
r
j )

∏
(k,l)∈U2

V klj

∣∣∣∣∣∣X∆,(j−1)∆ = x

 . (2.10)
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Moreover, we have for each j ∈ {1, . . . , J},

qj−1(x) =E[qj(X∆,j∆)|X∆,(j−1)∆ = x]

=
1

2
m(m−1)

2

1

6m

∑
(y1,...,ym)∈{−

√
3,0,
√

3}m

∑
(zuv)1≤u<v≤m∈{−1,1}

m(m−1)
2

4
∑m
i=1 I(y

i=0)qj(Φ∆(x, y, z)),

and, for all (U1, U2) ∈ A, o ∈ {1, 2}U1 , it holds

aj,o,U1,U2(x) =
1

2
m(m−1)

2

1

6m

∑
(y1,...,ym)∈{−

√
3,0,
√

3}m

∑
(zuv)1≤u<v≤m∈{−1,1}

m(m−1)
2

(2.11)

4
∑m
i=1 I(y

i=0)
∏
r∈U1

Hor (y
r)

∏
(k,l)∈U2

zkl qj(Φ∆(x, y, z)),

where y = (y1, . . . , ym), z = (zuv) is the m×m-matrix with zvu = −zuv, u < v, zuu = −1 and qJ ≡ f .

Using Theorem 2.4, we obtain the following result (see Proposition 3.6 in [1]), which provides a bound for
the discretisation error and a perfect control variate for the discretised quantity.

Proposition 2.5. Assume, that µ and σ in (0.1) are Lipschitz continuous with components µi, σi,r : Rd → R,
i = 1, . . . , d, r = 1, . . . ,m, being 6 times continuously differentiable with their partial derivatives of order up
to 6 having polynomial growth. Let f : Rd → R be 6 times continuously differentiable with partial derivatives
of order up to 6 having polynomial growth. Provided that (2.8) holds and that, for sufficiently large p ∈ N, the
expectations E|X∆,j∆|2p are uniformly bounded in J and j = 0, . . . , J , we have for this “simplified second order
weak Taylor scheme”

|E [f(XT )− f(X∆,T )]| ≤ c∆2,

where the constant c does not depend on ∆. Moreover, we have Var
[
f(X∆,T )−M (2)

∆,T

]
= 0 for the control

variate

M
(2)
∆,T :=

J∑
j=1

∑
(U1,U2)∈A

∑
o∈{1,2}U1

aj,o,U1,U2
(X∆,(j−1)∆)

∏
r∈U1

Hor (ξ
r
j )

∏
(k,l)∈U2

V klj , (2.12)

where the coefficients aj,o,U1,U2
(x) are defined in (2.10).

3. Truncated control variates for weak approximation schemes

Below we recall the assumptions from [1], suggest sufficient conditions for them in terms of the functions
f, µ, σ, and then suggest some stronger conditions that will justify the use of truncated control variates.

3.1. Weak Euler scheme

Note that we considered only the second order weak scheme in terms of the regression and complexity analyses
in [1]. However, analogous assumptions for the weak Euler scheme are as follows (cf. Proposition 2.1): fix some
j ∈ {1, . . . , J}, r ∈ {1, . . . ,m}, s = (s1, . . . , sr) with 1 ≤ s1 < . . . < sr ≤ m, set ζj,r,s := f(X∆,T )

∏r
i=1 ξ

si
j and

remark that aj,r,s(x) = E[ζj,r,s|X∆,(j−1)∆ = x]. We assume that, for some positive constants Σ, A, it holds:
(A1) supx∈Rd Var[ζj,r,s|X∆,(j−1)∆ = x] ≤ Σ <∞,
(A2) supx∈Rd |aj,r,s(x)| ≤ A

√
∆ <∞.
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In the following theorem we suggest sufficient conditions for the above assumptions.

Theorem 3.1. (i) Let f be bounded. Then (A1) holds.
(ii) Let all the functions σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m}, be bounded and all the functions f, µk, σki be

continuously differentiable with bounded partial derivatives. Then (A2) holds.

Next we suggest some stronger conditions that give us somewhat more than (A2).

Theorem 3.2. Let all the functions σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m}, be bounded and all the functions
f, µk, σki be twice continuously differentiable with bounded partial derivatives up to order 2. Then it holds
(A3) supx∈Rd |aj,r,s(x)| . ∆, whenever r > 1.

Remark 3.3. As a generalisation of Theorem 3.2, it is natural to expect that it holds, under additional
smoothness conditions on f, µ, σ,

sup
x∈Rd

|aj,r,s(x)| . ∆r/2

for all j ∈ {1, . . . , J}, r ∈ {1, . . . ,m} and 1 ≤ s1 < . . . < sr ≤ m.

Let us define the “truncated control variate”

M
(1),trunc
∆,T :=

J∑
j=1

m∑
i=1

aj,1,ei(X∆,(j−1)∆)ξij , (3.1)

where ei ∈ Rm denotes the i-th unit vector in Rm and aj,1,ei is given by (cf. (2.4))

aj,1,ei(x) = E
[
f(X∆,T )ξij

∣∣ X∆,(j−1)∆ = x
]
.

Note that the superscript “trunc” comes from “truncated”. That is, we consider in M (1),trunc
∆,T only the terms of

the control variate M (1)
∆,T for which r = 1 (cf. (2.6)).

Next we study the truncation error that arises from replacing M (1)
∆,T by M (1),trunc

∆,T .

Theorem 3.4. Suppose that all the functions σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m} are bounded and all the
functions f, µk, σki are twice continuously differentiable with bounded partial derivatives up to order 2. Then it
holds (cf. Proposition 2.2)

Var
[
f(X∆,T )−M (1),trunc

∆,T

]
. ∆. (3.2)

Notice that under Assumption (A2) alone the variance in (3.2) would have been O(1).

3.2. Second order weak scheme

First we recall some of the required assumptions in [1]: let us fix some j ∈ {1, . . . , J}, (U1, U2) ∈ A,
o ∈ {1, 2}U1 , set

ζj,o,U1,U2
:= f(X∆,T )

∏
r∈U1

Hor (ξ
r
j )

∏
(k,l)∈U2

V klj

and remark that aj,o,U1,U2(x) = E[ζj,o,U1,U2 |X∆,(j−1)∆ = x]. We assume that, for some positive constants Σ, A,
it holds:
(B1) supx∈Rd Var[ζj,o,U1,U2

|X∆,(j−1)∆ = x] ≤ Σ <∞,
(B2) supx∈Rd |aj,o,U1,U2

(x)| ≤ A
√

∆ <∞.
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Below we verify the above assumptions.

Theorem 3.5. (i) Let f be bounded. Then (B1) holds.
(ii) Let all the functions µk and σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m}, be bounded, the function f be contin-

uously differentiable with bounded partial derivatives, and all the functions µk, σki be three times continuously
differentiable with bounded partial derivatives up to order 3. Then (B2) holds.

Let us define the index sets

K1 := {r ∈ U1 : or = 1} , K2 := {r ∈ U1 : or = 2} .

In the following theorem we provide some stronger conditions that give us more than (B2).

Theorem 3.6. (i) Let all the functions µk and σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m}, be bounded, the function f
be twice continuously differentiable with bounded partial derivatives up to order 2, and all the functions µk, σki
be four times continuously differentiable with bounded partial derivatives up to order 4. Then it holds
(B3) supx∈Rd |aj,o,U1,U2

(x)| . ∆, whenever |U2|+ |K2|+ |K1|
2 ≥ 1.

(ii) Let all the functions µk and σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m}, be bounded, the function f be three times
continuously differentiable with bounded partial derivatives up to order 3, and all the functions µk, σki be five
times continuously differentiable with bounded partial derivatives up to order 5. Then it holds
(B4) supx∈Rd |aj,o,U1,U2

(x)| . ∆3/2, whenever |U2|+ |K2|+ |K1|
2 > 1.

