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Abstract

A spherical gravitational wave detector can be equally sensitive to a wave 

from any direction, and also able to measure its direction and polarization. 

We derive a set of equations to describe the mechanics of a spherical antenna 

coupled to an arbitrary number of attached mechanical resonators. A special 

arrangement of 6 resonators is proposed, which we term  a Truncated Icosa- 

hedral Gravitational Wave Antenna, or TIGA. An analytic solution to the 

equations of motion is found for this case. We find tha t direct deconvolution 

of the gravitational tensor components can be accomplished with a specified 

set of linear combinations of the resonator outputs, which we call the mode 

channels. We develop one simple noise model for this system and calculate 

the resulting strain noise spectrum. We conclude tha t the angle-averaged 

energy sensitivity will be 56 times better than for the typical equivalent bar- 

type antenna with the same noise temperature.

We have constructed a prototype TIGA. This shape was machined from 

an A1 6063 cylindrical bar, is 84 cm in diameter, has its first quadrupole 

resonances near 3200 Hz, and is suspended from its center of mass. The



frequencies of the lowest seven multiplets were found to closely match those 

calculated for a sphere. We observed the motion of the prototype’s surface 

using 6 accelerometers attached to its surface in the symmetric truncated 

icosahedral arrangement. We have tested a first order direction finding al

gorithm, which uses fixed linear combinations of six accelerometer responses 

to first infer the relative amplitudes of the quadrupole modes and from these 

the location of the impulse.

The six accelerometers were then replaced by six mechanical resonators. 

A strain gauge was used to monitor the radial motion of each resonator. The 

frequency response of the of coupled system was measured and compared to 

the eigenvalue solutions of the equations of motion. It was concluded that 

deviations from perfect symmetry have a second order effect on our ability to 

observe the prototype’s quadrupole modes and thus determine the location 

and direction of the initial excitation.



Chapter 1

Introduction

One of the first predictions of Einstein’s Theory of General Relativity was 

the existence of gravitational waves. Gravitational waves are predicted to 

propagate at the speed of light and represent a time-dependent distortion 

of the local space and time coordinates. Just as electromagnetic waves are 

produced by the acceleration of charge, gravitational waves are predicted 

to be produced by the acceleration of mass. Gravitational waves, however, 

differ from electromagnetic waves in a number of ways. While only a single 

charge is needed to produce electromagnetic waves, at least two masses are 

required to produce gravitational waves. The gravitational field is also very 

weak so tha t only catastrophic events are expected to produce detectable 

waves. Possible events include the collision of two astronomical objects and 

the collapse of a  large astronomical object.
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Confirmed detection of gravitational waves from astrophysical sources will 

found a new astronomy and allow direct investigation of the gravitational 

force under extreme conditions. The best current antennas, such as the 

LSU ALLEGRO detector [1], are sensitive enough to detect a gravitational 

collapse in our galaxy, if the energy converted is a few percent of a solar 

mass. However, the conventional wisdom is tha t we need to look at least 3 

orders of magnitude further in distance, out to the Virgo Cluster, to have 

an “assured” event rate of several per year. This requires improving the 

energy resolution of the detector by 6 orders of magnitude. The best known 

methods for improving cryogenic resonant-mass detectors will contribute by 

lowering the noise temperature, Tn, from its current value of ~  7mK. It is 

commonly believed tha t quantum noise will present a formidable barrier for 

improvement by more than 105, not quite enough for “assured” detection.

There are other ways to improve resonant-mass antennas th a t are inde

pendent of the noise temperature. A spherical antenna has a number of 

inherent properties tha t give it an advantage over other types of detectors. 

A sphere will have a larger mass than an equivalent bar (bar with the same 

resonant frequency). The larger mass translates into an increased cross sec

tion, thus improving the sensitivity of the antenna. A single sphere is also 

capable of detecting gravitational waves from all directions and polarizations. 

One would have to construct 5 equivalent bars to obtain the same amount 

of information. Therefore, a sphere can be thought of 5 detectors in a single 

instrument. A sphere is also capable of determining the direction information 

and tensorial character of an incident gravitational wave.



W ith these obvious advantages, why has no one built a spherical antenna 

before? First, the extra four inodes th a t strongly couple to a gravitational 

wave add an extra layer of complexity to the system. Second, a bare sphere 

is not a practical detector. Mechanical resonators must be attached to the 

surface of the sphere to turn  the small motion of .the sphere surface into 

large motions of the resonators, providing an essential increase in coupling. 

A minimum of 5 mechanical resonators must be attached to  the sphere in 

order to record all the information about the modes tha t strongly interact 

with a gravitational wave. These resonators will couple to the sphere modes 

resulting in a to tal of at least 10 coupled modes. These complications along 

with other practical problems (such as vibration isolation) have deterred 

people from attem pting to  construct a spherical gravitational wave detector.

In this dissertation, we will show that it is possible to deconvolve the 

complexities of a sphere coupled to a set of mechanical resonators. We have 

developed a theory tha t enables us to reconstruct all the information about 

an incident gravitational wave from the motion of the mechanical resonators. 

We have also constructed a room-temperature prototype antenna, and have 

shown th a t the problems associated with the breaking of perfect symmetry 

assumed in the theory can be solved in practice.

1.1 G ravitational W aves

This section provides a brief overview of gravitational waves within the theory 

of General Relativity. For a more detailed discussion we direct the reader to 

the standard texts [2, 3].



The theory of General Relativity predicts tha t gravitational waves will be 

produced by a time varying quadrupole moment. The wave itself creates a 

time varying tidal force th a t propagates at the speed of light. The field of a 

gravitational wave is often described by a time dependent strain tensor hap(t). 

The size of the strain tensor will indicate how strongly the gravitational wave 

will curve spacetime.

A gravitational wave will induce a stress an extended body. For a bar 

antenna, the stress from a gravitational wave will cause the ends of the bar to 

contract and expand. The force tha t a gravitational wave exerts on the bar 

depends on both the density of the bar’s material as well as the bar’s length. 

By increasing the mass of the bar we increase the force a gravitational wave 

exerts on the bar, thus increasing the b ar’s cross-section.

The gravitational wave field is transverse and traceless, i.e. if we orient 

our spatial axis so tha t the wave propagates in the z direction, then the only 

non-zero components to the wave field are hxx =  —hyy and hxy = hyx. The 

field has only two independent components, or polarization states.

We define two polarization amplitudes, which we call plus and cross (+ 

and x), in terms of the components of the wave field:

/ l -f  =  hxx hyy ( f  * f )

/i-x hxy hyx (1.2)

Figure 1.1 shows the effect on a ring of test masses from a polarized wave 

traveling in the z direction. The wave will compress the ring in one direction,
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Figure 1.1: The distortion of a ring of test particles during one cycle of a 
gravitational wave traveling in the z direction. The effect of both linear 
polarizations is shown.

while expanding it in the other. The two polarizations are equivalent except 

for a 45° rotation about the propagation axis.

Gravitational waves from astrophysical sources can be divided into three 

classes: bursts, periodic waves, and stochastic waves. Bursts are emissions 

tha t last for a very short time, only a few cycles. Potential sources of bursts 

include: the collapse of a star to a neutron star or black hole, coalescence of 

compact binaries, and the fall of stars and small black holes into supermassive 

black holes. Sources of periodic waves include: rotating neutron stars and 

binary stars. Stochastic waves are a potential stationary random background 

of gravitational waves. A stochastic background might come from primordial 

gravitational waves or from the superposition of the radiation from a large 

population of binary stars in our galaxy and other galaxies.
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Burst sources are the most likely to have large amplitudes at higher fre

quency; therefore, they are the best candidates for detection by resonant 

mass detectors. The signal to noise ratio of a burst signal in the detector can 

be shown to be [2, 4]:

-  =  (1.3)
N  hn y '

where hn is the overall detector noise, often referred to as the “burst” noise. 

It is defined, in terms of power spectral density Sh, as

The characteristic strength of the source, hc( f c), can be written in terms of 

the total energy AEqw radiated as gravitational waves [2]:

where f c is the resonant frequency of the detector, assumed to coincide with 

the characteristic frequency of the burst source, M0  is the mass of the sun, 

and ro is the distance to the source. Equation 1.5 is a convenient way to 

express the strength of a wave relative to the estimated distance to the Virgo 

cluster (10 Mpc) where many sources of burst gravitational waves are ex

pected to exist [5].

Burst sources must be very violent events. One candidate is the gravi

tational collapse of a  massive star to form a neutron star. The strength of

(1.4)

lOMpc
(1.5)



emission depends on the degree of non-sphericity in the collapse and also 

on the speed of the collapse. A perfectly spherical collapse will produce no 

waves, whereas a highly antisymmetric collapse will produce strong waves. 

The burst of gravitational waves will cover a large frequency bandwidth, how

ever the newly created neutron star is expected to have quadrupole modes 

th a t resonate on the order of 1 kHz, creating gravitational waves at tha t 

frequency. Supernovae are thought to occur at a rate of about one per 40 

years in our galaxy and at a rate of several per year at a distance out to the 

center of the Virgo cluster.

A gravitational collapse might also form a black hole instead of a neutron 

star. Again, the greater the non-sphericity the collapse, the stronger the 

gravitational waves emitted. The rate for this type of collapse is predicted 

to be about 1/3 the rate for collapse to a neutron star [2].

A third source for bursts is the coalescence of compact binaries. These 

are close binary systems containing neutron stars or black holes. The binary 

pulsar PSR1913+16 is an example of a coalescing binary; it is predicted to 

coalesce in 3.5 x 108 years.

