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TRUNCATED CONTROL VARIATES FOR WEAK APPROXIMATION
SCHEMES *

DENIS BELOMESTNY!, STEFAN HAFNER? AND MIKHAIL URUSOV?®

Abstract. In this paper we present an enhancement of the regression-based variance reduction ap-
proaches recently proposed in Belomestny et al. |[1] and |[4]. This enhancement is based on a truncation
of the control variate and allows for a significant reduction of the computing time, while the complexity
stays of the same order. The performances of the proposed truncated algorithms are illustrated by a
numerical example.

INTRODUCTION

Let T' > 0 be a fixed time horizon. Consider a d-dimensional diffusion process (X¢);c[o,7) defined by the Ito
stochastic differential equation

dXy = p(Xy) dt + o(Xy) dW;, Xo = 29 € RY, (0.1)

for Lipschitz continuous functions p: R? — R% and o: R — R4™_ where (Wi)iepo,r) is a standard m-
dimensional Brownian motion. Our aim is to compute the expectation

u(t,x) := E[f(X73")], (0.2)

for some f : RY — R, where X*® denotes the solution to (0.1)) started at time ¢ in point 2. The standard Monte
Carlo (SMC) estimate for u(0, ) at a fixed point x € R? has the form

Vi 35 (3) 03

for some Ny € Ny, where Xp is an approximation for X%‘r constructed via a time discretisation of (we
refer to |7] for a nice overview of various discretisation schemes). In the computation of u(0,z) = E[f (X%x)] by
the SMC approach there are two types of error inherent: the (deterministic) discretisation error E[f (X%z)] -
E[f(Xr)] and the Monte Carlo (statistical) error, which results from the substitution of E[f(Xr)] with the
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sample average Vy,. The aim of variance reduction methods is to reduce the latter statistical error. For
example, in the so-called control variate variance reduction approach one looks for a random variable § with
E¢ = 0, which can be simulated, such that the variance of the difference f(X7) — £ is minimised, that is,

Var[f(Xr) — £] — min under E¢ = 0.

Then one uses the sample average

No

VEY = o [F(R) - €] (0.4)

i=1

instead of to approximate E[f(X7)]. The use of control variates for computing expectations of functionals
of diffusion processes via Monte Carlo was initiated by Newton [11] and further developed in Milstein and
Tretyakov [8]. In Belomestny et al [1] a novel regression-based approach for the construction of control variates,
which reduces the variance of the approximated functional f(X7) was proposed. As shown in [1], the “Monte
Carlo approach with the Regression-based Control Variate” (abbreviated below as “RCV approach”) is able to
achieve a higher order convergence of the resulting variance to zero, which in turn leads to a significant complexity
reduction as compared to the SMC algorithm. Other prominent examples of algorithms with this property are
the multilevel Monte Carlo (MLMC) algorithm of [5] and quadrature-based algorithms of [9] and [10]. The
RCV approach becomes especially simple in the case of the so-called weak approximation schemes, i.e., the
schemes, where simple random variables are used in place of Brownian increments, and which became quite
popular in recent years. However, due to the fact that a lot of computations are required for implementing the
RCV approach, its numerical efficiency is not convincing in higher-dimensional examples. The same applies
also to the SRCV algorithm of [4]. In this paper we further enhance the performances of the RCV and SRCV
algorithms by truncating the control variates, leading to a reduction from (2" — 1) to m terms at each time
point in case of the weak Euler scheme and a reduction from (3m2m<"§71) —1) to m(m + 1) = O(m?) terms at
each time point in case of the second order weak scheme. It turns out that, while the computing time is reduced
significantly, we still have a sufficient variance reduction effect such that the complexity is of the same order as
for the original RCV and SRCV approaches.

The paper is organised as follows. In Section [I] we present a smoothness theorem for a general class of
discretisation schemes. Section [ recalls the construction of control variates for weak schemes of the first
and the second order. The main truncation results are derived in Section [3} In Section [4 we describe a generic
regression algorithm. Section [f]deals with a complexity analysis for the algorithm that is based on the truncated
control variate. Section [f]is devoted to a simulation study. Finally, all proofs are collected in Section [7}

1. SMOOTHNESS THEOREM FOR DISCRETISATION SCHEMES

In this section we present a technical result for discretisation schemes, which will be very important in the

sequel. To begin with, let J € N denote the time discretisation parameter, we set A := T'/J and consider
discretisation schemes defined on the grid {jA:j=0,...,J}.
Let us consider a scheme, where d-dimensional approximations Xa ja, 7 =0,...,J, satisfy XA g = z¢ and
Xaja=Pa (Xa-1)a&), j=1,...,J, (1.1)

for some Borel measurable functions ®: R™™ — R? where 7 > m, and for m-dimensional i.i.d. random
vectors & = (&f,...,&")" with independent coordinates satisfying E [¢!] = 0 and Var [¢!] = 1 for all i =
1,...,m, j =1,...,J. Moreover, let Gy be the trivial o-field and G; = o(&1,...,&5), j = 1,...,J. In the
chapters below we will focus on different kinds of discretisation schemes, resulting in different convergence

behaviour.
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We now define the random function G; ;(z) for J > 1> 35> 0,z € R¢, as follows

Gl_yj(%) = (DA,I o (I)A,l—l 0...0 ¢A7j+1($)7 > j, (12)
Gjx)=z, 1=},

where ®p (z) = Pa (2,§) for I =1,...,J. By @’&l, k € {1,...,d}, we denote the k-th component of the
function ®a ;. Note that it holds

qj(v) :=E[f(Xar)[Xaa =] =E[f(Gy,;(=))]. (1.3)
Let us define the operator D¢ as follows

dlelg(x)

D“ =
9(x) Ozt - Oz

(1.4)

where g is a real-valued function, a € N and |a| = oy + ... + ag (Ng := NU {0}).
In the next theorem we present some smoothness conditions on ¢;, which will be used several times in the
chapters below.

Theorem 1.1. Let K € {1,2,3}. Suppose that f is K times continuously differentiable with bounded partial
derivatives up to order K, ®a(-, &) is K times continuously differentiable (for any fized &), and that, for any
neN,1>j, ke{l,....d}, a € N with 1 < |a| < K, it holds

(1+A,4), |o=ar=1

B, A, (la] > 1)V (o £ 1) (1.5)

E[(D°®h 1a(Gri@))"] 6] | < {

with probability one for some constants A, > 0, B,, > 0. Moreover, suppose that for any ny,ns € N, o, 3 € N¢,
with |a| =1, 1 <|B| < K, a # j, it holds

B [(DO®h 111 (G (2)™ (DPBK 112G (0))) | 1] | < By mad (1.6)

for some constants E,, n, > 0. Then we obtain for all j € {0,...,J} that q; is K times continuously differen-
tiable with bounded partial derivatives up to order K.

2. REPRESENTATIONS FOR WEAK APPROXIMATION SCHEMES

Below we focus on weak schemes of first and second order.

2.1. Weak Euler scheme

In this subsection we treat weak schemes of order 1. Let us consider a scheme, where d-dimensional approx-
imations Xa jan, 7 =0,...,J, satisfy XA o = 29 and

XA,]'A :q)A(XA,(j—l)A7£j)7 .7 = ]-7"'aJ7 (21)

for some functions ®a: R4t™ — R? with & = ( ]1, . ,f}"), 7 =1,...,J, being m-dimensional iid random
vectors with iid coordinates such that

P(gf:il):%, k=1,...,m.
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That is, relating to the framework in Section |1} we have m = m and use the discrete increments 5;7 i=1,...,m.
A particular case is the weak Euler scheme (also called the simplified weak Euler scheme in |7, Section 14.1]) of
order 1, which is given by

Oa(2,y) =z + p(x) A+ o(z)y VA, (2:2)
Let us recall the functions (cf. (1.3))
qj(z) = E[f(Xa,1)|Xa ja = 2.