Remark 3.7. (i) As a generalisation of Theorem 3.6, it is natural to expect that it holds, under additional
smoothness conditions on f, µ, σ,

sup
x∈Rd

|aj,o,U1,U2
(x)| . ∆|U2|+|K2|+ |K1|

2

for all j ∈ {1, . . . , J}, (U1, U2) ∈ A and o ∈ {1, 2}U1 .
(ii) Define

∆U1,U2 :=

{
∆|U2|+|K2|+ |K1|

2 if |U2|+ |K2|+ |K1|
2 ≤ 1,

∆3/2 otherwise.
(3.3)

An equivalent reformulation of assumptions (B2)–(B4) is as follows: there exists some positive constant Ã such
that it holds

sup
x∈Rd

|aj,o,U1,U2(x)| ≤ Ã∆U1,U2 (3.4)

for all j, o, U1, U2.

Similar to Section 3.1, let us define a truncated control variate through

M
(2),trunc
∆,T :=

J∑
j=1

∑
(U1,U2)∈A

|U2|+|K2|+ 1
2 |K1|≤1

∑
o∈{1,2}U1

aj,o,U1,U2
(X∆,(j−1)∆)

∏
r∈U1

Hor (ξ
r
j )

∏
(k,l)∈U2

V klj . (3.5)

Next we derive the truncation error that arises from replacing M (2)
∆,T by M (2),trunc

∆,T .

Theorem 3.8. Suppose that all the functions µk and σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m} are bounded, the
function f is three times continuously differentiable with bounded partial derivatives up to order 3, and all the
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functions µk, σki are five times continuously differentiable with bounded partial derivatives up to order 5. Then
it holds (cf. Proposition 2.5)

Var
[
f(X∆,T )−M (2),trunc

∆,T

]
. ∆2. (3.6)

4. Generic regression algorithm

In the previous sections we have given several representations for control variates. Now we discuss how to
compute the coefficients in these representations via regression. For the sake of clarity, we focus on second order
schemes and control variate (3.5) with coefficients given by (2.10).

4.1. Monte Carlo regression

Fix a Q-dimensional vector of real-valued functions ψ = (ψ1, . . . , ψQ) on Rd. Simulate a big number2 N of
independent “training paths” of the discretised diffusion X∆,j∆, j = 0, . . . , J . In what follows these N training
paths are denoted by Dtr

N :
Dtr
N :=

{
(X

tr,(i)
∆,j∆)j=0,...,J : i = 1, . . . , N

}
.

Let αj,o,U1,U2
= (α1

j,o,U1,U2
, . . . , αQj,o,U1,U2

), where j ∈ {1, . . . , J}, (U1, U2) ∈ A, |U2| + |K2| + 1
2 |K1| ≤ 1,

o ∈ {1, 2}U1 , be a solution of the following least squares optimisation problem:

argminα∈Rn

N∑
i=1

[
ζ
tr,(i)
j,o,U1,U2

− α1ψ1(X
tr,(i)
∆,(j−1)∆)− . . .− αQψQ(X

tr,(i)
∆,(j−1)∆)

]2
with

ζ
tr,(i)
j,o,U1,U2

:= f(X
tr,(i)
∆,T )

∏
r∈U1

Hor

(
(ξ
tr,(i)
j )r

) ∏
(k,l)∈U2

(V
tr,(i)
j )kl.

Define an estimate for the coefficient function aj,o,U1,U2
via

âj,o,U1,U2(x) := âj,o,U1,U2(x,Dtr
N ) := α1

j,o,U1,U2
ψ1(x) + . . .+ αQj,o,U1,U2

ψQ(x), x ∈ Rd.

The intermediate expression âj,o,U1,U2
(x,Dtr

N ) in the above formula emphasises that the estimates âj,o,U1,U2
of

the functions aj,o,U1,U2
are random in that they depend on the simulated training paths. The cost of computing

αj,o,U1,U2 is of order O(NQ2), since each αj,o,U1,U2 is of the form αj,o,U1,U2 = B−1b with

Bk,l :=
1

N

N∑
i=1

ψk
(
X
tr,(i)
∆,(j−1)∆

)
ψl
(
X
tr,(i)
∆,(j−1)∆

)
(4.1)

and

bk :=
1

N

N∑
i=1

ψk
(
X
tr,(i)
∆,(j−1)∆

)
ζ
tr,(i)
j,o,U1,U2

,

k, l ∈ {1, . . . , Q}. The cost of approximating the family of the coefficient functions aj,o,U1,U2
, j ∈ {1, . . . , J},

(U1, U2) ∈ A, |U2|+ |K2|+ 1
2 |K1| ≤ 1, o ∈ {1, 2}U1 , is of order O

(
Jm(m+ 1)NQ2

)
.

2In the complexity analysis below we show how large N is required to be in order to provide an estimate within some given
tolerance.
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4.2. Summary of the algorithm

The algorithm consists of two phases: training phase and testing phase. In the training phase, we sim-
ulate N independent training paths Dtr

N and construct regression estimates âj,o,U1,U2(·, Dtr
N ) for the coeffi-

cients aj,o,U1,U2
(·). In the testing phase, independently from Dtr

N we simulate N0 independent testing paths
(X

(i)
∆,j∆)j=0,...,J , i = 1, . . . , N0, and build the Monte Carlo estimator for E[f(XT )] as

E =
1

N0

N0∑
i=1

(
f(X

(i)
∆,T )− M̂ (2),trunc,(i)

∆,T

)
, (4.2)

where

M̂
(2),trunc,(i)
∆,T :=

J∑
j=1

∑
(U1,U2)∈A

|U2|+|K2|+ 1
2 |K1|≤1

∑
o∈{1,2}U1

âj,o,U1,U2(X
(i)
∆,(j−1)∆, D

tr
N )

∏
r∈U1

Hor (ξ
r,(i)
j )

∏
(k,l)∈U2

V
kl,(i)
j (4.3)

(cf. with (2.12)). Due to the martingale transform structure in (4.3) (recall footnote 1 on page 19), we have
E
[
M̂

(2),trunc,(i)
∆,T |Dtr

N

]
= 0, hence E[E|Dtr

N ] = E[f(X
(i)
∆,T ) − M̂

(2),trunc,(i)
∆,T |Dtr

N ] = E[f(X∆,T )], and we obtain
(cf. (3.6))

Var[E ] = E[Var(E|Dtr
N )] + Var[E(E|Dtr

N )] = E[Var(E|Dtr
N )]

=
1

N0
E
[
Var

(
f(X

(1)
∆,T )− M̂ (2),trunc,(1)

∆,T |Dtr
N

)]
=

1

N0
Var

[
f(X

(1)
∆,T )− M̂ (2),trunc,(1)

∆,T

]
.

Summarising, we have

E[E ] = E[f(X∆,T )],

Var[E ] =
1

N0
Var

[
f(X

(1)
∆,T )− M̂ (2),trunc,(1)

∆,T

]
. (4.4)

Notice that the result of (4.4) indeed requires the computations above and cannot be stated right from the
outset because the summands in (4.2) are dependent (through Dtr

N ).
This concludes the description of the generic regression algorithm for constructing the control variate. Further

details, such as bounds for the right-hand side of (4.4), depend on a particular implementation, i.e. on the quality
of the chosen basis functions.

5. Complexity analysis

In this section we extend the complexity analysis presented in [1] to the case of the “TRCV” (truncated
RCV) algorithm. Below we only sketch the main results for the second order schemes. We make the following
assumption (cf. [2] and [4]):
(B5) The functions aj,o,U1,U2 (x) can be well approximated by the functions from ΨQ := span ({ψ1, . . . , ψQ}),

in the sense that there are constants κ > 0 and Cκ > 0 such that

inf
g∈ΨQ

ˆ
Rd

(aj,o,U1,U2 (x)− g (x))
2 P∆,j−1(dx) ≤ Cκ

Qκ
,

where P∆,j−1 denotes the distribution of X∆,(j−1)∆.
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Remark 5.1. Note that (B5) is a natural condition to be satisfied for good choices of ΨQ. For instance, under
appropriate assumptions, in the case of piecewise polynomial regression as described in [1], (B5) is satisfied with
κ = 2ν(p+1)

2d(p+1)+dν , where the parameters p and ν are explained in [1].