Although there has not been any confirmed direct evidence of gravita

tional waves, there is strong indirect evidence of their existence. In 1975 

Hulse and Taylor observed the binary pulsar PSR1913+16, whose period 

changes at a rate consistent with General Relativistic predictions of gravita

tional wave emissions [6]. For the past 20 years astronomers have continued 

to observe the pulsar and to this day, the orbital decay remains consistent 

with the predictions of General Relativity.
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1.2 B rief H istory o f R esonant M ass G ravita
tional W ave A ntennas

For more than 25 years, gravitational waves have eluded confirmed exper

imental detection. The pioneering proposal to detect gravitational waves was 

made by Weber in the early 1960’s. He proposed using a large piezoelectric 

crystal to detect the oscillating strain produced by an oscillating gravitational 

field [7].

By 1966 Weber had constructed the first resonant-mass gravitational wave 

antenna [8]. It was a large, room-temperature aluminum bar th a t was vi- 

brationally isolated in a vacuum chamber. Quartz strain gauges were used 

to monitor the b ar’s fundamental mode of vibration. By 1969 Weber had 

achieved strain sensitivities of a few parts in 1016 and had constructed several 

more gravitational wave detectors. He soon announced th a t he had observed 

coincidences between them [9]. These results generated great excitement in 

the field and other groups began constructing gravitational wave detectors. 

In the end, however, Weber’s findings could not be confirmed by other groups 

who built similar detectors.

By the early 1970’s other groups were involved in building advanced 

gravitational wave detectors. These groups made a number of significant 

improvements over Weber’s original design. One improvement was to lower 

the tem perature of the bar to liquid helium tem peratures (4 Kelvin) [10]. 

The second was a  better suspension of the bar with increased vibration iso

lation. A third was the use of a resonant transducer and low noise amplifier 

to observe the motion of the bar. The small resonator not only amplified the
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displacement but attenuated large amplitude vibrations at low frequencies. 

Today there are three detectors of this type being operated: the LSU ALLE

GRO detector [1], the Rome EXPLORER detector [11], and the Australian 

detector [12].

In 1991 the first tests of an u/fra-low-temperature (50 mK) detector were 

performed [13]. Although the expected improvements have not yet been 

demonstrated, the techniques look promising.

The best current antennas, such as the LSU ALLEGRO detector [1], are 

sensitive enough to detect a gravitational collapse in our galaxy, if the energy 

converted to gravitational waves is a  few percent of a solar mass. However, 

the conventional wisdom is tha t we need to look at least 3 orders of magnitude 

further in distance, out to the Virgo Cluster, to have an “assured” event rate 

of several per year. This requires improving the energy resolution of the 

detector by 6 orders of magnitude.

1.3 A ntenna Sensitiv ity

A gravitational wave produces a spatially varying force, or stress, tha t will 

stretch and compress a bar antenna. This stress does work, thus energy can 

be added to or subtracted from the antenna. The more massive the antenna, 

the greater the amount of energy change. In other words, the gravitational 

force causes changes in the vibrational amplitude or phase of the antenna. 

It is this change in state that we try to detect.



10

By making the antenna’s quadrupole modes resonant at the wave’s fre

quency, the detector keeps a “memory” of the excitation, allowing extra time 

to detect the signal. Instead of looking at an instant of data, we can integrate 

over longer periods of time to look for changes in the amplitude or phase of 

the detector.

The sensitivity of an antenna can be improved by a number of ways. First, 

we can increase the force a gravitational wave will exert on the antenna by 

increasing its mass (see equation 2.2 in the next chapter). Second, we can 

make the antenna equally sensitive to all directions and polarizations. Third, 

we can lower the noise tem perature (level of excitation from non-gravitational 

sources) of the antenna. Although the main portion of this dissertation is 

not concerned with noise temperature, we briefly describe here the physical 

mechanisms tha t determine the noise of the antenna.

There are many non-gravitational sources th a t can excite the resonances 

of the detector. The largest of these sources can be external vibrations, such 

as ground noise. A sophisticated vibration isolation system is necessary to 

keep these forces from exciting the antenna.

Thermal noise will also contribute to the noise of the system. The thermal 

energy is proportional tc the tem perature of the detector, so cooling the 

antenna to very low tem peratures will lower the noise of the system. The 

thermal energy is also proportional to the relaxation time of the resonant 

mass. By using high-Q material, such as Aluminum alloy 5056, the transfer 

of energy to and from the heat bath will be much slower. If we keep the



integration time of our observations short, the effect of the therm al noise can 

be minimized. By increasing the Q of the system we not only lower the size 

of the noise spectrum of the detector, but give ourselves the possibility of 

using a longer integration time before the thermal noise dominates.

Another source of noise comes from the motion sensors. This type of 

noise can be referred to as “series” noise. This is an additive noise tha t 

usually comes from the first electronic amplifier. It is wide band and does 

not indicate excitation of the detector. A longer integration time reduces the 

effect of broad band noise, so it behaves in an opposite manner to thermal 

noise. This is another reason to require a high-Q system: it reduces the 

effect of “force noise” on the system allowing you to use a longer integration 

time. The series noise can also be reduced in the obvious way by reducing 

the amplifier noise.

Another way to improve the signal to noise ratio is to increase the cou

pling, (3, of the transducer to the antenna. Increased coupling will boost the 

amount of signal energy transferred to the motion sensor without increasing 

the series noise, so there will be a net gain in signal to  noise.

The motion sensors can also generate a force noise th a t can excite the 

resonant mass. This type of noise is referred to as back-action noise. Just as 

the transducer can see what the large mass is doing, the large mass can also 

see what the transducer is doing. Increasing the coupling (3 will cause more 

back-action noise to be transferred to the antenna.



1.4 Spherical A ntennas

There are other ways to improve resonant-mass antennas tha t are indepen

dent of the noise temperature. One way is to increase the cross-section of 

the antenna. Another is to construct many antennas, each aimed in a differ

ent direction, so every source direction and polarization will be in the most 

sensitive part of at least one antenna pattern. This method adds the abil

ity to determine source direction and polarization. A “spherical” antenna 

will provide all three advantages in a single instrument. We use the word 

“spherical” for any shape th a t approximates a  true sphere and has equivalent 

quadrupole vibrational modes.

The important question becomes: what quantitative improvement can a 

sphere actually deliver? We have invented a design for a nearly spherical an

tenna, which we call a Truncated Icosahedral Gravitational Wave Antenna 

[14], or TIGA, tha t provides a straightforward solution to certain complica

tions of a spherical antenna, and lets us calculate the quantitative improve

ment. We conclude that a TIGA will be about 56 times more sensitive in 

energy than the typical equivalent bar-type antenna with the same noise 

tem perature Tn. Combined with a quantum limited Tn, this is a sufficient 

factor to increase our range by more than the desired factor. If we further 

assume construction of a set of detectors for different frequencies, (a “xylo

phone” ), the sensitivity is further improved and wave form information can 

be obtained.



It was recognized long ago [15] tha t a sphere is a very natural shape for 

a resonant mass detector of gravitational waves. A free sphere has five de

generate quadrupole modes of vibration th a t will interact strongly with a 

gravitational wave. Each free mode can act as a separate antenna, oriented 

towards a different polarization or direction. Wagoner and Paik [16] found 

a set of equations to determine the source direction in the celestial hemi

sphere from the free mode amplitudes. Compared to a bar with the same 

quadrupole mode frequency and a typical length to diameter ratio of 4.2, the 

improvement in cross-section is about a factor of 60.

That result was ignored, perhaps because a simple spherical resonator 

is not a practical detector. One requirement for practicality is a set of sec

ondary mechanical resonators. All successful cryogenic bar-type detectors 

have such resonators; they act as mechanical-impedance transformers be

tween the primary vibrational modes of the antenna and the actual motion 

sensors, producing an essential increase in the electro-mechanical coupling. 

We expect th a t a sphere with five primary modes will require at least five 

secondary resonators. Another requirement for practicality is a clear method 

for spatial deconvolution of the signal, so we can determine its direction 

and polarization. A third requirement is a way to quantify the noise when 

multiple motion sensors are used.



Chapter 2 

Spherical Gravitational Wave 
Antennas1

We present here detailed calculations for the sensitivity of a spherical 

detector for a case where the secondary resonators have a particular useful 

symmetry. This chapter reproduces our discussion, with minor additions, 

published recently in Physical Review D [17], copyright 1995 The American 

Physical Society (see Appendix D for letter of permission).

We begin by introducing the quadrupolar decomposition of the gravita

tional field in section 2.1. Section 2.2 reviews the fundamental mechanical 

equations and the eigenfunction expansion for a general antenna. Section 2.3 

reviews the quadrupolar eigenfunctions for a sphere and shows tha t they 

exactly match the quadrupolar decomposition of the gravitational field. A 

derivation of a general model for coupling resonators to a sphere is presented

'Reprinted with permission from Physical Review D  51, 2546 (1995), “Spherical Grav
itational Wave Antennas and the Truncated Icosahedral Arrangement” by S. Merkowitz 
and W. Johnson. Copyright 1995 The American Physical Society.

14
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in section 2.4. A special geometry (the “TIGA configuration” ) is introduced 

tha t simplifies the behavior of the coupled system, and allows us to obtain 

a general analytic solution. A direct, one-to-one, readout for each of the 

quadrupolar components of the gravitational field is provided by a linear 

combination of the resonator outputs, called “mode channels.” The behav

ior of the complete system is illustrated with a numerical simulation of its 

response to waves with different directions and polarizations. Section 2.5 

develops a simple noise model, and calculates the resulting “spectral sen

sitivity” of the detector. Section 2.6 compares the spectral sensitivities of 

several detectors.