The proposition below summarises important representations for the weak Euler scheme, which were derived
in [1].

Proposition 2.1. The following representation holds

J m r
fXar) =EfXar)+ Y > > ajesXag-na) [[ € (2.3)

J=1r=11<s1<...<s5,<m i=1
where we use the notation s = (s1,...,s,). The coefficients a;j,s: R — R can be computed by the formula
ajrs(@) =E | f(Xar Hf XA (j-1na = 33] (2.4)

for all j, r, and s as in (2.3). Moreover, we have the following recursion formulas

1
¢j—1(x) =E[q;(Xa ja)|Xa -1ya =] = om > 7;(®a(z,y)),
y=(yl,...,ym)e{-1,1}™

i (@a(z,y)), (2.5)

aj77«73(1:) 22% Z [H v ¢

y=(y',...,ym)e{-1,1}"

forallje{l,....J}, re{l,....m}, 1 <s <...<s. <m, where q; = f.

The next proposition (cf. Proposition 3.2 in [1]) shows the properties of the weak Euler scheme combined
with the control variate

J m r
Mg,)T = Z Z Z ajr,s(Xa,j-1)a) H &', (2.6)

J=1r=11<s:1<...<s.<m =1

where the coefficients a; , s(x) are given by (2.4).

Proposition 2.2. Assume that p and o in are Lipschitz continuous with components ji*, o¥": R* — R,
i1=1,....d, 7 =1,...,m, being 4 times continuously differentiable with their partial derivatives of order up
to 4 having polynomial growth. Let f: R? — R be 4 times continuously differentiable with partial derivatives
of order up to 4 having polynomial growth. Provided that holds and that, for sufficiently large p € N, the
expectations IE|XAJ-A\2P are uniformly bounded in J and j = 0,...,J, we have for this “simplified weak Fuler
scheme”

E[f(X7) = f(Xa7)]l <cA,

where the constant ¢ does not depend on A. Moreover, it holds Var | f(Xa 1) — MS)T =0.
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Discussion. In order to use the control variate M(Al)T in practice, we need to estimate the unknown coeflicients
ajrs. Thus, practically implementable control variates M A M\ ) have the form (2.6)) with some estimated functions

jrs: RT — R. Notice that they remain vahd control varlates i.e. we still have ]E[ (1) '] =0, which is due to
the martingale transform structur(ﬂ in .

2.2. Second order weak scheme

Now we treat weak schemes of order 2. We consider a scheme, where d-dimensional approximations Xa ja,
j=0,...,J, satisfy Xa 0 =20 and

Xaa = Pa(Xa -1a:&,V5), j=1,...,J, (2.7)

for some functions ® : Rétmtmxm _, Rd Here,

S1) &; = (&), are m-dimensional random vectors,
S2

(VJ”)” , are random m X m-matrices,

)V
S3) the pairs (&;,V;), j=1,...,J, are iid,,

S4) for each j, the random elements fj and V are independent,

S5) for each j, the random variables 8 1=1,...,m, are i.i.d. with

(
(
(
(
(

P@;:m):g, P =0~

(S6) for each j, the random variables Vj“7 1<i<l<m,areiid. with
P (V= 41) = -
v =)=

S7) Vi=-Vi1<i<i<m,j=1,...J,
(88) Vii=—-1,i=1,....m,j=1,...,J.

Hence, the matrices V; can be generated by means of m(”;l) i.i.d. random variables. That is, relating to

the framework in Section |1} we have 7m-dimensional random vectors &; := ((€))i=1,....m> (Vjﬂ)1§i<l§m) with
m(m—1) _ m(m+1)
P R

m=m -+

Remark 2.3. In order to obtain a second order weak scheme in the multidimensional case, we need to in-
corporate additional random elements V; into the structure of the scheme. This is the reason why we now
consider instead of (2.1). For instance, to get the second order weak scheme (also called the simplified
order 2 weak Taylor scheme) of |7, Section 14.2] in the multidimensional case, we need to define the functions
Pa(z,y,2), r € R y € R™, 2z € R™*™ as explained below. First we define the function ¥: R? — R¥4 by
the formula

Y(z) = o(z)o(x)"

and recall that the coordinates of vectors and matrices are denoted by superscripts, e.g. ¥(z) = (3 (z))¢ fa=1>
Pa(x,y,2) = (PK (2,9, 2)){_,. Let us introduce the operators L", r = 0,...,m, that act on sufficiently smooth

1This phrase means that the discrete-time process M = (]\711)[:0“““]7 where My = 0 and M; is defined like the right-hand side
of (2.6) but with ijl being replaced by 22:1 and aj,r s by @j s is a martingale, which is a straightforward calculation.
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functions ¢g: R* — R as follows:

4 dg 1 & 0%g
o _ k 1 Tkl
o) = Y @) S @)+ 5 D S )T )
k=1 k=1
d dg
‘CTg(x) :Zo.k’f( )%((E), :]-7 , M
k=1
The r-th coordinate ®}, r = 1,...,d, in the simplified order 2 weak Taylor scheme of |7, Section 14.2] is now
given by the formula
Va2 =7+ 3o (2.8)
Z Lrom™ (2)(y*y! + 2| A
kl 1
1 = 0 Tk k,r k A3/2 1 0, r 2
+§Z£ + L ()]t AP+ S L0 () A,

k=1

provided the coefficients p and o of ([0.1]) are sufficiently smooth. We will need to work explicitly with (2.8]) at
some point, but all results in this subsection assume structure (2.7 only.

Let us define the index sets
i ={1,....m}, L={(k)el} k<l}
and the system
A={(Uy,U3) € P(Th) x P(Zz) : Uy UUs # 0},

where P(Z) denotes the set of all subsets of a set Z. For any U; C Z; and o € {1,2}Y1, we write 0 as 0 = (0,),cr, -
Below we use the convention that a product over the empty set is always one.
For k € Ny, Hi: R — R stands for the (normalized) k-th Hermite polynomial, i.e.

1)k 2 dk .2
—( ) 2 e 2 z € R.

VE! dz* ’

We remark that, in particular, Hy = 1, Hy(x) = z and Ha(z) = %(:ﬁ -1).

As in Subsection we summarise important representations from [1] below.

Proposition 2.4. It holds

J
fXar) =EfXar)+>. > > gienmXag-na) [ Ho. &) T V¥ (29)

Jj=1 (U1,Uz2)€A 0e{1,2}V1 rel (k,1)eU2

where the coefficients a;.o.v, U, : R¢ — R can be computed by the formula

ajovy,U,(2) =E | f(XarT) H H,, (&) H VI XA —1ya =] - (2.10)
relU; (k,l)EUz
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Moreover, we have for each j € {1,...,J},

gj-1(x) =Elg;(Xa ja)|Xa,-1)a = 7]
1 1 m i

T L )3 N

(Yt y™)e{—V3,0,V/3}m

m(m—1)
(2%")1<u<v<m€{—-1,1} 7 2

and, for all (Uy,Us) € A, o € {1,2}U1 it holds

1 1
aj,O,U17U2($) = ‘2m(m_1) 67m Z Z (211)
2 (yl,m,ym)e{*\/io,ﬂ}m m(rg—l)

(Z“v)l§u<v§7ne{_1a1}

427;1 I(yi:O) H Hor(yr) H Zkl q]‘(q)A(l‘,y,Z»,
relU; (k,1)eU2

where y = (y1,...,y™), 2 = (2%¥) is the m X m-matriz with z°* = —2z", u < v, z*%* = —1 and q; = f.