In Lemma 5.2 below we present an L2-upper bound for the estimation error of the TRCV algorithm. To
this end, we need to describe more precisely, how exactly the regression-based approximations ãj,o,U1,U2

are
constructed:

Let functions âj,o,U1,U2
(x) be obtained by regression onto the set of basis functions {ψ1, . . . , ψQ}, while the

approximations ãj,o,U1,U2(x) of the TRCV algorithm be the truncated estimates, which are defined as follows

ãj,o,U1,U2
(x) := TÃ∆U1,U2

âj,o,U1,U2
(x) :=

{
âj,o,U1,U2(x) if |âj,o,U1,U2(x)| ≤ Ã∆U1,U2 ,

Ã∆U1,U2
sgn âj,o,U1,U2

(x) otherwise
, (5.1)

where ∆U1,U2
and Ã are given in (3.3) and (3.4)).

Lemma 5.2. Under (B1)–(B5), we have

E‖ãj,o,U1,U2
− aj,o,U1,U2

‖2L2(P∆,j−1) ≤ c̃(Σ + Ã2∆2
U1,U2

(logN + 1))
Q

N
+

8Cκ
Qκ

, (5.2)

where c̃ is a universal constant.

Notice that the expectation in the left-hand side of (5.2) means averaging over the randomness in Dtr
N .

Let (X∆,j∆)j=0,...,J be a testing path, which is independent of the training paths Dtr
N . We define

M̃
(2),trunc
∆,T :=

J∑
j=1

∑
(U1,U2)∈A

|U2|+|K2|+ 1
2 |K1|≤1

∑
o∈{1,2}U1

ãj,o,U1,U2
(X∆,(j−1)∆, D

tr
N )

∏
r∈U1

Hor (ξ
r
j )

∏
(k,l)∈U2

V klj (5.3)

(cf. (3.5)). Lemma 5.2 now allows to bound the variance Var[f(X∆,T )− M̃ (2),trunc
∆,T ] from above.3

Theorem 5.3. Under (B1)–(B5), it holds

Var[f(X∆,T )− M̃ (2),trunc
∆,T ] . ∆2 + Jm(m+ 1)

(
c̃(Σ + Ã2∆(logN + 1))

Q

N
+

8Cκ
Qκ

)
.

5.1. Complexity of the TRCV approach

Let us study the complexity of the TRCV approach. The overall cost is of order JQmax {NQ,N0}, provided
that we only track the constants which tend to ∞ when ε↘ 0 with ε being the accuracy to be achieved. That
is, the constants, such as d,m, κ, Cκ, are ignored. We have the following constraints

max

{
1

J4
,

1

J2N0
,
JQ

NN0
,

J

QκN0

}
. ε2, (5.4)

where the first term comes from the squared bias of the estimator and the remaining three ones come from the
variance of the estimator (see Theorem 5.3 as well as footnote 3 on page 26). We get the following result.

3Notice that the variance of the TRCV estimate 1
N0

∑N0
i=1

[
f
(
X

(i)
∆,T

)
− M̃

(2),trunc,(i)
∆,T

]
with N0 testing paths is

1
N0

Var[f(X∆,T )− M̃
(2),trunc
∆,T ] (cf. (4.4)).
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Theorem 5.4. For the TRCV approach with the second order weak schemes under (B1)–(B5), it is optimal to
choose the orders of parameters as follows (cf. [4])

J � ε− 1
2 , Q � ε−

5
4κ+4 , N � ε− 5

4 , N0 � NQ � ε−
5κ+10
4κ+4 ,

provided that κ > 1.4 Thus, we have for the complexity

CTRCV � JNQ2 � JN0Q � ε−
7κ+17
4κ+4 . (5.5)

Remark 5.5. (i) For the sake of comparison with the SMC and MLMC approaches, we recall at this point
that their complexities are

CSMC � ε−2.5 and CMLMC � ε−2

at best (we are considering the second order scheme).
(ii) Complexity estimate (5.5) shows that one can go beyond the complexity order ε−2, provided that κ > 9,

and that we can achieve the complexity order ε−1.75−δ, for arbitrarily small δ > 0, provided κ is large enough.
(iii) The complexity of the TRCV approach is the same that we obtain for the RCV approach (where the

“complete” control variate (2.12) is estimated), since the second constraint in (5.4), which does not arise for the
RCV approach, is the only inactive one in this case. That is why we truncated M (2),trunc

∆,T in (3.5) at the level
|U2|+ |K2|+ 1

2 |K1| ≤ 1. For instance, if we had used a control variate of the form (cf. (3.1))

J∑
j=1

∑
(U1,U2)∈A

|U2|+|K2|+ 1
2 |K1|= 1

2

∑
o∈{1,2}U1

aj,o,U1,U2
(X∆,(j−1)∆)

∏
r∈U1

Hor (ξ
r
j )

∏
(k,l)∈U2

V klj

=

J∑
j=1

m∑
i=1

aj,1,i,∅(X∆,(j−1)∆)ξij

with aj,1,i,∅(x) = E
[
f(X∆,T )ξij | X∆,(j−1)∆ = x

]
, the bound for the variance in (3.6) would have been of order

∆ and due to the resulting constraint 1
JN0

. ε2, we would have obtained worse complexities than ε−2, since
CTRCV & JN0.

6. Numerical results

The results below are based on program codes written and vectorised in MATLAB and running on a Linux
64-bit operating system.

Let us consider the following SDE for d = m = 5 (cf. [1])

dXi
t = − sin

(
Xi
t

)
cos3

(
Xi
t

)
dt+ cos2

(
Xi
t

)
dW i

t , Xi
0 = 0, i ∈ {1, 2, 3, 4} ,

dX5
t =

4∑
i=1

[
−1

2
sin
(
Xi
t

)
cos2

(
Xi
t

)
dt+ cos

(
Xi
t

)
dW i

t

]
+ dW 5

t , X5
0 = 0. (6.1)

4Performing the full complexity analysis via Lagrange multipliers one can see that these parameter values are not optimal if
κ ≤ 1 (a Lagrange multiplier corresponding to a “≤ 0” constraint is negative). Recall that in the case of piecewise polynomial
regression (see [1] and recall Remark 5.1) we have κ =

2ν(p+1)
2d(p+1)+dν

. Let us note that in [1] it is required to choose the parameters

p and ν according to p > d−2
2

and ν > 2d(p+1)
2(p+1)−d , which implies that κ > 1, for κ expressed via p and ν by the above formula.
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The solution of (6.1) is given by

Xi
t = arctan

(
W i
t

)
, i ∈ {1, 2, 3, 4} ,

X5
t =

4∑
i=1

arsinh
(
W i
t

)
+W 5

t .

for t ∈ [0, 1]. Further, we consider the functional

f(x) = cos

(
5∑
i=1

xi

)
− 20

4∑
i=1

sin
(
xi
)
,

that is, we have

E [f (X1)] =
(
E
[
cos
(
arctan

(
W 1

1

)
+ arsinh

(
W 1

1

))])4 E [cos
(
W 5

1

)]
≈ 0.002069.

Here we consider weak schemes of the second order and compare the numerical performances of the SMC,
MLMC, RCV, TRCV and TSRCV approaches. The latter one is the truncated version of the SRCV approach
of [4]. Like the RCV algorithm, the SRCV one is based on (2.12), the difference is only in how to implement
the approximations of the coefficients aj,o,U1,U2

in practice (while the RCV algorithm is a direct Monte Carlo
regression, in the SRCV algorithm the regression is combined with a kind of “stratification”; see [4] for more
detail). Therefore, the idea of the truncation (i.e. replacing (2.12) with (3.5)) applies also to the SRCV approach
and gives us the TSRCV one.