2.1 Q uadrupole D ecom position  o f th e  Grav
itational Field

A gravitational wave is a traveling time-dependent deviation of the metric 

tensor, denoted by hfiu. We follow a common textbook development for the 

metric deviation of a gravitational wave, which finds th a t only the spatial 

components, /i^, are non-zero, and further can be taken to be transverse 

and traceless [2]. The tensor is simplified if we initially write it in the “wave- 

frame” , denoted by primed coordinates and primed indices. It is a coordinate 

frame with origin a t the center of mass of the detector, and the z'-axis aligned 

with the propagation direction of the wave. Since we restrict ourselves to 

detectors much smaller than the gravitational wavelength, only the time 

dependence of hyy will have significant physical effects. Thus, the most



general possible form for the spatial components of the metric deviation in 

the wave-frame can be written as:

h'+(t) h'x (t) 0

hi'j'{t) =  h'x (t) - h'+(t) 0 

0 0 0

( 2 . 1)

where h'+ and h'x are the wave amplitudes for the two allowed states of linear

polarization, and are called the plus and cross amplitudes.

The detector is more easily described in the “lab-frame” , denoted by 

unprimed coordinates and indices, with origin also at the center of mass of 

the detector, and 2-axis aligned with the local vertical. In this frame, the 

primary physical effect of a passing gravitational wave is to produce a time 

dependent “tidal” force density / GW(x, t) on material a t coordinate location 

X{ with mass density p, which is related to the metric perturbation by

We notice th a t this force can be written as the gradient of a time-dependent 

scalar potential:

/ GW(x, t) = Vj<f>(x, t) = Vi ^  ^p x jh jk ( t)x^ j  . (2.3)

This scalar potential is a quadratic form in the spatial coordinates. It 

is natural to look for an alternate expression th a t separates the coordinate

(2 .2)
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dependence into radial and angular parts. Because the tensor hjj is trace- 

less, the angular expansion can be done completely with the five ordinary 

spherical harmonics of order 2 , which we denote by Ym(9, 4>) or Ym. We call 

the resulting time dependent expansion coefficients, denoted by hm(t), the 

“spherical amplitudes.” They are a complete and orthogonal representation 

of the cartesian metric deviation tensor hij(t). They depend only on the two 

wave-frame amplitudes and the direction of propagation, and are defined by

$(x , t) = yj^ pr2 hm(t)Ym. (2.4)

We have found it convenient to use a set of spherical harmonics Ym 

tha t are linear combinations of the usual complex-valued spherical harmon

ics Y^m [18]. We define them by

Y   /T(Y  i y  ) - J 1 5 (x 2 ~ y 2)V i -  y  2 {Y 2 2  T  Y 2 —2)  - 2 - - - - -I67r r 2

15 2xy

(2.5)

<2-6)

n =  v?(r21 + n-,) = (2.7)

n =  # ( n - , - n . )  (2.8)

* -  *  J w 1 ™
They are normalized such tha t J Y m ■ Yndfl — 6mn.



To transform the metric perturbation to the lab-frame we perform the 

appropriate rotations, using the y-convention for the Euler angles [19]. Or

dinarily, without making any assumptions about the source, we do not know 

the initial state of the polarizations; we may therefore ignore the rotation 

about the original z'-axis because this rotation only mixes the two polariza

tions and has no effect in determining the direction of the wave. We denote 

the rotation about the ?/-axis by /? and the rotation about the new 2-axis by 

7 . The spherical amplitudes in the lab frame can now be written in terms of 

the gravitational wave amplitudes:

hi(t) = h'+(t )^  ( l  +  cos2 /?) cos 27 +  h'x (t ) cos/?sin 27 (2 .10)

h2(t) = —h'+(t)^  ( l  +  cos2/?) s in 27 -I- h'x (t) cos/?cos27 (2 .11)

h3(t) = —h'+(t)^~ sin 2 /?s in 7  +  h'x (?) sin/? cos7 (2 .12)

55- II h'+ (?)^ sin 2/? cos 7  +  h'x (?) sin /? sin 7 (2.13)

h5(t) = ti+( t ) ^ v 3 sin2/? (2.14)

If the lab rr-axis points South and the lab 2-axis is the local zenith, then 

the source has a zenith distance =  /? and an azimuth (degrees East of North 

along the horizon) =  7 .

The five orthogonal spherical amplitudes hm are the complete set of mea

surable quantities of the local gravitational field within General Relativity.
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Combining equations (2.3) and (2.4) we can write the cartesian strain tensor 

in terms of the five spherical amplitudes:

h  -  

h 2

/14

^2

' hl ~  73 
hn,

h4 

hz (2.15)

For a wave traveling in an arbitrary direction, the cartesian strain tensor 

will have non-zero off diagonal elements. The determination of the source 

direction follows immediately by solving equation (2.15) for its eigenvalues 

and eigenvectors. For a transverse wave, the diagonalized tensor will have 

non-zero hyy  and hyy  components. The hyy  component will be zero, but 

its eigenvector will point in the direction of the incident gravitational wave. 

The position determination is only unique within a hemisphere; sources in 

opposite directions are indistinguishable. Other descriptions of determining 

the source direction from a spherical detector have been discussed by others 

[20 , 21 ],

2.2 T he G eneral A ntenna

The mechanics of a general antenna can be described by ordinary elastic 

theory. Forces acting on the body will cause a deformation described by the 

displacement vector u(x , t), where x  is the equilibrium position of a mass
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element. The equations of motion for an isotropic elastic body are 

ffi11
P ^ 2  = (A +  ^  V (V • u ) +  +  E  f • (2-16)

where the Lame coefficients A and fj, specify the elastic stiffness of the material

and f  represents the sum of external force densities acting on the body [22].

We include two forces in First, the signal or gravitational force

density, f GW, from equation (2.2). Second, if objects are attached to  the 

antenna, there will exist a  reaction force between the object and the surface 

of the antenna. Thus we choose to  express the coupling to other objects, such 

as secondary resonators, as if they were external forces in equation (2.16). 

This device lets us partition the equations of motion in a convenient way.

A solution to the differential equation (2.16) can be found by the standard 

eigenfunction expansion. This allows a separation of the spatial and time 

dependence of the displacement vector,

u (x j,i)  =  53 am (i)® m (xi). (2.17)
m

Each spatial eigenfunction, (x), is the time independent part of the solu

tion for unforced harmonic oscillation a t the eigenfrequency u m, and is found 

by solving

- p J i J t m  = (A +  /z )V (V -* m) +  //V 2* m, (2.18)

subject to the time-stationary boundary conditions, which for a sphere re

quire tha t the total force per unit area at the surface vanish in the direction
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normal to the surface. The quantity am(t) is the time-dependent mode am

plitude. The mode index, m, enumerates the discrete set of modes, which 

obey the usual orthogonality property

j ^ ^ m(x) • ^ n(x)d3x  = N m8mn. (2.19)

The normalization constant, N m, is arbitrary.

Combining the equations above, and using orthogonality to eliminate 

the summation, we find the standard result, one forced harmonic oscillator 

equation for each mode amplitude,

dm (t ) +  uj2mam (t ) =  [  ^ m(x) • £  f  (x > *) d3x■ (2-2°)

When comparing different calculations, one source of possible confusion 

is the arbitrary choice of normalization constant N m. It determines the units 

and the precise physical interpretation of both the mode amplitudes am and 

the eigenfunctions 'h,,,.

The mode amplitudes are a complete set of collective coordinates for the 

description of the antenna motion. All the interactions with the outside 

world, including gravitation, can be included as separate terms in the “effec

tive force” on each mode. An efficient approximation scheme will use only 

those modes needed for an accurate description of the antenna. Only a few 

of the “overlap integrals” with f GW in equation (2 .20) are large, so tha t only 

a few of the mode amplitudes are strongly coupled to gravitational waves.
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Let us consider a perfectly homogeneous and isotropic sphere uncoupled from 

the outside world. Its eigenfunctions were found over a hundred years ago 

by Jaerisch [23] and Lamb [24];. More elegant derivations, using modern 

notation, were found by Ashby and Dreitlein [25], and Wagoner and Paik 

[16]. We summarize their results.

The eigenfunctions of a sphere can be described in terms of spherical 

harmonics Y^m (6 , 4>). Looking at the overlap integral in equation (2.20), we 

see tha t we need only consider odd-parity modes. For a sphere of radius R  

the eigenfunctions are written:

=  [a<(r)f +  fa(r)RV] Yem(6, 0), £ even. (2.21)

The radial eigenfunctions ae (r) and fa (r) determine the motion in the radial 

and tangential directions respectively. There are five quadrupole modes of 

vibration which strongly couple to the force density of a gravitational wave, 

and are all degenerate, having the same angular eigenfrequency u j 0 . They are 

distinguished only by their angular dependence. Figure 2.1 shows the shape 

of the quadrupole modes. For the remainder of this discussion we will only 

consider the quadrupole (£ =  2) modes so we will drop the £ in our notation.

The radial eigenfunctions are given by Ashby and Dreitlein:

d  1
o (r) =  c R - - j 2{qr) + M R - j 2{kr) 

or r
( 2 .22 )
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mode 2mode 1

mode 5

mode 3 mode 4

Figure 2.1: The shape of the quadrupole modes. The shading indicates the 
amplitude of radial motion. The dark regions have little or no radial motion; 
the lightest regions have the maximum of radial motion.

i3{r) = cj2(qr) +  d— [rj2(kr)\ (2.23)

Their dependence on Poisson’s ratio is shown in Figure 2.2. Here, j 2 is the 

spherical Bessel function of order 2 . The longitudinal and transverse wave 

vectors are given by q2 — pjj2/(X  +  2/x) and k2 =  p ^ l / p  respectively. The 

boundary conditions,

d_
dr

h iq r ) ' +  d
2

I d /  
r dr

j 2{kr) =  0 , (2.24)
r = R
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6_ _ ^ _  2 d_ 

r 2 2 r  d r
j 2( q r )  +  6d - ^

j 2( k r )
=  0 , (2.25)

r = R

determine the uncoupled mode frequency lu0. Its dependence on Poisson’s 

ratio is shown in Figure 2.3. Inclusion of a normalization condition,

Nm = -7i-R3, (2.26)

determines the constants c and d. These coefficients specify the shape of the 

eigenfunctions. They are all weakly dependent on Poisson’s ratio, as shown 

in Figure 2.4.