Using Theorem we obtain the following result (see Proposition 3.6 in |1]), which provides a bound for
the discretisation error and a perfect control variate for the discretised quantity.

Proposition 2.5. Assume, that p and o in are Lipschitz continuous with components u', o»": R — R,
t1=1,....d, 7 =1,...,m, being 6 times continuously differentiable with their partial derivatives of order up
to 6 having polynomial growth. Let f: R® — R be 6 times continuously differentiable with partial derivatives
of order up to 6 having polynomial growth. Provided that holds and that, for sufficiently large p € N, the
expectations E|XAJ-A|2P are uniformly bounded in J and j =0,...,J, we have for this “simplified second order
weak Taylor scheme”

E[f(X7) = f(Xam)| < cA?,

where the constant ¢ does not depend on A. Moreover, we have Var [f(XA,T) — M(AQ)T} = 0 for the control

variate

J
M(AQ’)T = Z Z Z aj,o,U1-,U2(XA,(j—1)A) H Hor(ggr') H ‘/jklv (212)

Jj=1(U1,Uz)€A 0€{1,2}V1 rel; (k,1)eU,
where the coefficients a; o v, U, (x) are defined in (2.10).

3. TRUNCATED CONTROL VARIATES FOR WEAK APPROXIMATION SCHEMES

Below we recall the assumptions from [1], suggest sufficient conditions for them in terms of the functions
f, u, 0, and then suggest some stronger conditions that will justify the use of truncated control variates.

3.1. Weak Euler scheme

Note that we considered only the second order weak scheme in terms of the regression and complexity analyses
in [1]. However, analogous assumptions for the weak Euler scheme are as follows (cf. Proposition: fix some
je{l,...,Jhred{l,...,m}, s = (s1,...,8) with 1 <1 <...<s, <m,set Grs = f(Xar)[[;—; &' and
remark that a;, s(z) = E[(jrs|Xa,—1)a = 7]. We assume that, for some positive constants ¥, A, it holds:

(A1) sup,ega Var[(jrs| Xa,j—1)a = 2] < X < o0,

(A2) sup,cpa |ajrs(r)] < AVA < co.
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In the following theorem we suggest sufficient conditions for the above assumptions.

Theorem 3.1. (i) Let f be bounded. Then (A1) holds.
(i) Let all the functions o**, k € {1,...,d}, i € {1,...,m}, be bounded and all the functions f,u*, c*" be
continuously differentiable with bounded partial derivatives. Then (A2) holds.

Next we suggest some stronger conditions that give us somewhat more than (A2).

Theorem 3.2. Let all the functions o*, k € {1,...,d}, i € {1,...,m}, be bounded and all the functions
f, 1F, a% be twice continuously differentiable with bounded partial derivatives up to order 2. Then it holds

(A3) sup,epra |ajrs(x)| S A, whenever r > 1.

Remark 3.3. As a generalisation of Theorem [3.2] it is natural to expect that it holds, under additional
smoothness conditions on f, u, o,

sup |a;, s (z)| S A7/
zERC

forall je{1,...,J}, re{l,....m}and 1 < s <...<s, <m.

Let us define the “truncated control variate”

1),trunc i
M = DD e (XaG-nalg, (3.1)

j=1i=1
where e; € R™ denotes the i-th unit vector in R™ and a; 1, is given by (cf. (2.4))
aj1e(x) =E[f(Xar)é | Xa,g-1a =1].

Note that the superscript “trunc” comes from “truncated”. That is, we consider in M(Al)jl”um only the terms of
the control variate M(Al))T for which » =1 (cf. (2.6)).

Next we study the truncation error that arises from replacing M(Al)T by M(Al)T’mmc.

Theorem 3.4. Suppose that all the functions o**, k € {1,...,d}, i € {1,...,m} are bounded and all the
functions f, ¥, o are twice continuously differentiable with bounded partial derivatives up to order 2. Then it

holds (cf. Proposition[2.9)
Var [ f(Xar) — Mg{gﬁ”ﬂ <A. (3.2)

Notice that under Assumption (A2) alone the variance in (3.2)) would have been O(1).

3.2. Second order weak scheme

First we recall some of the required assumptions in [1]: let us fix some j € {1,...,J}, (U,Us) € A,
o€ {1,2}Y" set

Gounus = FXar) [T Ho ) T VM

rel; (k,1)eUs

and remark that a;, v, v,(z) = E[(j,0,0,,0,| XA, (j—1)a = 2]. We assume that, for some positive constants ¥, A,
it holds:

(B1) sup,cgra Var[Gjo,u, v,/ Xa,j—na = 2] <X < o0,
(B2) sup,cpa |aj,0,0,,0,(7)] < AVA < o0.
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Below we verify the above assumptions.

Theorem 3.5. (i) Let [ be bounded. Then (B1) holds.

(ii) Let all the functions p* and o**, k € {1,...,d}, i € {1,...,m}, be bounded, the function f be contin-
uously differentiable with bounded partial derivatives, and all the functions p*,o*" be three times continuously
differentiable with bounded partial derivatives up to order 3. Then (B2) holds.

Let us define the index sets
Ki={reli:0, =1}, Ky:={reU :0,=2}.

In the following theorem we provide some stronger conditions that give us more than (B2).

Theorem 3.6. (i) Let all the functions u* and o*, k € {1,...,d}, i € {1,...,m}, be bounded, the function f
be twice continuously differentiable with bounded partial derivatives up to order 2, and all the functions p*, o**
be four times continuously differentiable with bounded partial derivatives up to order 4. Then it holds

(B3) sup,epa |aj,0,0,,0,(2)] S A, whenever |Us| + [KCo| + @ > 1.

(ii) Let all the functions p* and o**, k € {1,...,d}, i € {1,...,m}, be bounded, the function f be three times
continuously differentiable with bounded partial derivatives up to order 3, and all the functions p*,o* be five
times continuously differentiable with bounded partial derivatives up to order 5. Then it holds

(B4) sup,epa |aj,0,0,,0, ()] S A3/2 whenever |Us| + |Ko| + ‘%l > 1.

Remark 3.7. (i) As a generalisation of Theorem it is natural to expect that it holds, under additional
smoothness conditions on f, u,o
+

sup |aj.0,0,,0, ()| S AlV2IFIK]
rERI

for all j € {1,...,J}, (U1,Us) € A and o € {1,2}Y1.
(ii) Define

(3.3)

P AlUzl+IR 5 10| 4 (1| 4+ Kl < 1,
e A3/2 otherwise.

An equivalent reformulation of assumptions (B2)—(B4) is as follows: there exists some positive constant A such
that it holds

sup |aj,o,0,,0, ()| < AAy, v, (3.4)
zER4

for all j,0, Uy, Us.

Similar to Section let us define a truncated control variate through

J
M(2 trunc Z Z Z QjooUy Us XA G-DA H H,, H ijl. (35)

j=1 (U1, U2)EA  oef1,2}U1 relh (k,1)eUs
|Uz|+[ K|+ 5 K1 [<1

Next we derive the truncation error that arises from replacing M(AQ)T by M(A%)q’fmm.

Theorem 3.8. Suppose that all the functions p* and o*, k € {1,...,d}, i € {1,...,m} are bounded, the
function f is three times continuously differentiable with bounded partial derivatives up to order 3, and all the
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functions p*, % are five times continuously differentiable with bounded partial derivatives up to order 5. Then

it holds (cf. Proposition[2.5)
Var [f(Xar) — M(A%);T“"C} < A2, (3.6)

4. GENERIC REGRESSION ALGORITHM

In the previous sections we have given several representations for control variates. Now we discuss how to
compute the coefficients in these representations via regression. For the sake of clarity, we focus on second order
schemes and control variate (3.5)) with coefficients given by (2.10).