For simplicity we implemented a global regression for the RCV, TRCV and TSRCV approaches (i.e. the one
without considering the truncation operator in (5.1), as a part of the general description in Section 4). More
precisely, we use quadratic polynomials (that is

∏5
i=1 x

li
i , where l1, . . . l5 ∈ {0, 1, 2} and

∑5
l=1 li ≤ 2) as well as

f as basis functions, hence ΨQ consists of Q =
(

7
5

)
+ 1 = 22 basis functions.

Note that we do not need to consider random variables V klj in the second order weak scheme, since Lkσrl(x) =
0 for k 6= l (see (2.8)). This gives us less terms for the RCV approach, namely 3m − 1 = 242 rather than
3m2

m(m−1)
2 − 1 = 248831 terms in (2.12) (the factor 2

m(m−1)
2 ≡ 1024 is no longer present). As for the TRCV

and TSRCV approaches, this gives us only m(m+3)
2 = 20 compared to m(m+ 1) = 30 terms in (3.5).

We choose κ = 1.2, which is related to the piecewise polynomial regression with polynomial degree p = 2
(comparable to our setting) and the limiting case ν → ∞ (see footnote 4 on page 27). Moreover, for each
ε = 2−i, i ∈ {2, 3, 4, 5, 6}, we set the parameters J , N and N0 for the RCV, TRCV and TSRCV approaches as
follows (compare with the formulas in Subsection 5.1):

J =
⌈
ε−0.5

⌉
, N =

{
512 · dε−1.25e, RCV, TRCV,
2048 · dε−1.25e, TSRCV,

N0 = 512 · dε−1.82e.

The factors 512 and 2048 are here for stability purposes. For the TRCV and SMC algorithms we additionally
consider ε = 2−7, which produces a picture with approximately equal maximal computational time (that is,
the time corresponding to the best accuracy) for all algorithms. Next we estimate the numerical complexity
for the RCV, TRCV and TSRCV approaches by means of 100 independent simulations and compare it with
the one for the SMC and MLMC approach, for which we use the same output as in [1]. As can be seen from
Figure 1, the estimated numerical complexity is about RMSE−1.85 for the RCV approach, RMSE−1.83 for the
TRCV approach, RMSE−1.53 for the TSRCV approach, RMSE−2.67 for the SMC approach and RMSE−2.01

for the MLMC approach, which we get by regressing the log-time (logarithmic computing time of the whole
algorithm in seconds) vs. log-RMSE. Beyond the numerical complexities we observe that the truncation effect
from RCV algorithm to its truncated versions is huge. While we have poor results for the RCV approach (as



ESAIM: PROCEEDINGS AND SURVEYS 29

in [1]), i.e. in this region of ε-values the RCV approach is numerically outperformed by the other ones, the
TRCV and TSRCV approaches work best (even better than the SMC and MLMC approaches).

-12 -10 -8 -6 -4 -2 0
0

5

10

15

Figure 1. Numerical complexities of the RCV, TRCV, TSRCV, SMC and MLMC approaches.

7. Proofs

Proof of Theorem 1.1

We begin with the following remark. Assumptions (1.5) and (1.6) together with the Cauchy-Schwarz in-
equality |E[XY |G]| ≤

√
E[X2|G]E[Y 2|G] imply that the following generalisation of (1.6) is satisfied: for any

n1, n2 ∈ N, α, β ∈ Nd0, with 1 ≤ |α| ≤ K, 1 ≤ |β| ≤ K, α 6= β, it holds∣∣∣E [(DαΦk∆,l+1(Gl,j(x))
)n1
(
DβΦk∆,l+1(Gl,j(x))

)n2
∣∣∣Gl]∣∣∣ ≤ Cn1,n2∆ (7.1)

for some appropriate constants Cn1,n2 > 0.
Let us begin with the case K = 1. We have for some k, r ∈ {1, . . . , d}

∂

∂xr
Gkl+1,j(x) =

d∑
s=1

∂

∂xs
Φk∆,l+1(Gl,j(x))

∂

∂xr
Gsl,j(x) =:

d∑
s=1

γs

and ∂
∂xrG

s
j+1,j(x) = ∂

∂xr Φs∆ (x, ξj+1), where Gsl+1,j and Φs∆, s ∈ {1, . . . , d}, denote the s-th component of the
functions Gl+1,j and Φ∆. Hence

E

[(
∂

∂xr
Gkl+1,j(x)

)2
]
≤ E

γ2
k +

∑
s: s6=k

(
2γkγs + (d− 1)γ2

s

) .
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For an arbitrary j ∈ {0, . . . , J − 1}, denote

ρr,sl+1,n,1 := E
[(

∂

∂xr
Gsl+1,j(x)

)n]
,

then, due to (1.5) and (7.1), we get for l = j, . . . , J − 1,

ρr,kl+1,2,1 ≤ (1 +A2∆)ρr,kl,2,1 +
∑
s: s6=k

(
C1,1∆(ρr,kl,2,1 + ρr,sl,2,1) + (d− 1)B2∆ρr,sl,2,1

)
.

Further, denote

ρrl+1,n,1 :=

d∑
s=1

ρr,sl+1,n,1,

then we get

ρrl+1,2,1 ≤ (1 +A2∆)ρrl,2,1 + 2(d− 1)C1,1∆ρrl,2,1 + (d− 1)2B2∆ρrl,2,1.

This gives us
ρrl+1,2,1 ≤ (1 + κ1∆)ρrl,2,1

for some constant κ1 > 0, leading to

ρrl,2,1 ≤ (1 + κ1∆)l−j−1ρrj+1,2,1, l = j + 1, . . . , J − 1, (7.2)

where

ρrj+1,2,1 =

d∑
s=1

E

[(
∂

∂xr
Φs∆ (x, ξj+1)

)2
]
,

which is bounded due to (1.5). Together with (7.2) we obtain the boundedness of {ρrJ,2,1 : J ∈ N} and hence
the boundedness of ∣∣∣∣ ∂∂xr qj(x)

∣∣∣∣ ≤ d∑
s=1

E
∣∣∣∣ ∂∂xs f(GJ,j(x))

∂

∂xr
GsJ,j(x)

∣∣∣∣
≤

d∑
s=1

√√√√E

[(
∂

∂xs
f(GJ,j(x))

)2
]
ρr,sJ,2,1

≤

√√√√d

d∑
s=1

E

[(
∂

∂xs
f(GJ,j(x))

)2
]
ρr,sJ,2,1 ≤ const

√
ρrJ,2,1

for all r ∈ {1, . . . , d}, since f is assumed to be continuously differentiable with bounded partial derivatives.
Let us proceed with the case K = 2. We have, due to (

∑d
k=1 ak)n ≤ dn−1

∑d
k=1 a

n
k ,

E

[(
∂

∂xr
Gkl+1,j(x)

)4
]

≤ E

γ4
k +

∑
s: s 6=k

(
4γ3
kγs + 6(d− 1)γ2

kγ
2
s + 4(d− 1)2γkγ

3
s + (d− 1)3γ4

s

)
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and thus, due to 4a3b ≤ 3a4 + b4 and 2a2b2 ≤ a4 + b4,

ρr,kl+1,4,1 ≤ (1 +A4∆)ρr,kl,4,1 +
∑
s: s 6=k

(
C3,1∆(3ρr,kl,4,1 + ρr,sl,4,1) + 3(d− 1)C2,2∆(ρr,kl,4,1 + ρr,sl,4,1)

+(d− 1)2C1,3∆(ρr,kl,4,1 + 3ρr,sl,4,1) + (d− 1)3B4∆ρr,sl,4,1

)
.