The gravitational effective force for mode m  of the sphere, F^,  from 

equation (2 .20) is

F;5 =  fm Jv0
m _  , ^ m - f G W d 3x .

Solving the integrals, using equations (2.3) and (2.21), we find

(2.27)

A-jr
F °(i) = s l— phmit)RA\c32{qR) + 2 ,dh{kR)]

=  ^ hm( t ) m s x R ■ (2.28)

Thus we have tha t each spherical component of the gravitational field de

termines uniquely the effective force on the corresponding mode of a sphere, 

and they are all identical in magnitude. We can interpret the effective force 

in each mode as the product of: the physical mass of the sphere rris, an 

effective length x R , and the gravitational acceleration | / i m. The factor x  is 

a weak function of Poisson’s Ratio, and is shown in Figure 2.5.
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3

2.5 •

1

0.5*------------- 1------------- '------------- 1------------- 10.25 0.3 0.35 0.4 0.45
Poisson 's  Ratio

Figure 2.2: The value of the normalized eigenfunctions, a  (solid line) and (3 
(dotted line), at the sphere surface, as functions of Poisson’s ratio.

1.68

1.66

1.64

W 1.62

1.56

0.3 0.35 
Poisson 's  Ratio

0.4 0.45

Figure 2.3: The dimensionless eigenfrequency of the uncoupled quadrupole 
modes of a sphere, u>0R ^ j j ,  as a  function of Poisson’s ratio.



2.4 Sphere w ith  R esonators

26

2.4.1 E quations o f  m otion

We have just shown th a t measurement of the quadrupole modes of a sphere 

will provide information about all of the spatial dependence of the gravi

tational field, but a simple spherical resonator is not a practical detector. 

As mentioned in the introduction, one requirement for practicality is a set 

of secondary modes or mechanical resonators. All current bar antennas use 

resonators th a t interact only with the vector component of antenna motion 

normal to the surface on which they are mounted. Thus it seems natural to 

restrict our consideration to resonators of this type. The alternate possibil

ity, interaction with transverse components of the antenna motion, is under 

consideration by others [20].

Designate the location of each resonator j  by Xj. Then the normal dis

placement, Zj, of the sphere surface under resonator j ,  is given by

z3(l ) = (xj)- (2-29)
m

By mechanical resonator we mean a small elastic system th a t has one of 

its own normal modes tuned to be resonant with the frequency of the antenna. 

The antenna surface motion excites this mode, and there is resonant transfer 

of momentum between the resonator and the antenna. Hence it acts as a 

resonant mechanical transformer, turning small motions of the large antenna
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-10 •—  0.25 0.35 
P oisson 's Ratio

0.450.3 0.4

Figure 2.4: The normalized eigenfunction constants c (solid line) and d (dot
ted line) as functions of Poisson’s ratio.

0.604

0.602

0.6

0.598

0.596 L— 0.25 0.3 0.35 
Poisson’s  Ratio

0.4 0.45

Figure 2.5: The fraction x> which determines the effective length of each 
sphere mode, as a function of Poisson’s ratio.
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into large motions of the small resonator. Each resonator j  is constructed to 

obey a one-dimensional harmonic oscillator equation:

m R [<jj(xj,t) +  Zj(xj,t)] = —kRqj(xj, t) +  F ^ {x j , t ) .  (2.30)

The displacement of the resonator, relative to the sphere surface, is denoted 

by qr  Because qj is a relative displacement, the inertial displacement of the 

resonator mass is qj +  zv  hence the peculiar form for the left hand side of 

the equation above. Each resonator is assumed identical, and the mass m R 

and spring constant kR of each are tuned to match the frequency of the five 

sphere modes so that kR/ m R = Any random or noise forces th a t act 

between the small resonator and the sphere are included in F j1. A schematic 

of the one dimensional system is shown in Figure 2.6.

The values of the relative radial displacements of the sphere surface, at 

the resonator locations, can be grouped together into a “pattern vector” for 

a particular mode, because they describe the pattern of radial displacement 

for tha t mode. These column vectors in turn  may be collected together to 

form a “pattern matrix” B mj  defined by

fj ' (%j) =  &Bmj (2.31)

where a  =  a ( R ) ,  the value of the radial component of the eigenfunction at
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z+q

m„

Figure 2 .6 : Schematic of a  one-dimensional resonator attached to the surface 
of a sphere.

the surface. From equation (2.21) we find

Bmj = Ym (Oj, 4>j) • (2.32)

Because the wavefunctions are invariant to reflection through the origin, we 

may restrict the location of resonators to one hemisphere, without loss of 

generality.

Combining the above, we find the coupled equations of motion for the 

sphere modes are

m s am{t) 4- ks am(t) =  [kRqj(t) -  F1/ ^ ) ]  +  F^(t).  (2.33)
j



It is convenient to combine equations (2.30) and (2.33) into a m atrix 

notation. We denote matrices by a double underscore and column vectors by 

a single underscore.

msL  0 a(t) ksL —kRa& a(t)

m Ra B lT m RJ_ Q(t) Q kRl

I  ~ a& F s (t)
(2.34)

fi I F N(t)

The vector a has five components and the vector q has one component for 

each resonator. The dimensions of the constant matrices can be inferred from 

these two column vectors.

These equations should give an excellent account of the mechanics of 

the system for arbitrary numbers and locations of resonators. They are 

restricted only by the previously stated assumptions: degeneracy for the 

uncoupled sphere modes and precise matching of the resonators. Most of the 

new features of a multimode spherical antenna are included, particularly the 

strong interactions between the sphere modes and the resonators. We have 

not included terms which represent the “dissipation” part of friction, which 

can be shown to be negligible for the sensitivity calculations we do here. We 

do include the “fluctuation” part of friction, within the random driving forces
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It is clear tha t these equations represent a set of elastically coupled har

monic oscillators with driving forces. The apparent peculiarities (off-diagonal 

terms in the mass matrix and asymmetry in the elastic matrix) are simply ar

tifacts of use of the non-inertial coordinates q. In appendix A we show how to 

transform them into the canonical normal form, with normal coordinates ry.

r[(t) + u jUrii t)  = LLTK E ( t ) .  (2.35)

The sphere overlap integrals and the resonator noise forces are contained 

in the column vector F . U j  is the transpose of a set of eigenvectors tha t 

diagonalize the equations. The m atrix 22 is the diagonal m atrix of eigenvalues 

for the normal modes described by 22, and 22 is a constant transformation 

matrix. The equations of motion are now in a form that can easily be solved 

numerically using standard techniques.

To solve for the resonator displacements q and sphere mode amplitudes 

a we take the Fourier transform of equation (2.35), and solve for r/ (u). Once 

the normal coordinates have been found, the sphere mode amplitudes and 

resonator displacements are found by a constant transformation.

2.4.2 T runcated Icosahedral A rrangem ent

We can solve the equations above for arbitrary numbers and locations of 

small resonators, and determine whatever quantities are interesting, such as 

the coupled eigenfrequencies and eigenvectors. One im portant question is 

whether there exists any favored or optimum arrangement.
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By a simple counting argument, we expect tha t a minimum of five res

onators are required to  completely measure the five quadrupole modes of the 

sphere, so our initial calculations considered the frequency structure with five 

resonators tuned to the frequency of the degenerate sphere modes.

The eigenmodes of the coupled system are naturally split up and down 

in frequency. From earlier work on optimizing a bar antenna coupled to a 

single resonator [26], we knew th a t the amount of frequency splitting was 

an indicator of the strength of the coupling, and normally would need to be 

adjusted to a particular value to  optimize the overall signal to noise ratio. 

Therefore we were disappointed to discover tha t the 10 coupled modes did 

not split in an identical way. For every arrangement of five transducers 

that we tried, we found tha t the resulting coupled modes were arranged 

in singlets, doublets, and triplets, each with a different splitting from the 

original common frequency.

We then tried 6 resonators, and quickly discovered th a t there was an ar

rangement th a t greatly simplified the frequency structure: it became two de

generate quintuplets and a singlet. The geometric location of the resonators 

was found to be precisely the projection, onto the sphere, of the centers of 

half the faces of a concentric dodecahedron.

A Truncated Icosahedron (TI) has the same point group symmetries as 

a dodecahedron [27], but better approximates a sphere. It also has 32 flat 

surfaces suitable for mounting transducers, calibrators, balancing weights and 

suspension attachments. Therefore, we proposed to use 6 pentagonal faces of
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a TI, instead of a dodecahedron, for arranging the mechanical resonators [14]. 

This shape, with the proposed resonator locations, is shown in Figure 2.7.

Figure 2.7: The truncated icosahedral gravitational wave antenna (TIGA) 
with secondary resonator locations indicated. The resonators lie a t two polar 
angles, 9 =  37.3773° and 79.1876°. Their azimuthal angles are multiples of 
60°, as shown. The numbering on the resonators corresponds to the order 
used in the numerical simulation of section 2.4.5.

The high symmetry of the TI arrangement becomes apparent when you 

examine its pattern matrix. Each pattern vector is orthogonal to the others, 

and each has the same magnitude, or in other words:

rp 3
R & T = — I (2.36)
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This property causes the cross terms between sphere modes in the eigen

functions to vanish, having the effect of isolating each sphere mode from the 

others. W ithout this, the energy from an excitation of a  single sphere mode 

would end up “leaking” into the other sphere modes through the mechanical 

resonators. This allows us to use the sphere modes as a direct measurement 

of the gravitational spherical amplitudes.

In addition to the orthogonality, the sum of the components of each pat

tern vector vanishes, or

E l  =  0 . (2.37)

(The 6 x 1 column vector 1 is defined to have all elements equal to unity, 

while the 5 x 1  column vector 0 has all elements equal to zero.) This property 

will allow us to easily remove from our analysis the lone mode, which does 

not interact with a gravitational wave.