4.1. Monte Carlo regression

Fix a Q-dimensional vector of real-valued functions ¢ = (¢*,...,9?) on R%. Simulate a big numberﬂ N of
independent “training paths” of the discretised diffusion Xa ja, j =0,...,J. In what follows these N training
paths are denoted by DY:

DtT = {(XZ:j('Z)j:Owa = 1, RN ,N} .
Let Qo Uy, Uy = (ajl',o,Ul,Uz""’an,o,Ul,Ug)7 Wherej S {1,...,]}, (U17U2) S .A, ‘U2| + |’C2| + %|’C1| < 1,

o€ {l, 2}U1, be a solution of the following least squares optimisation problem:

N
; tr,(7) 110 xtr(8) tr,(7)
argmin, cgn Z [Cj,o,llfl,Uz —ap (XA’(;-,l)A) - = aQLZJQ(XAi(;,l)A)
i=1

2

with

G = P TT Bo (7)) T v,

reUs (k,1)€U2
Define an estimate for the coeflicient function a; . v, v, via
~ RN try . 1 1 Q Q d
jpo,01,U2 (%) 1= Gj,0,0,,0, (%, DN ) = & o v, 0, (@) + ...+, 0,07 (), z €RY
The intermediate expression a;,,v,,0, (2, DY) in the above formula emphasises that the estimates a; o,0,,0, of

the functions a; o v, v, are random in that they depend on the simulated training paths. The cost of computing
Qj oy, i of order O(NQ?), since each v, v, is of the form e o ¢,,v, = B~'b with

N
1 r, (i 7 (i
By = N Zwk (XtA,((jll)A)wl (XtA’((j)*l)A) .
i=1
and
L
tr, (i tr, (4
e LS
i=1

k.l € {1,...,Q}. The cost of approximating the family of the coeflicient functions a; 0 v,,v,, 7 € {1,...,J},
(U1, Us) € A, |Us| + |Ko| + 3 |K1| <1, 0€ {1,2}7", is of order O(Jm(m +1)NQ?).

2In the complexity analysis below we show how large N is required to be in order to provide an estimate within some given
tolerance.
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4.2. Summary of the algorithm

The algorithm consists of two phases: training phase and testing phase. In the training phase, we sim-
ulate N independent training paths DY and construct regression estimates a;, u, v,(-, D&) for the coeffi-
cients a; ,v,,0,(-). In the testing phase, independently from DY we simulate Ny independent testing paths

(X(AZ?jA)j:O,_“J, i=1,..., Ng, and build the Monte Carlo estimator for E[f(X1)] as

No

1 )\ @) truncy(
€= 5 2 (X&) - M), (4.2)
=1

where

J
1 7(2),trunc, (i ~ i r (1 ki, (2
MO0 =30 Y > o (XLG na DR I Ho ™) IT VY @)

j=1 (U1,Uz)eA oe{1,2}V1 reU; (k,1)eU,
|U2|+|K2 |+ 3] K1]<1

(cf. with (2.12))). Due to the martingale transform structure in (4.3) (recall footnote [1| on page , we have
E [1\7@"““*“’|D§5} — 0, hence E[E|DY] = E[f(X{y) — MEL™D D] = E[f(Xar)], and we obtain
(cf. (0))

Var[€] = E[Var(£| DY)] + Var[E(E| DY)] = E[Var(E|DY)]

_ i (1) 1 7(2),trunc, (1) | yir _ i (1) 7 7(2),trunc,(1)
= 7 E [var (f(X8)p) — MEy k)| = v, Vr (X8 = ML |-
Summarising, we have

E[€] = E[f(Xa,1)],
Var[€] = Nio Var [ FXS) — My (4.4)

Notice that the result of (4.4 indeed requires the computations above and cannot be stated right from the
outset because the summands in (4.2)) are dependent (through DY}).

This concludes the description of the generic regression algorithm for constructing the control variate. Further
details, such as bounds for the right-hand side of (4.4)), depend on a particular implementation, i.e. on the quality
of the chosen basis functions.

5. COMPLEXITY ANALYSIS

In this section we extend the complexity analysis presented in [1] to the case of the “TRCV” (truncated
RCV) algorithm. Below we only sketch the main results for the second order schemes. We make the following
assumption (cf. [2] and [4]):

(B5) The functions a; o1, v, (z) can be well approximated by the functions from ¥¢ := span ({¢1,...,%q}),

in the sense that there are constants x > 0 and C,. > 0 such that

inf (aj70,U17U2 (:17) - g( )) ]PAJ 1(d$) <
9€¥q JRd

@‘Q

where Pa ;1 denotes the distribution of XA, G-1)A
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Remark 5.1. Note that (B5) is a natural condition to be satisfied for good choices of ¥q. For instance, under

appropriate assumptions, in the case of piecewise polynomial regression as described in [1], (B5) is satisfied with
2v(p+1)

A1) rd? where the parameters p and v are explained in [1].

KR =

In Lemma below we present an L?-upper bound for the estimation error of the TRCV algorithm. To
this end, we need to describe more precisely, how exactly the regression-based approximations a; . v, v, are
constructed:

Let functions a; ., v, () be obtained by regression onto the set of basis functions {¢1,...,%¢g}, while the
approximations @, .., v, () of the TRCV algorithm be the truncated estimates, which are defined as follows

_ . Aj.o,Uy,U, () if |Gj,0,0,,0, ()| < AAy, vy,
Gio ) = T- di o ) = "1,0,U1,02 7,0,U1,U2 1,U2 , 51
30U3,U3 () Alvyvp U1 (®) {AAU17U2 88N G 0.U, U, (T) otherwise (5-1)
where Ay, 7, and A are given in (3.3) and (3.4)).
Lemma 5.2. Under (B1)-(B5), we have
. . ~ Q 8C,
E||aj’0,U1’U2 - aj’O,Ul’U2||%2(IPA7j,1) < C(E + A2A2U1,U2 (IOgN + 1))N + O ) (5'2)

where ¢ is a universal constant.

Notice that the expectation in the left-hand side of (5.2]) means averaging over the randomness in D%.
Let (XA, ja)j=o0,...s be a testing path, which is independent of the training paths D%. We define

A7 (2),trunc ~ r r
MR = > > djon.v(Xag-va, DR [ Ho (&) [ vV (5.3)

1 (U1, U2)EA  o0efl,2}U1 rel; (k,1)EU
|Us|+[Ca|+5]K1|<1

J

J

(cf. (3.5)). Lemma now allows to bound the variance Var[f(Xa 1) — M(A%)T’tmm] from above
Theorem 5.3. Under (B1)-(B5), it holds

v runc ~ It 8 Orc
Var[f(Xar) — MOy < A + Jm(m +1) <c(z + A2A(log N + 1))% aer ) .

5.1. Complexity of the TRCV approach

Let us study the complexity of the TRCV approach. The overall cost is of order JQ max {NQ, Ny}, provided
that we only track the constants which tend to co when € N\, 0 with € being the accuracy to be achieved. That
is, the constants, such as d, m, k, Cy, are ignored. We have the following constraints

1 1 JQ J
m < g2 4
aX{J‘l’J?NO’NNO’Q'ﬂNO}NE’ (5-4)

where the first term comes from the squared bias of the estimator and the remaining three ones come from the
variance of the estimator (see Theorem as well as footnote [3| on page . We get the following result.