This gives us

ρrl+1,4,1 ≤ (1 +A4∆)ρrl,4,1 + 4(d− 1)C3,1∆ρrl,4,1 + 6(d− 1)2C2,2∆ρrl,4,1

+4(d− 1)3C1,3∆ρrl,4,1 + (d− 1)4B4∆ρrl,4,1.

Hence, we obtain
ρrl+1,4,1 ≤ (1 + κ2∆)ρrl,4,1,

for some constant κ2 > 0, leading to

ρrl,4,1 ≤ (1 + κ2∆)l−j−1ρrj+1,4,1, l = j + 1, . . . , J − 1,

where

ρrj+1,4,1 =

d∑
s=1

E

[(
∂

∂xr
Φs∆ (x, ξj+1)

)4
]
.

Next, we have for some k, o, r ∈ {1, . . . , d}

∂2

∂xr∂xo
Gkl+1,j(x) =

d∑
s=1

∂

∂xs
Φk∆,l+1(Gl,j(x))

∂2

∂xr∂xo
Gsl,j(x)

+

d∑
s,u=1

∂2

∂xs∂xu
Φk∆,l+1(Gl,j(x))

∂

∂xr
Gsl,j(x)

∂

∂xo
Gul,j(x)

=:

d∑
s=1

η1,s +

d∑
s,u=1

η2,s,u

and ∂2

∂xr∂xoG
s
j+1,j(x) = ∂2

∂xr∂xoΦs∆ (x, ξj+1). Hence

E

[(
∂2

∂xr∂xo
Gkl+1,j(x)

)2
]

≤ E

η2
1,k +

∑
s: s6=k

(
2η1,kη1,s + (d− 1)η2

1,s

)
+ 2

d∑
s,u,v=1

η1,vη2,s,u + d2
d∑

s,u=1

η2
2,s,u


Denote

ρr,o,sl+1,n,2 = E
[(

∂2

∂xr∂xo
Gsl+1,j(x)

)n]
,

then we get, due to

2E [XY Z] ≤ 2
√
E [X2] 4

√
E [Y 4] 4

√
E [Z4] ≤ E

[
X2
]

+
√
E [Y 4]

√
E [Z4]

≤ E
[
X2
]

+
1

2

(
E
[
Y 4
]

+ E
[
Z4
])
,
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as well as (1.5) and (7.1),

ρr,o,kl+1,2,2 ≤ (1 +A2∆)ρr,o,kl,2,2 +
∑
s: s 6=k

(
C1,1∆(ρr,o,kl,2,2 + ρr,o,sl,2,2 ) + (d− 1)B2∆ρr,o,sl,2,2

)

+

d∑
s,u,v=1

C1,1∆

(
ρr,o,vl,2,2 +

1

2

(
ρr,sl,4,1 + ρo,ul,4,1

))

+d2
d∑

s,u=1

B2∆
1

2

(
ρr,sl,4,1 + ρo,ul,4,1

)
.

Further, denote

ρr,ol+1,n,2 =

d∑
s=1

ρr,o,sl+1,n,2,

then we get for l = j + 1, . . . , J − 1,

ρr,ol+1,2,2 ≤ (1 +A2∆)ρr,ol,2,2 + 2(d− 1)C1,1∆ρr,ol,2,2 + (d− 1)2B2∆ρr,ol,2,2

+d3C1,1∆

(
ρr,ol,2,2 +

1

2

(
ρrl,4,1 + ρol,4,1

))
+ d4B2∆

1

2

(
ρrl,4,1 + ρol,4,1

)
.

This gives us
ρr,ol+1,2,2 ≤ (1 + κ3∆)ρr,ol,2,2 + κ4∆,

for some constants κ3, κ4 > 0, leading to

ρr,ol,2,2 ≤ (1 + κ3∆)l−j−1ρr,oj+1,2,2 + κ5, l = j + 1, . . . , J − 1,

where κ5 > 0 and

ρr,oj+1,2,2 =

d∑
s=1

E

[(
∂2

∂xr∂xo
Φs∆ (x, ξj+1)

)2
]
.

Thus, we obtain the boundedness of

∣∣∣∣ ∂2

∂xr∂xo
qj(x)

∣∣∣∣ ≤ d∑
s=1

E
∣∣∣∣ ∂∂xs f(GJ,j(x))

∂2

∂xr∂xo
GsJ,j(x)

∣∣∣∣
+

d∑
s,u=1

E
∣∣∣∣ ∂2

∂xs∂xu
f(GJ,j(x))

∂

∂xr
GsJ,j(x)

∂

∂xo
GuJ,j(x)

∣∣∣∣
≤

d∑
s=1

√√√√E

[(
∂

∂xs
f(GJ,j(x))

)2
]
ρr,o,sJ,2,2

+

d∑
s,u=1

√√√√E

[(
∂2

∂xs∂xu
f(GJ,j(x))

)2
]

4

√
ρr,sJ,4,1ρ

o,u
J,4,1

for all r, o ∈ {1, . . . , d}, since f is assumed to be twice continuously differentiable with bounded partial derivatives
up to order 2.
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Let us proceed with the final case K = 3. We have

E

[(
∂

∂xr
Gkl+1,j(x)

)6
]

≤ E

γ6
k +

∑
s: s6=k

(
6γ5
kγs + 15(d− 1)γ4

kγ
2
s + 20(d− 1)2γ3

kγ
3
s + 15(d− 1)3γ2

kγ
4
s

+6(d− 1)4γkγ
5
s + (d− 1)5γ6

s

)]
and thus, due to 6a5b ≤ 5a6 + b6, 3a4b2 ≤ 2a6 + b6 and 2a3b3 ≤ a6 + b6,

ρr,kl+1,6,1 ≤ (1 +A6∆)ρr,kl,6,1

+
∑
s: s6=k

(
C5,1∆(5ρr,kl,6,1 + ρr,sl,6,1) + 5(d− 1)C4,2∆(2ρr,kl,6,1 + ρr,sl,6,1)

+ 10(d− 1)2C3,3∆(ρr,kl,6,1 + ρr,sl,6,1) + 5(d− 1)3C2,4∆(ρr,kl,6,1 + 2ρr,sl,6,1)

+(d− 1)4C1,5∆(ρr,kl,6,1 + 5ρr,sl,6,1) + (d− 1)5B6∆ρr,sl,6,1

)
.

This gives us

ρrl+1,6,1 ≤ (1 +A6∆)ρrl,6,1 + 6(d− 1)C5,1∆ρrl,6,1 + 15(d− 1)2C4,2∆ρrl,6,1

+20(d− 1)3C3,3∆ρrl,6,1 + 15(d− 1)4C2,4∆ρrl,6,1 + 6(d− 1)5C1,5∆ρrl,6,1

+(d− 1)6B6∆ρrl,6,1.

Hence, we obtain
ρrl+1,6,1 ≤ (1 + κ6∆)ρrl,6,1

for some constant κ6 > 0, leading to

ρrl,6,1 ≤ (1 + κ6∆)l−j−1ρrj+1,6,1, l = j + 1, . . . , J − 1,

where

ρrj+1,6,1 =

d∑
s=1

E

[(
∂

∂xr
Φs∆ (x, ξj+1)

)6
]

Moreover, we have

E

[(
∂

∂xr
Gkl+1,j(x)

)8
]

≤ E

γ8
k +

∑
s: s6=k

(
8γ7
kγs + 28(d− 1)γ6

kγ
2
s + 56(d− 1)2γ5

kγ
3
s + 70(d− 1)3γ4

kγ
4
s

+56(d− 1)4γ3
kγ

5
s + 28(d− 1)5γ2

kγ
6
s + 8(d− 1)6γkγ

7
s + (d− 1)7γ8

s

)]
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and thus, due to 8a7b ≤ 7a8 + b8, 4a6b2 ≤ 3a8 + b8, 8a5b3 ≤ 5a8 + 3b8 and 2a4b4 ≤ a8 + b8,

ρr,kl+1,8,1 ≤ (1 +A8∆)ρr,kl,8,1

+
∑
s: s6=k

(
C7,1∆(7ρr,kl,8,1 + ρr,sl,8,1) + 7(d− 1)C6,2∆(3ρr,kl,8,1 + ρr,sl,8,1)

+ 7(d− 1)2C5,3∆(5ρr,kl,8,1 + 3ρr,sl,8,1) + 35(d− 1)3C4,4∆(ρr,kl,8,1 + ρr,sl,8,1)

+ 7(d− 1)4C3,5∆(3ρr,kl,8,1 + 5ρr,sl,8,1) + 7(d− 1)5C2,6∆(ρr,kl,8,1 + 3ρr,sl,8,1)

+(d− 1)6C1,7∆(ρr,kl,8,1 + 7ρr,sl,8,1) + (d− 1)7B8∆ρr,sl,8,1

)
.