Since discovering this arrangement, we have not considered others in com

parable detail. We have not attem pted to make a proof th a t it is the optimum 

arrangement in terms of equal coupling to gravitational waves from any di

rection or polarization, but its symmetry leads us to conjecture tha t such a 

proof will be discovered.

2.4.3 A n aly tic  Solution

The symmetry of the pattern matrix also suggested th a t there might be 

an analytic solution for the collection of eigenvectors and the eigenvalue 

matrix J2 of equation (2.35). Examination of the numerical results suggested
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a likely form for JZ, and substitution in the equations verified tha t it was 

a solution and determined the values of the constants. The details of this 

solution are found in appendix A.

It is convenient to divide the resulting set of eigenvectors, £/, into three 

groups. The first two groups each contain five column eigenvectors and we 

denote them by U_+ and U__ '■

IL± = n±
L

c±BT
(2.38)

The physical interpretation of these is simple: each coupled eigenmode “mim

ics” the motion of one of the uncoupled sphere eigenmodes. In other words, 

each coupled resonator’s radial motion is proportional to the uncoupled 

sphere wavefunction at tha t resonator’s location. This amplified version of 

a mode’s pattern vector is either in-phase (down-shifted in frequency) or 

anti-phase (up-shifted in frequency). The frequency shifts are all identical, 

so tha t the quintuplet of degenerate bare sphere-modes has bifurcated into 

up-shifted and down-shifted degenerate quintuplets of modes. The amount 

of frequency shifting is given by the eigenvalues, A± , which are the diagonal 

elements of the m atrix Q_. The identity matrix in the sphere components of 

the eigenvectors is an indication that energy will not be transferred from one 

sphere mode to another. The ±  notation has been used on the constants, n± 

and c±, as well to refer to the up (+) or down ( —) shifting of the frequencies.
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The remaining single eigenvector is

0
(2.39)

n Q 1

This mode is at the original sphere frequency and does not interact with a 

gravitational wave. All the resonators move in unison and the sphere modes 

do not move a t all.

The five dimensionless constants, n±, c±, and n0, can be determined us

ing the Hermitian property of the transformation, U jlL  — L The symmetry 

properties of the pattern  matrix, equations (2.36) and (2.37), play an impor

tan t role here to simplify the work involved in determining these constants 

and in calculating the eigenvalues. We summarize the results:

1 2 1
----------------- Ti =  —Q O 1 •bn ~ (2.40)

(2.41)

(2.42)

where b = a ^ jm R/ m s . The relative splitting of the coupled modes is given

by Au)/u0 = — \/X7 ~  1.9 8 ^ m R/m.s for a Poisson’s ratio of 0.36.
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2.4 .4  M od e C hannels

In an experiment, the measured quantities are the resonator amplitudes qj(t). 

Since they mimic the motion of the sphere, most of them are excited when 

only one sphere mode is excited. It would be helpful to have a direct way to 

determine the spherical amplitudes hm(t).

We have discovered th a t we can separate out each of the spherical ampli

tudes by forming fixed linear combinations of the measured amplitudes qj(t). 

We call these combinations “mode channels” , to indicate th a t each one is 

coupled only to a single mode amplitude, am(t), of the uncoupled sphere, 

and hence to a single amplitude hm(t) of the gravitational field. The linear 

combination desired for a given mode turns out to be the pattern  vector for 

tha t mode. Therefore, if we denote the five desired outputs as a  column 

vector g, they are given by

The analytic solution of the complete system is most simply expressed 

in the frequency domain. Taking tha t solution from appendix A, and using 

equation (2.43), we find tha t each mode channel fourier amplitude gm(u>) is 

linearly related to the forces by equation (A. 16), which is

g(t) = Rq{t) . (2.43)

gm(u) = a(u)F^{uj) +  £  Hmj(uj)Ff (u). (2.44)
j
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The response function <j {u>) is a scalar, so th a t each mode channel gm{u) 

responds only to the corresponding spherical component F^(u )  and hence 

only to the corresponding gravitational component hm(u>). In addition, a(ui) 

has the same frequency dependence as th a t of a bar-type antenna with one 

secondary resonator, so we can adopt familiar methods for param eter adjust

ment and time-series filtering.

In contrast, each mode channel responds to all the internal noise forces 

via the matrix response function H mj(u>). So the noise observed 

in one channel will be a superposition of the noises generated in all the 

resonators.

2.4.5 N um erical S im ulation  o f th e  T IG A  sy stem

The first major result of this chapter is that all the readout complications 

mentioned in the introduction are solved by using the mode channels. We 

illustrate this with a numerical simulation for two cases. We are only in

terested in demonstrating the mode channel concept, so we omit any noise 

terms from this simulation. For the first case, Figure 2.8 shows the response 

of the five sphere modes, a, to the tidal force of a gravitational wave burst, 

which arrives at t — 0 , propagating along the 2-axis with h x its only non

zero amplitude. The only non-zero force component is F2, so only the a 2 

component of the sphere modes is excited. The special symmetry of the TI 

arrangement prevents transfer of excitation to  the other sphere modes, so 

they remain unexcited.
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The measurable quantities, the resonator displacements q, are shown in 

Figure 2.9. To determine the sphere mode amplitudes from the observables, 

q, we multiply by the pattern m atrix to obtain the mode channels, g. Fig

ure 2.10 shows the result of this calculation. By comparing Figure 2.10 to 

Figure 2.8, it is obvious tha t (except for a phase shift of the envelope) the 

mode channels give a direct, one-to-one, readout of the sphere mode ampli

tudes, and thus of the gravitational wave.

For the second case, Figures 2.11, 2.12, and 2.13 show the results of the 

above calculation repeated for a gravitational wave burst propagating along 

the z-axis with amplitude h+.

2.5 Spectral S ensitiv ity

We have found above a set of equations for the system and a method of 

solution. We can now apply them to predict the sensitivity of a model de

tector. First, we write down the response of each mode channel, gm{uj), to 

the gravitational wave input hm(u>). From equation (2.28) and (2.44)

9m{u) =  -  ]^J2msa(uj)xRhm{ u).  (2.45)

Second, we model the noise sources, and calculate the system response 

to them. We have chosen to use a simple noise model which includes only 

two categories of noise certain to  be important: (1) displacement noise, or 

random voltages in the electronic readout of the mechanical displacement
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Figure 2.8: The response of the five sphere mode amplitudes, a, to the case 
of a gravitational wave burst of arbitrary size a t t = 0, propagating along 
the z-axis with only non-zero amplitude h x . The scale bar to the right 
indicates the maximum amplitude A  of the sphere mode, for comparison 
with Figure 2.9.
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Figure 2.9: The resonator displacements q, due to the burst excitation of the 
first case. The scale bars to the right indicate the maximum displacement of 
each resonator, relative to  the sphere amplitude A  of Figure 2.8.
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Figure 2.10: The mode channels g, calculated from the resonator displace
ments of Figure 2.9 for the first case.
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Figure 2.11: The response of the five sphere mode amplitudes a, to the 
case of a gravitational wave burst of arbitrary size at t =  0, propagating 
along the 2-axis with only non-zero amplitude h+. The scale bar to  the right 
indicates the maximum amplitude A  of the sphere mode, for comparison with 
Figure 2.12.
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Figure 2.12: The resonator displacements q, due to the burst excitation of the 
second case. The scale bars to the right indicate the maximum displacement 
of each resonator, relative to the sphere amplitude A  of Figure 2.11.
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Figure 2.13: The mode channels g , calculated from the resonator displace
ments of Figure 2.12 for the second case.
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q, and (2) force noise, or random forces tha t actually excite the mechanical 

system. We assume both axe generated in what Price [28] calls the “mechan

ical amplifiers” , or the transducer-amplifier combinations, which convert the 

resonator motions q into an electronic readout. The displacement noise has 

a spectral density denoted by S 9 (uj).

The force noise caused by the transducer-amplifier combination will ap

pear as a random term in We denote its spectral density as S F(u>).

We leave out of this model all of the Langevin noise forces th a t can be 

important with non-zero tem peratures and non-zero mechanical losses. In 

other words, we are calculating the generalization, for a  multimode multi

transducer antenna without mechanical losses, of the limit found by Giffard 

[29], who showed th a t the sensitivity of the detector is limited by the noise 

temperature of the amplifier.

These two noise sources can also be represented in a different way, by 

defining a “noise number” and a “noise resistance” for each transducer- 

amplifier. The noise number, N ,  is the amplifier noise tem perature, Tn, 

referred to the quantum of energy at the antenna frequency,

(2.46)

The noise resistance is defined by

(2.47)
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It is a measure of the strength of the electro-mechanical coupling in the 

transducer-amplifier combination.

Combining the above, and transforming using equation (2.43) and the 

noise part of equation (2.44), we find tha t the calculated noise spectrum at 

mode channel gm is

S» M  =  S F(a/) £  £  \Bmjf (2.48)
3 3

We assume the noise generators are all statistically independent.

Finally, we must compare the signal and noise responses, using some cri

terion for detectability. This final step can be done in a number of ways. 

For these calculations we have chosen to use a method not used before with 

resonant detectors, but now commonly used with laser interferometer gravi

tational wave detectors.

We calculate h = \J5^ ,the gravitational “strain spectrum ” or “spectral 

sensitivity.” It is the square root of the total noise spectral density measured 

at the output, in this case gm, referred back to the gravitational inputs hm. 

It quantifies the fictitious gravitational background noise tha t would be re

quired to mimic the stationary random output of the antenna. Assuming 

only stationary noise is present, it has the advantage of allowing compar

ison of different types of antennas. It also can be used to determine the 

signal-to-noise ratio for any specified signal waveform.
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The noise spectral density of each mode channel gm, referred back to the 

corresponding spherical component hm is therefore

=
4 kbTn Tn

0+ , 0- 2
4 msmR

J2 u>'£—u>2 r „  w2

ojAR 2m 2sx 2 a+ . a- 
Ŵ —U)2 Ul'i—LJ2

2 mj | (2.49)

where a± and (3± are dimensionless constants found in appendix A.