SNotice that the variance of the TRCV estimate NLOZ?]:% [f(X(Ai)T) —M(AQ);T“”C’(“] with Np testing paths is
~(2),t
= Var[f(Xa 1) — MER™") (cf. @)
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Theorem 5.4. For the TRCV approach with the second order weak schemes under (B1)-(B5), it is optimal to
choose the orders of parameters as follows (cf. [4)])

1 __5 5 _ 5k+10
J=xeT2, @Q=xe wF, Nxeg 1, NygxNQ =<eg 4t
provided that k > 1E| Thus, we have for the complexity
9 _ TR417
Crreov < JNQ = JN()Q e Astd (55)

Remark 5.5. (i) For the sake of comparison with the SMC and MLMC approaches, we recall at this point
that their complexities are

—2.5 -2

CSMcxs and CMLMCXf‘:

at best (we are considering the second order scheme).
(ii) Complexity estimate (5.5) shows that one can go beyond the complexity order e~2, provided that x > 9,
and that we can achieve the complexity order e~*7>=9 for arbitrarily small § > 0, provided & is large enough.
(iii) The complexity of the TRCV approach is the same that we obtain for the RCV approach (where the
“complete” control variate is estimated), since the second constraint in , which does not arise for the
RCV approach is the only inactive one in this case. That is why we truncated My 2) frune in at the level

|Ua| + |K2| + 5 [K1] < 1. For instance, if we had used a control variate of the form cf. (1)

> > goninXag-va) [ Ho &) [ vV

(U,U2)eA oe{1,2}V1 rel; (k,1)eU2
|U2|+|K2 |+ 5 K1]=5

J m
:ZZ aj1,4,0 XA ,(Gj—-1A )5‘;
j=1 i=1

.
i M“
I

A and due to the resultmg constralnt 5

Crrov 2 JNo.

], the bound for the variance in (3.6)) would have been of order
2
€

, since

2. we would have obtained worse complexities than e~

6. NUMERICAL RESULTS

The results below are based on program codes written and vectorised in MATLAB and running on a Linux
64-bit operating system.
Let us consider the following SDE for d = m =5 (cf. |1])

dX; = —sin (X7) cos® (X]) dt + cos® (X{) dW}, X{=0, i€{1,2,3,4},

4
dX} = Z {; sin (X7) cos® (X) dt + cos (X]) dW[ | +dW}, X§=0. (6.1)

4Performing the full complexity analysis via Lagrange multipliers one can see that these parameter values are not optimal if

< 1 (a Lagrange multiplier corresponding to a “< 0” constraint is negative). Recall that in the case of piecewise polynomial
2v(p+1)
2d(p+1)+dv "

which implies that x > 1, for k expressed via p and v by the above formula.

regression (see |1| and recall Remark l we have k = Let us note that in [1] it is required to choose the parameters

2d(p+1)

p and v according to p > % and v > prl)—d’
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The solution of (6.1]) is given by
X! = arctan (W;) , 1€{1,2,3,4},

4
X5 = Z arsinh (WZ) +Wp.
i=1

for ¢ € [0, 1]. Further, we consider the functional

5 4
f(z) = cos (Z (Ei> —20 Z sin (27)
i=1 i=1
that is, we have
E[f (X1)] = (E [cos (arctan (W7}) + arsinh (W}))])* E [cos (W?)] ~ 0.002069.

Here we consider weak schemes of the second order and compare the numerical performances of the SMC,
MLMC, RCV, TRCV and TSRCV approaches. The latter one is the truncated version of the SRCV approach
of [4]. Like the RCV algorithm, the SRCV one is based on , the difference is only in how to implement
the approximations of the coefficients a; . v,,v, in practice (while the RCV algorithm is a direct Monte Carlo
regression, in the SRCV algorithm the regression is combined with a kind of “stratification”; see [4] for more
detail). Therefore, the idea of the truncation (i.e. replacing with ) applies also to the SRCV approach
and gives us the TSRCV one.

For simplicity we implemented a global regression for the RCV, TRCV and TSRCV approaches (i.e. the one
without considering the truncation operator in (5.1]), as a part of the general description in Section . More
precisely, we use quadratic polynomials (that is [[,_, z&', where I1,...l5 € {0,1,2} and Z?:l l; <2) as well as
f as basis functions, hence ¥y consists of Q) = (g) + 1 = 22 basis functions.

Note that we do not need to consider random variables ijl in the second order weak scheme, since £Fo"(x) =
0 for k # 1 (see (2.8)). This gives us less terms for the RCV approach, namely 3™ — 1 = 242 rather than
3m2™ 5 _ 1 = 248831 terms in (the factor 275 = 1024 is no longer present). As for the TRCV
and TSRCV approaches, this gives us only M = 20 compared to m(m + 1) = 30 terms in (3.5).

We choose k = 1.2, which is related to the piecewise polynomial regression with polynomial degree p = 2
(comparable to our setting) and the limiting case v — oo (see footnote [4| on page . Moreover, for each
e=27%"17¢€{2,3,4,5 6}, we set the parameters J, N and Ny for the RCV, TRCV and TSRCV approaches as
follows (compare with the formulas in Subsection [5.1)):

~-1.25

J= 09, _ {512. 7M1, ROV, TRCV, o o sy
2048 - [¢e~12%], TSROV,

The factors 512 and 2048 are here for stability purposes. For the TRCV and SMC algorithms we additionally
consider ¢ = 277, which produces a picture with approximately equal maximal computational time (that is,
the time corresponding to the best accuracy) for all algorithms. Next we estimate the numerical complexity
for the RCV, TRCV and TSRCV approaches by means of 100 independent simulations and compare it with
the one for the SMC and MLMC approach, for which we use the same output as in [1]. As can be seen from
Figure [1} the estimated numerical complexity is about RMSE 1% for the RCV approach, RMSE1%3 for the
TRCV approach, RMSE 1% for the TSRCV approach, RMSE 27 for the SMC approach and RMSE %!
for the MLMC approach, which we get by regressing the log-time (logarithmic computing time of the whole
algorithm in seconds) vs. log-RMSE. Beyond the numerical complexities we observe that the truncation effect
from RCV algorithm to its truncated versions is huge. While we have poor results for the RCV approach (as
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in [1]), i.e. in this region of e-values the RCV approach is numerically outperformed by the other ones, the
TRCV and TSRCV approaches work best (even better than the SMC and MLMC approaches).

15 T

10

----10g2 (RMSE71.5262)

X TSRCV

—log, (RMSE~1827)
TRCV

5 |-~ log, (RMSE~2:0057)

S MLMC

........ log, (RMSE 26713)

H-SMC

-—log, (RMSE~1-8515)

[JRCV +

O 1 1 1 1 1

-12 -10 -8 -6 -4 -2 0

log,(RMSE)

log,(Time)

FIGURE 1. Numerical complexities of the RCV, TRCV, TSRCV, SMC and MLMC approaches.