This gives us

ρrl+1,8,1 ≤ (1 +A8∆)ρrl,8,1 + 8(d− 1)C7,1∆ρrl,8,1 + 28(d− 1)2C6,2∆ρrl,8,1

+56(d− 1)3C5,3∆ρrl,8,1 + 70(d− 1)4C4,4∆ρrl,8,1

+56(d− 1)5C3,5∆ρrl,8,1 + 28(d− 1)6C2,6∆ρrl,8,1

+8(d− 1)7C1,7∆ρrl,8,1 + (d− 1)8B8∆ρrl,8,1.

Hence, we obtain

ρrl+1,8,1 ≤ (1 + κ7∆)ρrl,8,1,

for some constant κ7 > 0, leading to

ρrl,8,1 ≤ (1 + κ7∆)l−j−1ρrj+1,8,1, l = j + 1, . . . , J − 1,

where

ρrj+1,8,1 =

d∑
s=1

E

[(
∂

∂xr
Φs∆ (x, ξj+1)

)8
]
.

Moreover, we have

E

[(
∂2

∂xr∂xo
Gkl+1,j(x)

)4
]

≤ E

η4
1,k +

∑
s: s6=k

(
4η3

1,kη1,s + 6(d− 1)η2
1,kη

2
1,s + 4(d− 1)2η1,kη

3
1,s + (d− 1)3η4

1,s

)
+

d∑
s,u,v=1

(
4d2η3

1,vη2,s,u + 6d3η2
1,vη

2
2,s,u + 4d4η1,vη

3
2,s,u

)
+ d6

d∑
s,u=1

η4
2,s,u

]
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and thus, due to 4a3bc ≤ 3a4 + 1
2

(
b8 + c8

)
, 2a2b2c2 ≤ a4 + 1

2

(
b8 + c8

)
and 4ab3c3 ≤ a4 + 3

2

(
b8 + c8

)
,

ρr,o,kl+1,4,2 ≤ (1 +A4∆)ρr,o,kl,4,2

+
∑
s: s6=k

(
C3,1∆(3ρr,o,kl,4,2 + ρr,o,sl,4,2 ) + 3(d− 1)C2,2∆(ρr,o,kl,4,2 + ρr,o,sl,4,2 )

+(d− 1)2C1,3∆(ρr,o,kl,4,2 + 3ρr,o,sl,4,2 ) + (d− 1)3B4∆ρr,o,sl,4,2

)

+

d∑
s,u,v=1

(
d2C3,1∆

(
3ρr,o,vl,4,2 +

1

2

(
ρr,sl,8,1 + ρo,ul,8,1

))

+ 3d3C2,2∆

(
ρr,o,vl,4,2 +

1

2

(
ρr,sl,8,1 + ρo,ul,8,1

))

+d4C1,3∆

(
ρr,o,vl,4,2 +

3

2

(
ρr,sl,8,1 + ρo,ul,8,1

)))

+d6
d∑

s,u=1

B4∆
1

2

(
ρr,sl,8,1 + ρo,ul,8,1

)
.

This gives us

ρr,ol+1,4,2 ≤ (1 +A4∆)ρr,ol,4,2 + 4(d− 1)C3,1∆ρr,ol,4,2 + 6(d− 1)2C2,2∆ρr,ol,4,2

+4(d− 1)3C1,3∆ρrl,4,1 + (d− 1)4B4∆ρr,ol,4,2

+d5C3,1∆

(
3ρr,ol,4,2 +

1

2

(
ρrl,8,1 + ρol,8,1

))
+3d6C2,2∆

(
ρr,ol,4,2 +

1

2

(
ρrl,8,1 + ρol,8,1

))
+d7C1,3∆

(
ρr,ol,4,2 +

3

2

(
ρrl,8,1 + ρol,8,1

))
+ d8B4∆

1

2

(
ρrl,8,1 + ρol,8,1

)
.

Hence, we obtain

ρr,ol+1,4,2 ≤ (1 + κ8∆)ρr,ol,4,2 + κ9∆,

for some constants κ8, κ9 > 0, leading to

ρr,ol,4,2 ≤ (1 + κ8∆)l−j−1ρr,oj+1,4,2 + κ10, l = j + 1, . . . , J − 1,

where κ10 > 0 and

ρr,oj+1,4,2 =

d∑
s=1

E

[(
∂2

∂xr∂xo
Φs∆ (x, ξj+1)

)4
]
.
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Next, we have for some k, o, r, z ∈ {1, . . . , d}

∂3

∂xr∂xo∂xz
Gkl+1,j(x)

=

d∑
s=1

∂

∂xs
Φk∆,l+1(Gl,j(x))

∂3

∂xr∂xo∂xz
Gsl,j(x)

+

d∑
s,u=1

∂2

∂xs∂xu
Φk∆,l+1(Gl,j(x))

(
∂2

∂xr∂xo
Gsl,j(x)

∂

∂xz
Gul,j(x) +

∂2

∂xr∂xz
Gsl,j(x)

∂

∂xo
Gul,j(x)

+
∂

∂xr
Gsl,j(x)

∂2

∂xo∂xz
Gul,j(x)

)

+

d∑
s,u,v=1

∂3

∂xs∂xu∂xv
Φk∆,l+1(Gl,j(x))

∂

∂xr
Gsl,j(x)

∂

∂xo
Gul,j(x)

∂

∂xz
Gvl,j(x)

=:

d∑
s=1

ψ1,s +

d∑
s,u=1

ψ2,s,u +

d∑
s,u,v=1

ψ3,s,u,v

and ∂3

∂xr∂xo∂xzG
s
j+1,j(x) = ∂3

∂xr∂xo∂xz Φs∆ (x, ξj+1). Hence

E

[(
∂3

∂xr∂xo∂xz
Gkl+1,j(x)

)2
]

≤ E

ψ2
1,k +

∑
s: s6=k

(
2ψ1,kψ1,s + (d− 1)ψ2

1,s

)
+ 2

d∑
s,u,v=1

ψ1,vψ2,s,u

+2

d∑
s,u,v,w=1

ψ1,wψ3,s,u,v + 2d2
d∑

s,u=1

ψ2
2,s,u + 2d3

d∑
s,u,v=1

ψ2
3,s,u,v

]

Denote

ρr,o,z,sl+1,n,3 = E
[(

∂3

∂xr∂xo∂xz
Gsl+1,j(x)

)n]
,

then we get, due to 3a2b2c2 ≤ a6 + b6 + c6 and

2E [XY ZU ] ≤2
√
E [X2] 6

√
E [Y 6] 6

√
E [Z6] 6

√
E [U6] ≤ E

[
X2
]

+ 3
√
E [Y 6] 3

√
E [Z6] 3

√
E [U6]

≤ E
[
X2
]

+
1

3

(
E
[
Y 6
]

+ E
[
Z6
]

+ E
[
U6
])
,
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as well as (1.5) and (7.1),

ρr,o,z,kl+1,2,3 ≤ (1 +A2∆)ρr,o,z,kl,2,3 +
∑
s: s6=k

(
C1,1∆(ρr,o,z,kl,2,3 + ρr,o,z,sl,2,3 ) + (d− 1)B2∆ρr,o,z,sl,2,3

)

+

d∑
s,u,v=1

C1,1∆

(
ρr,o,z,vl,2,2 +

1

2

(
ρr,sl,4,1 + ρo,ul,4,1 + ρz,ul,4,1 + ρr,o,sl,4,2 + ρr,z,sl,4,2 + ρo,z,ul,4,2

))

+

d∑
s,u,v,w=1

C1,1∆

(
ρr,o,z,wl,2,2 +

1

3

(
ρr,sl,6,1 + ρo,ul,6,1 + ρz,vl,6,1

))

+3d2
d∑

s,u=1

B2∆
(
ρr,sl,4,1 + ρo,ul,4,1 + ρz,ul,4,1 + ρr,o,sl,4,2 + ρr,z,sl,4,2 + ρo,z,ul,4,2

)

+d3
d∑

s,u,v=1

B2∆
1

3

(
ρr,sl,6,1 + ρo,ul,6,1 + ρz,vl,6,1

)
.