Prom equation (2.49) we see th a t the calculated strain spectrum  is propor

tional to the square root of the noise number. The shape of the strain noise 

is prescribed by the noise resistance, rn, and the mode splitting. Figure 2.14 

shows the strain noise for noise number, N  = 1, for a 1 kHz Aluminum 

TIGA. The three solid lines are for different values of the noise resistance.

2.6 Com parison o f the TIG A  to  other D etec
tors

It is possible to construct a number of TIGAs a t different frequencies to 

create a “xylophone.” Doing so would enable one to  partially determine the 

waveform of an incoming gravitational wave. The spectral density of a range 

of TIGA sizes is shown in Figure 2.15. The resonator to sphere mass ratio and 

noise resistance were adjusted to give consistent fractional bandwidth and a 

maximally flat curve. Parameters of this xylophone are shown in Table 2.1.

For comparison, the corresponding results for the equivalent bars, opti

mally oriented (bar axis orthogonal to an incoming wave), for the same strain
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Figure 2.14: The strain noise spectrum h(u) =  \/5* for a single mode channel 
of a  1 kHz Aluminum TIGA with noise number N  = 1, for three different 
values of the noise resistance r„. The dotted line is the additional noise due 
to the Langevin forces for an antenna at 50 mK with a mechanical quality 
factor of 108.

Frequency (Hz) Radius (m) Sphere mass (kg) Transducer mass (kg)
1000 1.30 25100 9.02
1250 1.04 12800 4.62
1500 0.87 7400 2.67
1750 0.74 4700 1.68
2000 0.65 3100 1.13

Table 2.1: Parameters for the “xylophone” of TIGA detectors shown as the 
solid lines in Figure 2.15. The material is aluminum.
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Figure 2.15: The calculated strain noise spectrum h(u) = y/Sh for various 
detectors. The solid lines are a “xylophone” of TIGA detectors with quantum 
limited sensor noise, for a single channel (i.e., a single linear polarization 
arriving from an arbitrary direction). The dashed lines are a xylophone of 
equivalent bar antennas with quantum limited sensor noise, for the optimum 
orientation of the wave. The dotted line is the first generation LIGO detector, 
for the optimum orientation of the wave [30].



51

component are shown as dashed lines in Figure 2.15. The strain noise hB, 

with Ar =  1, for the equivalent bar is larger by a factor of 3.9.

The second important result of this paper is that for equivalent conditions 

(equal noise numbers), a single channel of a TIGA will have 3.92 =  15 times 

better energy resolution than the optimally oriented equivalent bar. This is 

nearly the same improvement calculated by scaling up the mass of the bar 

by this amount, so we conclude tha t a single channel of the TIGA suffers no 

signal-to-noise penalty due to the various complications in the readout.

The comparisons in Figure 2.15 understate the overall advantage of the 

TIGA for the detection of gravitational waves. The five output channels com

bined make the detector optimally oriented for any polarization and incident 

direction. For a bar detector, it is well known th a t averaging over source 

direction and polarization [2] leads to a loss of energy resolution, compared 

to the optimum, by a factor of 15/4 =  3.7. Thus the net result is th a t the 

angle-averaged energy resolution of the TIGA is 3.7 x 15 =  56 times better 

than the equivalent bar detector (or about 7.5 times better in h).

Also shown for comparison in Figure 2.15 (dotted line) is the predicted 

strain noise for the first generation LIGO detector [30] in its most favorable 

orientation for the same signal. It is evident tha t a xylophone of quantum lim

ited TIGAs is significantly more sensitive over most of this frequency range, 

even without considering the extra information available about orientation. 

However, the predicted LIGO strain noise continues to drop, proportional 

to frequency, down to ~  100 Hz. We conclude that the two detector types 

are complimentary, each having a frequency domain where the predicted
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sensitivities are superior. In addition to covering different frequencies, each 

uses a different technology, which is advantageous when confirming tentative 

detection of a gravitational wave.

By creating a xylophone of TIGAs, they are no longer limited to being 

narrow-band detectors. The “notes of the scale” can provide substantial 

spectral information about the detected wave. Coherent recording of the 

outputs will allow relative phase measurement, hence partial reconstruction 

of the time dependence of the waveform.

2.7 E xtensions

Our noise model omitted the Langevin forces due to finite tem perature and 

mechanical damping. In current practice, these are very significant. The 

inclusion of resonator damping will add a contribution to the random forces 

, which will have the effect of increasing the noise number and the noise 

resistance so tha t their effect is immediately calculable via equation (2.49).

The inclusion of antenna damping will add noise terms to the effective 

forces, F ^, on the sphere modes. Because they act at the same point as the 

gravitational inputs, it is simple to calculate their spectral densities, referred 

to hm. The single sided spectral density of the Langevin force is well known 

to be

S Q = AkbT T̂ ,  (2.50)

where Q is the mechanical quality factor of the sphere, T  is the physical
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temperature, and kb is the Boltzmann constant. Using equation (2.28), we 

refer this force to the gravitational input in Figure 2.14. The dashed line 

shows the noise for a TIGA with a  Q — 108 at 50 mK. Clearly if one can 

obtain a high enough Q, the noise in the system due to antenna damping 

can be ignored.

A natural extension of this work would be to calculate the effect of small 

departures from the perfect symmetry and perfect matching assumed here. 

We want to  know if orthogonal mode channels can still be constructed, and 

also how much the sensitivity will degrade. Our experience with somewhat 

similar departures from perfect matching (such as the frequency mistuning 

of a resonator on a bar antenna) suggest tha t the sensitivity is affected only 

in second order by small departures of a parameter from its optimum value 

[31], but a quantitative calculation of these effects will be of practical interest 

for construction of such an antenna.



Chapter 3

TIGA Design

3.1 F in ite elem ent analysis

The theory contained in chapter 2 provides a solution to the elastic equations 

of a sphere. However, we propose using a truncated icosahedron as an approx

imation to a sphere. A TI has enough symmetry to ensure the degeneracy 

of the quadrupole modes, but to  investigate how good of an approximation 

a TI is to a sphere we modeled it using finite element analysis.

Finite Element Analysis (FEA) is a numerical tool used to solve problems 

involving structural analysis, electromagnetics, heat transfer, fluid flow, etc. 

It involves dividing a system into smaller elements with known properties. 

Various boundary conditions can also be applied easily to the elements. Each 

element will interact with its neighbors in a specified fashion so tha t the 

behavior of the system as a whole can be described.
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Figure 3.1: Linear 3-D 8- to  20-node isoparametric solid element

There are several commercial FEA software packages available; we used 

COSMOS/M [32]. It provides tools for solid modeling, mesh generation, 

static and dynamic analysis, and postprocessing features.

To form the volumes th a t make up a TI, we used a “connect the dot” 

approach. W ith the origin at the center of the TI, the coordinates of all the 

vertices and face centers of the polygons at the surface were calculated. By 

connecting all the points together, the surface of the TI is formed. These 

surfaces are then extruded to the center to form polygonal pyramids, which 

when put together form the volume of the TI.

The model was meshed using 8- to 20-node isoparametric solid elements, 

with 3 degrees of freedom per node. Shown in Figure 3.1, the solid element 

has nodes at all vertices and at positions between vertices to define the curve 

of the edges. Other shapes, such as a prism or pyramid, are formed with 

this element when more than one node is located at the same position. This 

type of element was found to give reliable results from experience with other 

models.
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Free Constrained Description
2614 2614 Toroidal
2615 2615 Toroidal
2621 2621 Toroidal
2623 2623 Toroidal
2629 2629 Toroidal
3129 3129 Quadrupole
3129 3129 Quadrupole
3133 3133 Quadrupole
3134 3134 Quadrupole
3135 3135 Quadrupole

Table 3.1: Calculated eigenfrequencies for an aluminum truncated icosa
hedron, calculated with finite element analysis for two separate boundary 
conditions: no constraints and the center node constrained in all directions.

The analysis was performed for three separate boundary conditions: no 

constraints, center node constrained in all directions, and the center of three 

hexagonal faces constrained in all directions. Table 3.1 shows the impor

tan t results of the three models. The difference in boundary conditions for 

each model resulted in only slight shifts in the frequencies of the quadrupole 

modes.

The frequencies of the quadrupole modes calculated from the FEA for 

the TI are equal to those calculated for a sphere, with diameter equal to 

98.5% of the maximum diameter of the TI, using the elastic theory developed 

in chapter 2. The quadrupole modes of the FEA model are not exactly 

degenerate, but the frequency splitting is only 0 .2%, which might be due to 

numerical effects.
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3.2 G eom etry and D esign

We constructed a prototype TIGA to verify the theory and solve some of the 

practical problems th a t may exist in a real detector. The requirements for 

the prototype were tha t it be made of similar material to a real detector and 

be of practical size. The size must be large enough so tha t the quadrupole 

frequencies are close enough to a working TIGA so tha t the same electronics 

and filtering methods could be used. In addition, the prototype needed to be 

large enough so tha t attached resonators could be of the same type as those 

tha t will be used on a working TIGA.

The material for constructing the prototype came from a 34” diameter 

bar of Aluminum alloy 6063. This bar was previously used as a cylindrical 

gravitational wave detector, and was known to have good mechanical prop

erties. To avoid using material close to the surface of the bar, the largest 

dimension on the prototype was set to 33” .

A truncated icosahedron is a polyhedron with 32 total faces, 12 pen

tagons and 20 hexagons. It has 60 vertices, each with 3 edges meeting for 

a total of 90 edges. A TI has three defining dimensions: the two dihedral 

angles, 138° IT  (hexagon-hexagon) and 142° 37’ (hexagon-pentagon), and 

the length of an edge. All other dimensions can be derived from these three 

using trigonometry (see appendix C). The prototype, with some im portant 

dimensions, is shown in Figure 3.2.
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One advantage to using a truncated icosahedron is its high symmetry. 