7. PROOFS

Proof of Theorem [1.1]

We begin with the following remark. Assumptions (1.5) and (L.6) together with the Cauchy-Schwarz in-
equality |[E[XY|G]| < +/E[X?|G]E[Y?|G] imply that the following generalisation of (1.6]) is satisfied: for any
ni,na €N, o, € NG, with 1 < |a| < K, 1< |8 < K, a# 8, it holds

B [(D°®h 11 (Gus ()" (DP0K 111G ()™ G1]| < Coy s (7.1)
for some appropriate constants Cp, n, > 0.
Let us begin with the case K = 1. We have for some k,r € {1,...,d}
d d
0 0 0 s
@Gﬂm(x) = Z %@Z,ZH(GLJ‘(%))@ 1i(z) = Z’Ys
s=1 s=1
and %G;+17j(x) = %CI)SA (z,&j+1), where G}, ; and @, s € {1,...,d}, denote the s-th component of the
functions G415 and ®a. Hence
P 2
E <WG;€+1J($)> <E |7+ Z (27k7s + (d—1)72)
s: s#k
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For an arbitrary j € {0,...,J — 1}, denote

r,s 0 s "
Prying =E [(MGI+1,J'($)) } )

then, due to (1.5) and (7.1), we get for Il =j,...,J — 1,

rk r,k rk 7,5
Pri121 < (1+ A2A)Pz,2,1 + Z (CI,IA(Pz,z,l + Pz,z,l) +(d = 1)BaApy’s 2 1) .
s: s#k

Further, denote
Pl = Z Pz+1 n,17
then we get
Prer21 < (14 A2A)pro 1 +2(d—1)Cr1Ap[ o + (d— 1)QB2AP£2,1~

This gives us
Plr121 < (1 +K1A)p o
for some constant k1 > 0, leading to

Proq < L4+ rIA) Tl oy, I=4+1,...,J-1, (7.2)

where

2
Pit1,21 = ZE l(a — O (z §g+1)) 1,

which is bounded due to (1.5). Together Wlth we obtain the boundedness of {p%,, : J € N} and hence
the boundedness of

9 ~ | 9
@) = 3| 5 G)

s=1

d 2
8 7,8
< 3B |(pmfCn) ] o
s=1
d 9 2
< \[42_E l(axSﬂGJ,j@») ] Pl < consty [of
s=1
for all r € {1,...,d}, since f is assumed to be continuously differentiable with bounded partial derivatives.
Let us proceed with the case K = 2. We have, due to (ZZ:1 ap)® < dvt ZZ:1 ay,
9 4
E l(aerﬂl,j(@)

< E v+ Y (i +6(d— D2 +4d — 1)° w4+ (d— 1)°42)
s: s#k
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and thus, due to 4a3b < 3a* 4+ b* and 2a?b? < a* + b?,

r.k rk .k T,S r,k TS
Pirian = (1+ A4A)pl,4,1 + Z (CS,IA(SPlA,l + Pl,4,1) +3(d - 1)CQ>2A(pl,4,1 + Pl,4,1)
s: s#k

+(d = 1 CraAp]f +30750) + (A= 1) Badp], ) -

This gives us

Plera1 < (1+AsA)pr,q +4(d—1)C51Ap0 41 +6(d 1)2Co2Ap] 41
+4(d —1)°Cy 3Apj 41 + (d = 1)*Balp] 4 ;-

Hence, we obtain
Pre1a1 < (14 K2A)p) 41,
for some constant ko > 0, leading to

p;,él,l S (1 + KQA)l_j_lp;JrlA,lv l = j + 13 ceey J - ]-7
4
i) ] .

82 k d 32
oo 11 () g SR 141(G1y (@) 5o G (@)

where

P;+1,4,1 Z E l(

Next, we have for some k,o0,7 € {1,...,d}

9?2 G 0 G ) o
+ Z axsa u Al+1( l,]( ))@ l}j(x)% Lj(x)

suf

ans+ Z M2,s,u

s,u=1

9? L
and 5:55:5G5 11, (T) = 525555 PA (7, &54+1). Hence

2 . 2
E (8,@7‘8300Gl+1’j(x))
< Enip+ D (@mams+(d—1ni,) +2 Z MoTl2,su + d2 an
s:s#k s,u,v=1 s,u=1

Denote

7,0,8 82 "
Piiine =E [(WGZS+1,j(m)> ] ;

then we get, due to

E[XYZ] <2VEXJVENTYVEZ] <E[X?] + VEFVE[Z7]

<E[X?] + (E[Y'] +E[2Y).
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as well as ) and .,

7,0,k 7,0,k 7,0,8 T,0,S
Pl = (1+ A2A)Pz,’2,2 + Z (Cl,lA(pl 22 T P2, 5) +(d— 1)B2Apl,2,2)

s: s#k
3 s (g (i)
s,u,v=1
d 1
+d* Y By (p;’il —&-piﬁfl).
s, u=1

Further, denote
d
p?fl,n,Q = Zplrfi?n,%
then we get for I =j+4+1,...,J —1,
plrfl,2,2 < 1+ A2A)Pf,’20,2 +2(d - 1)01,1AP1T:§,2 +(d—1) B2Apl 2,2

7,0 1 ‘s (o] T (o]
+d*C11A (Pz,’z,z + B (91,4,1 + Pz,4,1)> + d4B2A§ (P41 +PPan)-

This gives us
P12 < (L+ K3A)py o + K4l

for some constants k3, k4 > 0, leading to
Plas < (1+ kgA)' ™7~ 1/);i122+’<~'5a l=j+1,....,J-1,
where x5 > 0 and

2
P§f1,2,2 ZE [(83?8 p (ffafjﬂ)) 1

Thus, we obtain the boundedness of

82 d D) 82
‘amraxo%‘@‘ = ZE' axsﬂGJ,j(x»ax—G;j(z)

IA
M=
&

(Gl >>)2] %

s=1
82 ? 7,8 o, u
+ Z E (3 SO uf(G-LJ'(x))> \/P1a,1P a0
s,u=1
forallr,o € {1,...,d}, since f is assumed to be twice continuously differentiable with bounded partial derivatives

up to order 2.
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Let us proceed with the final case K = 3. We have

’ l(aar(;l“ @ ))6

< B[R+ Y (697s + 15(d — 172 +20(d — 1)*i8 + 15(d — 1)43 !
s: s#k

+6(d — 1) 7k72 + (d — 1)°79)]

and thus, due to 6a°b < 5a% + b, 3a%b? < 2a5 + b5 and 2a3b3 < ab + 5,

Sk k
Plr+1,6,1 < (1+A6A)p;’,6,1

r.k .8 r.k .8
+ Z <C5,1A(5p176’1 + pl,ﬁ,l) + 5(d - 1)04,2A<2pl,6’1 + pl,6,1)
s: s#k

+10(d — 1)*C3 3A(Pl 61T PLe) +5(d— 1)°Cs 4A(plr,7(]3€,1 +2p61)

+(d — 1)401,5A(P1T,’§,1 +5p6.1) + (d— 1)°BsApg 6 1)

This gives us

Pryren < (1+AsA)pigr +6(d—1)C518p7 6, +15(d — 1)204,2AP£6,1
+20(d — 1)°C3 3007 6.1 + 15(d — 1)*CouAp] g1 +6(d — 1)°C15Ap] 64
+(d —1)°BsApj g1

Hence, we obtain

Pir161 < (L4 KeA)ple 1
for some constant kg > 0, leading to

Plea < (1+ "EGA)lijflngrl,ﬁ,p l=j+1,...,J-1,

<‘1>A T §J+1)> 6]

where

P§+1,6 1= Z E

Moreover, we have

(o)

< B+ Y (8% +28(d — 1)yiaZ +56(d — 1)*293 + 70(d — 1)* iyt
s: s#k

+56(d — 1)*iv2 + 28(d — 1)°9;78 + 8(d — 1)yl + (d = 1)743)]
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and thus, due to 8a”b < 7a® 4+ b8, 4a%? < 3a® + b8, 8a°b® < 548 + 3b® and 2a*b* < a® + b8,

.k rk
Priig: < (1+AsA)pg,
+ > (C7,1A(7PZ’§,1 +ppa1) + 7(d—1)Co2A(3p] %, + p)a )
s:s#k
+7(d — 1)205,3A(5P;,7§,1 +3ps1) +35(d — 1)304,4A(Pzr,’§,1 +pis1)
+7(d—1)*C35A(3p)8 | +5p)5 1) +7(d —1)°CaeA(p] a1 + 30751

+(d — 1)60177A(P2§,1 +Tppgq) + (d— )7 BsApyg 1)

This gives us

Plarsy < (1+AsA)pigy +8(d—1)Cr1A0p] g1 +28(d — I)QCG,QAIOZS,I
+56(d — 1)°C5 3Ap[ 5 + 70(d — 1)*Caapj s,
+56(d — 1)° C350p] 51 +28(d — 1)° Ca6Ap; 81
+8(d — 1)701,7AP£871 +(d— 1)838Aplr,8,1'

Hence, we obtain
Preis1 < (1 +r7A)p) 515
for some constant k7 > 0, leading to
Plsg < (LHreA) I 0 sh I=G+ 1,0 =1,

where

Pit181 = ZE l(

))] .