Further, denote

ρr,o,zl+1,2,3 =

d∑
s=1

ρr,o,z,sl+1,2,3,

then we get

ρr,o,zl+1,2,3 ≤ (1 +A2∆)ρr,o,zl,2,2 + 2(d− 1)C1,1∆ρr,o,zl,2,2 + (d− 1)2B2∆ρr,o,zl,2,2

+d3C1,1∆

(
ρr,o,zl,2,2 +

1

2

(
ρrl,4,1 + ρol,4,1 + ρzl,4,1 + ρr,ol,4,2 + ρr,zl,4,2 + ρo,zl,4,2

))
+d4C1,1∆

(
ρr,o,zl,2,2 +

1

3

(
ρrl,6,1 + ρol,6,1 + ρzl,6,1

))
+3d4B2∆

(
ρrl,4,1 + ρol,4,1 + ρzl,4,1 + ρr,ol,4,2 + ρr,zl,4,2 + ρo,zl,4,2

)
+d6B2∆

1

3

(
ρrl,6,1 + ρol,6,1 + ρzl,6,1

)
.

This gives us

ρr,o,zl+1,2,3 ≤ (1 + κ11∆)ρr,o,zl,2,2 + κ12∆,

for some constants κ11, κ12 > 0, leading to

ρr,o,zl,2,2 ≤ (1 + κ11∆)l−j−1ρr,o,zj+1,2,3 + κ13, l = j + 1, . . . , J − 1,

where κ13 > 0 and

ρr,o,zj+1,2,3 =

d∑
s=1

E

[(
∂3

∂xr∂xo∂xz
Φs∆ (x, ξj+1)

)2
]
.
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Thus, we obtain the boundedness of∣∣∣∣ ∂3

∂xr∂xo∂xz
qj(x)

∣∣∣∣
≤

d∑
s=1

E
∣∣∣∣ ∂∂xs f(GJ,j(x))

∂3

∂xr∂xo∂xz
GsJ,j(x)

∣∣∣∣
+

d∑
s,u=1

E
∣∣∣∣ ∂2

∂xs∂xu
f(GJ,j(x))

(
∂2

∂xr∂xo
GsJ,j(x)

∂

∂xz
GuJ,j(x) +

∂2

∂xr∂xz
GsJ,j(x)

∂

∂xo
GuJ,j(x)

+
∂

∂xr
GsJ,j(x)

∂2

∂xo∂xz
GuJ,j(x)

)∣∣∣∣
+

d∑
s,u,v=1

E
∣∣∣∣ ∂3

∂xs∂xu∂xv
f(GJ,j(x))

∂

∂xr
GsJ,j(x)

∂

∂xo
GuJ,j(x)

∂

∂xz
GvJ,j(x)

]

≤
d∑
s=1

√√√√E

[(
∂

∂xs
f(GJ,j(x))

)2
]
ρr,o,z,sJ,2,3

+

d∑
s,u=1

√√√√E

[(
∂2

∂xs∂xu
f(GJ,j(x))

)2
](

4

√
ρr,o,sJ,4,2ρ

z,u
J,4,1 + 4

√
ρr,z,sJ,4,2ρ

o,u
J,4,1 + 4

√
ρr,sJ,4,1ρ

o,z,u
J,4,2

)

+

d∑
s,u,v=1

√√√√E

[(
∂3

∂xs∂xu∂xv
f(GJ,j(x))

)2
]

6

√
ρr,sJ,6,1ρ

o,u
J,6,1ρ

z,v
J,6,1

for all r, o, z ∈ {1, . . . , d}, since f is assumed to be three times continuously differentiable with bounded partial
derivatives up to order 3.

7.1. Proof of Theorem 3.1

(i) Straightforward.
(ii) Let us define µ∆(x) := x+ µ(x)∆. Then we obtain via Taylor’s theorem (cf. (2.2))

qj(Φ∆(x, y)) = qj(µ∆(x)) +
√

∆

d∑
k=1

m∑
i=1

σki(x)yi
1ˆ

0

∂qj
∂xk

(µ∆(x) + tσ(x)
√

∆y) dt.

This gives us (see (2.5))

aj,r,s(x) =
1

2m

∑
y∈{−1,1}m

qj(Φ∆(x, y))

r∏
o=1

yso

=

√
∆

2m

∑
y∈{−1,1}m

(
r∏
o=1

yso

)
d∑
k=1

m∑
i=1

σki(x)yi
1ˆ

0

∂qj
∂xk

(µ∆(x) + tσ(x)
√

∆y) dt, (7.3)

since
1

2m

∑
y∈{−1,1}m

r∏
o=1

yso = E

[
r∏
o=1

ξsoj

]
= 0.
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Next we apply Theorem 1.1 for the caseK = 1 to get that all the functions qj are continuously differentiable with
bounded partial derivatives. Clearly, the assumptions in this theorem hold, when all the functions f, µk, σki,
k ∈ {1, . . . , d}, i ∈ {1, . . . ,m} are continuously differentiable with bounded derivatives. Together with the
assumption, that all the functions σki are bounded, we get from (7.3) that aj,r,s is of order

√
∆ for all j, r, s.

7.2. Proof of Theorem 3.2

Let us consider a higher order Taylor expansion compared to the proof of Theorem 3.1 and recall that
µ∆(x) = x+ µ(x)∆. We have for any y ∈ {−1, 1}m

qj(Φ∆(x, y)) =qj(µ∆(x)) +
√

∆

d∑
k=1

∂

∂xk
qj(µ∆(x))

m∑
i=1

σki(x)yi

+ ∆

d∑
k,l=1

(2− δk,l)
1ˆ

0

(1− t) ∂2

∂xk∂xl
qj(µ∆(x) + t

√
∆σ(x)y) dt

m∑
i=1

σki(x)yi
m∑
i=1

σli(x)yi, (7.4)

where δ·,· is the Kronecker delta. This gives us for r ≥ 2 (cf. (2.5))

aj,r,s(x) =
1

2m

∑
y∈{−1,1}m

qj(Φ∆(x, y))

r∏
o=1

yso

=
∆

2m

d∑
k,l=1

(2− δk,l)
∑

y∈{−1,1}m

(
m∑
i=1

σki(x)yi
m∑
i=1

σli(x)yi
r∏
o=1

yso

·
1ˆ

0

(1− t) ∂2

∂xk∂xl
qj(µ∆(x) + t

√
∆σ(x)y) dt

 , (7.5)

due to (cf. (7.4))

1

2m

∑
y∈{−1,1}m

yi
r∏
o=1

yso = E

[
ξij

r∏
o=1

ξsoj

]
= 0 (7.6)

for all i ∈ {1, . . . ,m}. (Note that (7.6) does not hold for r = 1.) Applying Theorem 1.1 (case K = 2), we
get that qj is twice continuously differentiable with bounded partial derivatives up to order 2, provided that
all the functions f, µk, σk,i are twice continuously differentiable with bounded partial derivatives up to order 2.
Together with the assumption, that all the functions σkl are bounded, we get from (7.5) that aj,r,s is of order
∆ for all j, r, s with r > 1.
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7.3. Proof of Theorem 3.4

Here we apply Theorem 3.2, which gives us (cf. (2.6))

Var
[
f(X∆,T )−M (1),trunc

∆,T

]
= Var

[
M

(1)
∆,T −M

(1),trunc
∆,T

]
= Var

 J∑
j=1

m∑
r=2

∑
1≤s1<...<sr≤m

aj,r,s(X∆,(j−1)∆)

r∏
i=1

ξsij


.