As shown in Figure 3.3, the TI has 2-, 3-, and 5-fold symmetry. This high 

symmetry greatly simplifies both the design and machining of the prototype.

The prototype was designed for a center of mass suspension. It has a 1” 

diameter hole through the center of a hexagon face. Just above the center of 

the prototype the diameter of the hole increases to 1^” . A rod with a wedge 

at one end was used to suspend the prototype from the area where the hole 

changes diameter. The wedge plugged the hole just above the center of mass 

so that balancing the prototype was relatively easy.

Three holes were also drilled and tapped in the center of the three hexagon 

faces adjacent to the top hexagon face (the face with the small suspension 

hole). Eyebolts were screwed into the holes whenever the prototype needed 

to be lifted or moved.

3.3 P rototyp e M achining

At first glance, the process for machining a TI is not straightforward, but a 

little further reflection on the high symmetry of the TI leads to a relatively 

easy method for cutting its faces. We include a description here to assist in 

developing the machining process for a large scale TIGA. The machining of 

the prototype was performed by FAMCO Enterprises, Inc [33].

The first step in machining the prototype was to cut the aluminum bar 

so tha t the length of the bar was precisely the caliper distance between two
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Figure 3.2: Schematic of the Truncated Icosahedron
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5-fold2-fold

Figure 3.3: Symmetry of the Truncated Icosahedron

parallel pentagon faces (31.46”). Flanges were then bolted to  these ends. The 

flanges were attached to a shaft so tha t the piece was free to rotate about the 

center of the two parallel pentagon faces (axis (a) in Figure 3.4). The shaft 

was held by a jig th a t sat on an indexed turntable. The jig was centered 

on the table so tha t it would rotate about the center of the piece (axis (b) 

in Figure 3.4). The turntable sat on a x-y table of a milling machine. The 

cutter could be moved vertically and in one horizontal direction.

To simplify the positioning of the piece for cutting we exploited the high 

symmetry of the truncated icosahedral shape. Only five rotations about 

axis (a) were necessary to machine all the faces. An index wheel, with five 

precise holes drilled into it, was attached to this axis to fix each angle of 

rotation. There were then three positions of the indexed turntable needed 

to machine the first half of the TI. The other half of the TI was then at 

positions reversed by 180°.

Once all the faces were machined, the suspension hole was made by first 

drilling a 1” diameter hole completely through the prototype through the 

center of a hexagon face. This hole was then redrilled half way through using
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Figure 3.4: TI Machining frame, viewed from above.

the larger ( I 5” ) drill bit. To clean up the area where the hole expanded 

we used a special drill bit tha t was machined to match the angle of the 

suspension wedge.

3.4 Suspension

The prototype was suspended on a wedge at the end of a rod th a t clears 

the inside diameter of the large suspension hole, but plugs the small hole 

(Figure 3.5). The other end is threaded so tha t it can be screwed into a 

support table. For strength we made the suspension rod out of titanium.

The dimensions of the rod were set to give a large (greater than 10 times) 

safety factor. This compromises vibration isolation, but for early testing of
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Figure 3.5: Titanium  suspension rod

the TIGA, isolation is not im portant and the possibility of accidents may be 

greater because the TIGA needs to be moved often to change instruments. 

For future testing th a t requires better isolation, a thinner rod, one with more 

vertical compliance, can be used.



Chapter 4

The Uncoupled Prototype

4.1 D ata A cquisition System

We began our study of the prototype by observing its behavior without any 

attached resonators. We attached small non-resonant accelerometers to its 

surface at the locations tha t the resonators would be positioned. For the 

initial observations we used a single channel spectrum analyzer to  analyze 

the response of a single accelerometer. This method was very informative, 

but lacked the capability to observe multiple locations simultaneously. To 

overcome this we built a complete data acquisition system (DAS).

The data acquisition system that we used to test the prototype may end 

up being the system used on the final TIGA. The final system has more 

stringent requirements than a system sufficient to test the prototype, but 

to fully understand a working detector we felt it necessary to impose the

63
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same requirements on the test system. Some of the requirements include: 

accurate timing, long term stability and reliability, capability of continuous 

acquisition over an indefinite amount of time, and ability to acquire data  at 

a sampling rate fast enough to observe signals up to about 7000 Hz from at 

least six inputs. These requirements introduce difficulties tha t had not been 

addressed before in this laboratory. This section briefly describes the DAS 

we used and how it satisfied the above requirements.

The frequency of the quadrupole modes of the prototype are centered at 

3235 Hz. If we were to sample this signal directly we would have to sample 

faster than the Nyquist frequency, 6470 Hz. W ith 6 transducer channels and 

a 16 bit A /D  this results in a da ta  rate of about 80 kB/s. This would fill a 

one Gigabyte disk in about three and a half hours. Obviously this becomes 

impractical very quickly.

To avoid this problem, we mixed the signal with a sine-wave reference, the 

frequency of which was close to the prototype’s quadrupole mode frequencies, 

using a two phase lock-in amplifier. Both the in-phase and quadrature com

ponents of the mixed down output were recorded to preserve all the original 

information in the signal. If we placed our reference frequency 20 Hz away 

from the signal, then the minimum sampling rate was 40 Hz. The net effect 

was to lower the overall data  rate by orders of magnitude.

When observing multiple signals, timing becomes important. We must 

make sure that the data is sampled at a precise rate and tha t each channel is
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Figure 4.1: Block diagram of the prototypes data  acquisition system.

sampled simultaneously. To ensure this we used a simultaneous Sample-and- 

Hold for each input channel. It sampled the analog signal from its channel 

simultaneously and held it until the A /D  read the value. Each “strobe” was 

triggered by a precise external oscillator to ensure a fixed rate. See Figure 4.1 

for a block diagram of the DAS.

A common problem with DAS’s is aliasing. Any frequency component in 

an analog input higher than the Nyquist frequency will appear in the da ta  as 

a lower frequency signal. To avoid this, the analog signal must be low-pass 

filtered prior to digitizing. Lock-in amplifiers have built-in band-pass filters 

for the input and a low-pass filter for the mixed signal, but this is often
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not enough. We found tha t an additional fourth order Butterworth low- 

pass filter, with a 600 Hz corner frequency, eliminated most of the aliasing 

problems.

To ensure the system was functioning properly, we put a known signal 

into it prior to collecting any data. A convenient test signal to use was a 

sine-wave with frequency close to  the lock-in reference frequency. We call 

this a “sine-test.” We could then fit the acquired data  to a sine-wave of 

frequency |uir — u>s|, where uiT is the frequency of the lock-in reference and uis 

is the frequency of the test sine-wave.

Both frequencies were not known exactly so we must first fit for the actual 

difference. This was done by minimizing the residuals between the data  and 

a fitted sine-wave. The fit gave the amplitude and DC offset of the signal 

as well as the phase difference between the in-phase and quadrature. We 

also calculated the RMS of the residual of the data and the fit to determine 

the basic noise of the system. The results of a typical test are shown in 

Figures 4.2 and 4.3.

In performing the sine-tests we discovered a systematic difference between 

the individual lock-ins. The amplitudes of the in-phase and quadrature of 

each lock-in differs by a small amount. This results in a phase difference 

between lock-ins. Figure 4.4 shows the phase difference as a function of 

frequency. The phase changes with frequency because of the time-constant 

networks applied to the outputs of the phase sensitive detectors in the lock- 

ins. The only solution for this is to set the time-constants of the lock-ins as 

low as possible.
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Figure 4.2: Residuals of a sine-test. Note that the residuals are ~  6/18000 
0.03%.

|  10*

100 200 300 400
Frequency (Hz)

500 600 700 800

10
10
.210
1

10 '

0100 100 200 300 400 500 600 700 800
Frequency (Hz)

Figure 4.3: Power spectral density of the residuals of a sine-test
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When putting the system together, it was im portant to test each com

ponent for noise sources, both individually and integrated with the entire 

system. The first place we looked for noise sources was in the VME crate. A 

number of grounding options were available. The DVX 2601 [34] has jumpers 

to select the input and output guard (shield) grounds. The input guards can 

be grounded to the chassis ground, the digital power supply ground from the 

VME backplane, the analog ground, or the digital-analog ground from the 

output of the DC/DC converter on the board. The output guards can be 

grounded to the analog ground or the digital-analog ground. The DVX 2502 

also has a jumper to select the guard grounds. It can be grounded to digital 

ground (VME backplane ground), chassis ground, or analog ground.

Two tests were performed to determine the best configuration of the guard 

grounds. First, the inputs to  the DVX 2601 were shorted and a sample of 

data  was collected. The standard deviation and the minimum and maxi

mum values of the data were useful measures of the level of noise left in the 

system. Second, a sine-test was performed for each configuration. The best 

configuration turned out to be analog grounding everywhere.

The lock-in amplifiers introduced most of the complexity to the system. 

The fact tha t the lock-ins we used were the most inexpensive we could find 

did not help matters. We used six EG&G PARC 5105 [35] dual phase lock-in 

amplifiers. They have no front-panel; they are controlled from the VAX via 

a RS232 port. We could use different settings for each individual lock-in, but 

in normal operation identical settings were used. We used a single oscillator 

for the reference of each lock-in.
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Figure 4.4: Phase difference between the in-phase and quadrature outputs of 
the lock-in detectors as a function of frequency.