Moreover, we have

9’ !
E <WGI+1J(I))

< Entp+ Y (40 pms +6(d— 1t nt  +4(d — 1)t + (d—1)%n1 )
s: s#k

d d
+ Z (4d2n?77j,’72187u + 6d377%,v77§,s,u + 4d4771,v77§’,s,u) + dG Z né,s,u

s,u,v=1 s, u=1
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and thus, due to 4a3bc < 3a* + % (b8 + cs), 20222 < ot + % (b8 + 08) and 4ab®c® < a* + % (b8 + cg),

Hihe € (L Ay

Pri1,4,2
+ Z (CS,lA 3010 +P1TZ§9) +3(d = 1)C22A(py 1 ; + ey
s: s#k

+(d—1)*Cy 3A(Pz 4,2 ; + 307225) (d— 1)SB4AP;,’Z,7§)

d
7,0,V 1 7,8 o,Uu
+ Z <d203,1A <3Pz 42 T35 5 (Pz,’8,1 + Pz,’s,1)>
s,u,v=1

7,0,V 1 u
+3d°Ca 0 (Pl42 +35 5 (pl81+pl81>)
4 ,0,V 3
+d"Cr3A | pys + 5 (P181+P181)

d6ZB4 (pl81+pl81)

s,u=1
This gives us

Piias < L+ AD)prs, +4(d—1)Cs 1 Apyy o +6(d —1)2Canp) 'y
+4(d — 1)3CLSAPL,4,1 +(d—1)"BsApyy 4,2

7,0 1 T (o}
+d°C3 1A (3917’472 t3 (piss+ Pz,8,1))
1
+3d%Cy 0 A (Pl 12t 5 (Pz 8,1t o0s 1))

7,0 3
+d"Cy 3A (pl7"472 + =

1
9 (Plr,s,l + Pf’,&l)) +d° B4A (Pl 8,1t 0s, 1)

Hence, we obtain
P an < (L4 KgA)pp) o + Ko,
for some constants kg, kg > 0, leading to
pl42 (1 + kgA) I~ 1p§$142—|—/~$10, l=j+1,...,J -1,

where k19 > 0 and

4
Pii1a2 = Z]E Kaxra > (33’§j+1)) ] :
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Next, we have for some k,0,7r,z € {1,...,d}

o3 Gk
8907'83308902 i+l J(x)
93
Z WK 11 (G () g G (0)

2" QxCOx?

Y P ek G (G )6 )+ G )G )
e Dprogu AT dxrdzo W dardrz W o hI

0 . 0? u
+ ox" Gl’j (2) 0x°0x* Gl’j (m))

d

Y k(G )Gl ) G ()2 G (a)
mv_lamsaxuaxv A 1AL O LI ggo LIV Gy Tl
*Zdjls“”Zd}qu“}’ Z qu)SSuv

s,u=1 s,u,v=1

3 3
and 630“"8(?1208:1:2 Giy,(@) = axraaxoaxz P (2,&+1). Hence
3 2
E|(———GF, .
l(axraxoax—z l“’](x)) ]
d
< E ¢l t D (2iatns+@d—-De) +2 > ot
s: s#k s,u,v=1
d d d
+2 3 Yrutseue +247 Y U3, +280 Y 1”31
s,u,v,w=1 s, u=1 s,u,v=1
Denote

7,0,2,8 83 "
Plring = KWGHl,j(x)) } )

then we get, due to 3a2b%c? < a8 + b5 + % and

2E (XY 2U] <2VE XA YEN O VE 2] VEDY] < E[X?) + YENO VEZO VEDY

<E[X?] 43 €[] +E[2)) +E[U7)),
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as well as ) and .,

r,0,2,k 7,0,2,k T, 7,0,2,8 r,0,2,8
Priiss < (1+AA)pys™ + Z (Cl,lA(Pz,z 5 s )t (d=1)B2Ap;ys )
s: s#k

1
b3 Cuans (o5 4 (i + ot ot + i+ i + A1)

s,u,v=1

1 )
s Cuads (5™ + 5 (a4 ot + i)

s,u,v,w=1

T,2,8

d
+3d” Z B2A(Pz41+Pz41+Pl41+P;Z§+PZ42 + 04 )

s,u=1

d
1
+d Y Bz (g + plen +6idn) -

s,u,v=1

Further, denote
7,0,2 7,0,2,8
Piliies = Pri1,2,3
then we get

Priias < (I+A0)p55 + 2( —1)C118p 5 + (d = 1)*BaAppyy

7,0,2

#0110 (8545 (haa + s+ o+ A+ 50 +000) )
+d'CraA <P1T522+ P161+P161+P161)>

+3d'BoA (Pl41+/’l41 + Plan +Pz42+/’z42+/’l42)

+d632A§ (of

)

o V4
6,1 T PlLe1 T 01,6,1) .

This gives us
plr-flzz 3<(1+ "fllA)Pl 52 + K124,
for some constants k11, k12 > 0, leading to

pl,é)’; = (1+K11A>l - 1;0;4(:1223""{13’ l:]+1,aJ_17

where k13 > 0 and

2
P;J(r)1223 ZE [<8xraxoaxz (x’fj-i-l)) ] .
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Thus, we obtain the boundedness of

63
axramxz%‘(x)\
ZE [T S a—e
8 9 JJ OxTOx°Ox? J,j
d 2 82 9 82 5
# 3 B d Cos o) (i) s o) e ) )

0 s 0? u
+%G‘m () 0x°0x* G‘]’j (x)) ‘

o3 0 o 0
s amiggd (G13(@) 5 5Gh,(@) 5 56, (@ )WGJJ(I)]

IA
M=~
!

d
82 7,0,8 Z,U T,2,8 O,U T, 0,z2,U
+ Z \IE l(@xsaxuf( ) ] (\/P]42P]41 + \/Pl4 2Pra1 T \/PJ4 1/’142)
1
d 9 2
+ 3 \&| (Grumas@stan) ]f/p%,w?:&mizal

s,u,v=1
for all r,0,z € {1,...,d}, since f is assumed to be three times continuously differentiable with bounded partial
derivatives up to order 3.

7.1. Proof of Theorem [3.1]

(i) Straightforward.
(ii) Let us define pa(z) := x + p(x)A. Then we obtain via Taylor’s theorem (cf. (2.2))

d m 1
6(@a(.9) = (a2 + VE I S oM eyt [ F (s (o) + tola)VEy)
0

k=11i=1
This gives us (see (2.5))
1 - B
aj,r,s(x) = ﬁ Z QJ(q)A(xay)) H Yy
ye{-1,1}™ o=1
1
\/Z s L& 7 7 8(]
DY H v ) 33 M@ [ Gh sl + tol)VEy)at, (73)
ye{—1,1}™ \o=1 k=1 i=1 0

since

ye{—1,1}"" o=
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Next we apply Theorem-for the case K = 1 to get that all the functions g; are continuously differentiable with
bounded partial derivatives. Clearly, the assumptions in this theorem hold, when all the functions f,u*, o*?,
ke {1,...,d}, i € {1,...,m} are continuously differentiable with bounded derivatives. Together with the
assumption, that all the functions o¥ are bounded, we get from that a;, s is of order VA for all j, 7, s.