J∑
j=1

m∑
r=2

∑
1≤s1<...<sr≤m

E
[
a2
j,r,s(X∆,(j−1)∆)

]
. ∆,

since E
[
a2
j,r,s(X∆,(j−1)∆)

]
. ∆2 for all j, r, s with r > 1.

7.4. Proof of Theorem 3.5

The proof works similarly to the one of Theorem 3.1. More precisely, here we define (cf. (2.8))

µ∆(x) := x+ µ(x)∆ +
1

2
L0µ(x) ∆2.

Then we derive the zero-order Taylor expansion for qj(Φ∆(x, y, z)) around µ∆(x), use that

E

 ∏
r∈U1

Hor (ξ
r
j )

∏
(k,l)∈U2

V klj

 = 0

and observe that all components Φ̃k∆(x, y, z) := Φk∆(x, y, z)−µk∆(x), k ∈ {1, . . . , d} (as an analogue of
√

∆
∑m
i=1 σ

ki(x)yi

in case of the weak Euler scheme), are of order
√

∆ under less strict assumptions than required in the present
theorem. Finally we apply Theorem 1.1 (case K = 1) which gives us that qj is continuously differentiable
with bounded partial derivatives under the assumptions, that all functions µk and σki are bounded and all the
functions f, µk, σki are three-times continuously differentiable with bounded partial derivatives up to order 3.
Consequently, all the functions aj,o,U1,U2 are of order

√
∆.

7.5. Proof of Theorem 3.6

(i) The proof works similarly to the one of Theorem 3.2, that is, we consider a Taylor expansion for
qj(Φ∆(x, y, z)) of order 1, around the same point µ∆(x) as in the proof of Theorem 3.5. Then we use

E

Φ̃k∆(x, ξj , Vj)
∏
r∈U1

Hor (ξ
r
j )

∏
(k,l)∈U2

V klj

 = 0, k ∈ {1, . . . , d} ,

whenever |U2|+ |K2|+ |K1|
2 ≥ 1 (where again Φ̃k∆(x, y, z) = Φk∆(x, y, z)− µk∆(x)). Then we apply Theorem 1.1

(case K = 2) which gives us that qj is twice continuously differentiable with bounded partial derivatives up to
order 2 under the assumptions, that all functions µk and σki are bounded and all the functions f, µk, σki are
four-times continuously differentiable with bounded partial derivatives up to order 4. Finally, we get that all
the functions aj,o,U1,U2 are of order ∆, since the product of all functions Φ̃k∆(x, y, z)Φ̃l∆(x, y, z), k, l ∈ {1, . . . , d},
is of order ∆ under the above assumptions.
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(ii) Here we consider the Taylor expansion of order 2, that is

qj(Φ∆(x, y, z)) =qj(µ∆(x)) +

d∑
k=1

∂

∂xk
qj(µ∆(x))Φ̃k∆(x, y, z)

+

d∑
k,l=1

1

2
(2− δk,l)

∂2

∂xk∂xl
qj(µ∆(x))Φ̃k∆(x, y, z)Φ̃l∆(x, y, z)

+

d∑
k,l,n=1

[(
3− 3

2
(δk,l + δk,n + δl,n) + 2δk,lδk,nδl,n

)
Φ̃k∆(x, y, z)Φl∆(x, y, z)Φn∆(x, y, z)

·
1ˆ

0

(1− t)2 ∂3

∂xk∂xl∂xn
qj(µ∆(x) + tΦ̃∆(x, y, z)) dt

 .
Next we use

E

Φ̃k∆(x, ξj , Vj)Φ̃
l
∆(x, ξj , Vj)

∏
r∈U1

Hor (ξ
r
j )

∏
(k,l)∈U2

V klj

 = 0, k, l ∈ {1, . . . , d} ,

whenever |U2|+ |K2|+ |K1|
2 > 1, and thus we obtain (cf. (2.11))

aj,o,U1,U2
(x)

=
1

2
m(m−1)

2

1

6m

∑
y∈{−

√
3,0,
√

3}m

∑
z∈{−1,1}

m(m−1)
2

4
∑m
i=1 I(y

i=0)
∏
r∈U1

Hor (y
r)

∏
(k,l)∈U2

zkl qj(Φ∆(x, y, z))

=
1

2
m(m−1)

2

1

6m

∑
y∈{−

√
3,0,
√

3}m

∑
z∈{−1,1}

m(m−1)
2

4
∑m
i=1 I(y

i=0)
∏
r∈U1

Hor (y
r)

∏
(k,l)∈U2

zkl

·
d∑

k,l,n=1

[(
3− 3

2
(δk,l + δk,n + δl,n) + 2δk,lδk,nδl,n

)
Φ̃k∆(x, y, z)Φl∆(x, y, z)Φn∆(x, y, z)

·
1ˆ

0

(1− t)2 ∂3

∂xk∂xl∂xn
qj(µ∆(x) + tΦ̃∆(x, y, z)) dt


Then we apply Theorem 1.1 (case K = 3) which gives us that qj is three-times continuously differentiable with
bounded partial derivatives up to order 3 under the assumptions, that all functions µk and σki are bounded
and all the functions f, µk, σki are five-times continuously differentiable with bounded partial derivatives up to
order 5. Finally, we get that all the functions aj,o,U1,U2

are of order ∆3/2, since the product of all functions
Φ̃k∆(x, y, z)Φ̃l∆(x, y, z)Φ̃n∆(x, y, z), k, l, n ∈ {1, . . . , d}, is of order ∆3/2 under the above assumptions.

7.6. Proof of Theorem 3.8

The proof is similar to the one of Theorem 3.4.
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7.7. Proof of Lemma 5.2

We refer to Theorem 11.3 in [6]. When applying it, we obtain actually

E‖ãj,o,U1,U2
− aj,o,U1,U2

‖2L2(P∆,j−1) ≤ c̃max
{

Σ, Ã2∆2
U1,U2

}
(logN + 1)

Q

N
+

8Cκ
Qκ

. (7.7)

However, the maximum in (7.7) is in fact a sum of two terms Σ and Ã2∆U1,U2(logNr + 1) so that the logarithm
is only included in one term (see the proof of Theorem 11.3 in [6]).

7.8. Proof of Theorem 5.3

Using the martingale transform structure in (2.12) and (3.5) (recall footnote 1 on page 19) together with the
orthonormality of the system

∏
r∈U1

Hor (ξ
r
j )
∏

(k,l)∈U2
V klj , we get by (3.6) and (5.2)

Var
[
f(X∆,T )− M̃ (2),trunc

∆,T

]
= Var

[
f(X∆,T )−M (2),trunc

∆,T

]
+ Var

[
M

(2),trunc
∆,T − M̃ (2),trunc

∆,T

]
. ∆2 +

J∑
j=1

∑
(U1,U2)∈A

|U2|+|K2|+ 1
2 |K1|≤1

∑
o∈{1,2}U1

E‖ãj,o,U1,U2
− aj,o,U1,U2

‖2L2(P∆,j−1)

≤ ∆2 + Jm(m+ 1)

(
c̃(Σ + Ã2∆(logN + 1))

Q

N
+

8Cκ
Qκ

)
,

since ∆2
U1,U2

≤ ∆.

7.9. Proof of Theorem 5.4

The proof is similar to the complexity analysis performed in [3].
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