7.2. Proof of Theorem [3.2]

Let us consider a higher order Taylor expansion compared to the proof of Theorem and recall that
pa(z) =z + p(r)A. We have for any y € {—1,1}"

4 (®a(z,y)) =¢;(pa(z JM/KZ@ I ONE ))Zaki(x)yi

4 1
+AZ(2—(5M / 8 ka lqj(/JA( z) + tVAs(z) dtZa’ﬂ ’Z oli(z)yt, (7.4)

k,l=1 0 i=1

where 0. . is the Kronecker delta. This gives us for r > 2 (cf. (2.5)))

1
ajrs(@) =5 > i (®alz,y) [[ v
ye{-1,1}™ o=1
A T
_ 277” Z (2 _ 6k,l Z <Z O_kz i Z lz(m)yz H yso
k=1 ye{-1,1}™ \i=1 i=1 o=1
1 o2
‘/(1 - t)mqj(ua(w) +tVAo(z)y)dt | |, (7.5)
0

due to (cf. (7.4))

1 irso_
g 2 v ]lv=E

ye{-L1}m o=l

¢l g;a] =0 (7.6)
o=1

for all i € {1,...,m}. (Note that does not hold for » = 1.) Applying Theorem (case K = 2), we
get that g; is twice continuously differentiable with bounded partial derivatives up to order 2, provided that
all the functions f, ¥, o%? are twice continuously differentiable with bounded partial derivatives up to order 2.
Together with the assumption, that all the functions o*! are bounded, we get from that a;, s is of order
A for all j,r, s with r > 1.
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7.3. Proof of Theorem [3.4]
Here we apply Theorem which gives us (cf. (2.6)

Var |:f(XA,T) - M(Al7)j,—'t’runc:| Var [ (1) Mél,)j,jt’l‘unc]

T

J m
= Var ZZ Z aj,r,s(XA,(j—l)A)ngi

j=17r=21<s1<...<s5.<m i=1
J m
N Z > Y Ela,.(Xag-ua)] £A

since E [ aj . (XA, G- 1)A)] < A? for all j,r, s with r > 1.

7.4. Proof of Theorem [3.5]
The proof works similarly to the one of Theorem More precisely, here we define (cf. (2.8))

pa(x) ==z + p(r)A + %Eo,u(x) A?,

Then we derive the zero-order Taylor expansion for ¢;(®a(z,y,2)) around pa(x), use that

E|[] Ho.¢)) J] V| =0

reUy (k} l)EUQ

and observe that all components ®% (z,y, 2) := ®K (z,y, 2)—pk (z), k € {1,...,d} (as an analogue of VA Y1 | o¥(2)y’
in case of the weak Euler scheme), are of order V/A under less strict assumptions than required in the present
theorem. Finally we apply Theorem (case K = 1) which gives us that ¢; is continuously differentiable

with bounded partial derivatives under the assumptions, that all functions p* and o** are bounded and all the
functions f, ¥, 0% are three-times continuously differentiable with bounded partial derivatives up to order 3.
Consequently, all the functions a; ., v, are of order VA.

7.5. Proof of Theorem [3.6]

(i) The proof works similarly to the one of Theorem that is, we consider a Taylor expansion for
q;(®a(z,y, z)) of order 1, around the same point pa(x) as in the proof of Theorem Then we use

E|®K (2,8, V) [ Ho(§)) J] V| =0, ke{l,....d},

whenever |Us| + |Ko| + @ > 1 (where again ®K (z,y,2) = ®X (z,y,2) — & (z)). Then we apply Theorem
(case K = 2) which gives us that ¢; is twice continuously differentiable with bounded partial derivatives up to
order 2 under the assumptions, that all functions x* and ¢** are bounded and all the functions f, ¥, o*® are
four-times continuously differentiable with bounded partial derivatives up to order 4. Finally, we get that all
the functions a; o v, v, are of order A, since the product of all functions é’g (z,y, z)@lA(% y,2), k,le{l,...,d},

is of order A under the above assumptions.
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(ii) Here we consider the Taylor expansion of order 2, that is

Qj((DA(.’E,y,Z)) QJ(MA +Za 4 :U’A( ))ég(x,y,z)

d
1 o2 - -
+ Z 5 6krl k@ qu(/J‘A( ))@Z(m,y,z)@k(w,y,z)
k=1
d ~
Z [(3 — = Okt + Okn + O1n) + 208,10k 00 n) K (z,y, 2)®h (z,y, 2) P4 (2,9, 2)

1

[0 G tnate) - st

0

Next we use

E CI)A(J" f]v J)(PA € fja H Hor H Vkl =0, k,l € {1,...,d}7

ret, (k,1)EU,
whenever |Us| + |Ka| + W—;' > 1, and thus we obtain (cf. (2.11)))

Ajo,Un,U5 (T)

11 . i
NTCE > > A== TT H, (v) [ M ai(@alz,y.2)
27 2 ye{—v3,0,/3}m re{-11) m(m=1) rel; (k1)U
1 1 m i__ r
e I S R
2 ye{—3,0,V/3}™ zE{—l,l}m“g_l) reU; (k,1)eU,
d 3 )
Z |:<3 - 5 (5k,l + 5k,n + §l,n) + 25k,15k7n5l,n) (I)Z({E, Y, Z)(I)lA(xv Y, Z)‘I’Z(CL‘, Y, Z)
k,l,n=1

1
o3 ~
. /(1 - t)248xkaxlax—n q; (’u,A(:L') + tq)A(ﬁ, Y, Z)) dt
0

Then we apply Theorem (case K = 3) which gives us that ¢; is three-times continuously differentiable with
bounded partial derivatives up to order 3 under the assumptions, that all functions x* and o** are bounded
and all the functions f, u*, 0" are five-times continuously differentiable with bounded partial derivatives up to
order 5. Finally, we get that all the functions a;, v, v, are of order A3/2_ since the product of all functions
ékA(a:,y, z)élA(x, Y, z)&)’i(m,y, 2), k,l,n € {1,...,d}, is of order A%/? under the above assumptions.

7.6. Proof of Theorem [3.8]
The proof is similar to the one of Theorem
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7.7. Proof of Lemma [5.2]

We refer to Theorem 11.3 in [6]. When applying it, we obtain actually

Q | 8Ck
N

Ellaj0,00,02 = G000 32(e 1) < Emax {S, 420, 1, } (log N + 1) (7.7)

However, the maximum in (7.7 is in fact a sum of two terms ¥ and AQAUI,UZ (log N, +1) so that the logarithm
is only included in one term (see the proof of Theorem 11.3 in [6]).

7.8. Proof of Theorem [5.3

ort

sin

Using the martingale transform structure in (2.12)) and (3.5)) (recall footnote [Ifon page together with the
honormality of the system [[,.c;;, Ho, (§]) [ 1 1yev, V!, we get by (3.6) and (5.2)

Var f(XA,T) B M(A%)jz'trunc} — Var [f(XA,T) o X)q,ﬂtrunc] + Var [M(A%)q,ﬂtrunc B M’(A%)j,ﬂtrunc}

J
2 ~ 2
SATHD > > Eldjoun,0s — G001,0ll720s, )
J=1 (Ul,Uz)E.A 06{1,2}U1

|Us|+[KCa|+5|K1|<1

< A%+ Jm(m+1) <5(Z + A*A(log N + 1»% * 85:) ,

2
ce AUl,Uz < A.

7.9. Proof of Theorem [5.4]

The proof is similar to the complexity analysis performed in [3].
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