Not much could be done to improve the lock-in’s performance, but we 

did look carefully at the characteristics of each lock-in. For the first test, we 

shorted the input to a lock-in and looked at the noise spectral density on 

a dynamic signal analyzer. Next, we input random noise and again looked 

at the spectral density. This allowed us to measure the roll off of the signal 

due to the time-constant filter. Next we input a  sine-wave from a signal 

generator. This test is closest to the actual experiment. One thing that 

was revealed by these tests is th a t harmonics of the signal, reference, and 

60 Hz were not attenuated sufficiently by the internal filters of the lock-ins. 

The bank of low-pass butterworth filters between the lock-ins and the A /Ds 

mentioned above helped alleviate this problem. We also found th a t much of 

the 60 Hz harmonics were coming from “dirty” power supplied to the lock- 

ins. We were able to lower the noise coming from the lock-in significantly 

by R.F. filtering the A.C. power supplied to the lock-ins and the rest of the 

electronics.

4.2 Instrum entation

To measure the response of the prototype to an excitation, we used a PCB 

353A quartz ICP (Integrated Circuit Piezoelectric) shear mode accelerometer 

[36]. The integrated circuit converts the high impedance charge signal from 

the quartz sensing element to a low impedance voltage signal. The voltage 

signal can then be fed into either a spectrum analyzer or into our DAS 

through a lock-in amplifier.
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The PCB 353A has a frequency range of 1 to 7000 Hz with 5% sensi

tivity deviation and 0.7 to 10000 Hz with 10% sensitivity deviation. Each 

accelerometer has a mass of lOg and dimensions of 12.7 x 21.6 mm. The 

accelerometers are screwed into a small base which is waxed onto the surface 

of the prototype.

We excited the prototype using a PCB 086ICP impulse-force test hammer 

[36]. The hammer had a sensing element th a t transforms the instantaneous 

force into a voltage. The signal from the hammer was fed into the DAS to 

record the time of excitation and the size of the impulse.

The impulse force was measured to be roughly parabolic in shape and 

to last ~  0.5 ms. This made it easy to miss the maximum amplitude at 

the sampling rate appropriate for monitoring the sphere’s response. To solve 

this problem we added an analog peak detector before the A/D. The peak 

detector holds the maximum voltage long enough to assure th a t the A /D  

will sample its output. The output signal then decays slowly until the peak 

detector is reset.

4.3 U ncoupled A ntenna Spectrum

The spectrum of the prototype is shown in Figures 4.5 and 4.6 for a frequency 

range of 3000-7000 Hz. To obtain the full spectrum we had to excite the 

prototype several times with an impulse and change the reference on the 

lock-ins to be close to the peaks of interest. The data  was then filtered and 

Fourier transformed digitally.
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Figure 4.5: Power spectrum of the bare prototype showing most of the promi
nent modes below 7000 Hz.

Using the finite element model of the TI we were able to identify most 

of the modes, based on their frequencies. The most im portant peaks are the 

lowest quadrupole modes. As shown in Figure 4.7, they are not degenerate, 

but are grouped into two close doublets and a singlet. As will be shown later, 

the almost perfect doublet at ~  3223 is the Y\ and modes. The pair at 

~  3237 is the Y3 and Y4 modes, and the singlet at ~  3249 is the Y5 mode. 

The doublets could only be seen as separate peaks by exciting the prototype 

at different locations.

Upon reflection, this mode splitting seemed to make good sense. The 

suspension hole through the prototype breaks the spherical symmetry. It 

does, however, maintain cylindrical symmetry about the z axis (the axis 

coaxial with the hole). W ith rotational symmetry about the z axis still intact,
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Figure 4.6: Power spectrum of the bare prototype, covering narrow frequency 
ranges near most of the prominent modes below 7000 Hz. Although most of 
the modes can be seen at this resolution, most of the larger peaks are nearly 
degenerate multiplets.
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Figure 4.7: Power spectrum of the bare prototype’s quadrupole modes from 
two separate impulse excitations a t different locations
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modes Y\ and Y2 form a degenerate doublet under tha t rotation. Likewise, 

modes Ys and Y4 also form a degenerate doublet. Mode Y5 is invariant to this 

loss of symmetry so it is unaffected. The net result is th a t the suspension 

hole forces the z axis of the mode frame to be coaxial with it.

4.4 A ccelerom eter Calibration

While the absolute calibration of the accelerometers is not im portant for 

these tests, their relative calibration is important. One method to  calibrate 

the accelerometers is to mount them on some type of resonator a t locations 

tha t have the same amplitude of vibration for a particular mode. We tried 

mounting the accelerometers along a line on a prong of a tuning fork. It 

quickly became apparent tha t the response of the accelerometers strongly 

depended on how well the accelerometers were waxed to the fork. If an 

accelerometer was detached and reattached the calibration would change. 

To avoid this problem we needed a calibration method tha t could be done 

in situ.

The monopole mode of the TI (the £ — 0 mode, which for the prototype 

has a frequency of ~  6880 Hz) has a shape such tha t all locations a t the same 

distance from the center will have the same radial acceleration. There are 

also no other modes in close vicinity to the monopole mode (see Figure 4.6). 

This makes it ideal for calibrating the system. We need only excite the 

monopole mode with all the accelerometers in their TI positions and observe 

their response simultaneously.
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The results of an impulse test using the monopole mode worked very well. 

The response of each accelerometer was a clean, exponentially decaying sine- 

wave. The only major problem we encountered during this test was aliasing 

from other highly excited modes. We reduced this problem by increasing 

the time constant of the lock-ins to 3 ms. The results of one calibration are 

shown in Figure 4.8.

Figure 4.8 shows the impulse response of one accelerometer. Figure 4.8(a) 

shows the in-phase (x) and quadrature (y) outputs of the lock-in plotted 

against each other. If there is only a single decaying sine-wave, such a plot 

will be a spiral, as shown. Figure 4.8(a) includes some data from before the 

excitation; this is why there is an initial “jum p” from very low amplitude 

to the large amplitude of the outermost circle. By following this jum p one 

can get a quantitative idea, good to a few percent, of the initial phase of the 

mode when it was excited. This is useful to show th a t all the accelerometers 

are in-phase as expected.

Figure 4.8(b) shows the magnitude of the sine-wave, -f- y 2. It is 

plotted on a logarithmic scale, so that a fit to the slope of this line measures 

the quality factor, Q, of tha t mode. This method also lets us extrapolate to 

find the initial amplitude of the mode, which can then be used to compare 

with the outputs of the other accelerometers. In air, the Q of the monopole 

mode was found to be approximately 31,000.

Figure 4.8(c) shows the spectral density for the monopole mode. The 

monopole mode is not close to any other modes which makes it very con

venient for calibration. This type of plot is useful, not only to measure the



77

£■if)c

o
£
to

7000.5 6800 69000.5
Time (s) Frequency (Hz)

(d )

0.5 1
Time (s)

1.5 0.5 1.50 1
Time (s)

Figure 4.8: A typical calibration of the accelerometers using the prototype’s 
monopole mode.

frequency of a mode, but also to check tha t there axe no aliases or unexpected 

noise sources sneaking into the data.

Figures 4.8(d) and 4.8(e) show the in-phase and quadrature outputs of the 

accelerometer plotted separately. Both show a very clean decaying sine-wave. 

It also shows tha t there is no phase deviation over time of the instrum enta

tion.

Once a fit to an exponentially decaying sine-wave is calculated, we know 

each accelerometer’s amplitude relative to the other outputs. We can then use 

this ratio to correct the data  for other tests. This method is very convenient, 

because the only change needed for other types of impulse testing is to change 

the reference frequency of the lock-ins; the accelerometers do not have to be 

removed or remounted.
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One peculiarity we found remains unexplained: the output of the different 

accelerometers was not strictly identical during the first 30 ms. Only one 

accelerometer, the one directly opposite to the hammer blow, had a transient 

feature that did not appear in the other accelerometers. T hat transient is 

shown in Figure 4.9 for a typical da ta  set. It is perhaps due to  the initial 

shock wave from the impulse striking the opposite face before it is distributed 

throughout the body. The transient was not a problem for calibration, so we 

left its explanation to some future investigation.
O pposite face

<DT)3
.12
a
I

0 50 100 150 200 250 300
Time (ms) 

Non-opposite face

o

a.
I

0 50 100 150 200 250 300
Time (ms)

Figure 4.9: The first 350 ms of response of the monopole mode to an impulse. 
The solid lines are the in-phase outputs of the lock-ins, and the dashed lines 
are the quadrature outputs. The initial transient mentioned in the text is 
circled.

4.5 M ode Shape A nalysis M ethods

The next step in testing the prototype was to measure the response at the 

surface to an excitation of the quadrupole modes. This allowed us to identify 

each mode with a  corresponding spherical harmonic. We developed and
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tested several methods for doing this. In this section we briefly describe 

some of these methods.

One possible approach is to excite each mode individually from different 

positions on the prototype and measure the response at various locations. 

This can be accomplished by driving the prototype with a sine-wave. We 

did a feasibility test with a “home-made” shaker, made from a piezoelectric 

speaker element, to determine if it was possible to excite each mode individ

ually. The near degeneracy of the modes in the two doublets made it too 

difficult to excite each mode individually; therefore, we rejected this method. 

We were able to lift the degeneracy of the modes by attaching masses to 

the surface of the prototype, but we decided against pursuing this method 

further because it might also change the shapes of the modes.

A second method is to excite prototype with an impulse from a hammer. 

This will excite all the quadrupole modes of the prototype. Their response 

will depend on the location and direction of the impulse, the type of tip 

used on the hammer, and the strength of the impulse. We developed several 

methods for analyzing the response of the accelerometers which we describe 

below.

We began by analyzing the response in the frequency domain. We a t

tem pted to fit the frequency response to five decaying harmonic oscillators. 

This involved fitting for 4 parameters (frequency, decay constant, initial am

plitude, and a time shift) for each of the five modes. The near degeneracy of 

the two close doublets made accurate fitting impossible. Also, 20 parameters 

was too many for the fitting routines used, so we abandoned this method.
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Figure 4.10: In-phase (x ) and quadrature (y ) response of the accelerometers 
plotted against each other for an impulse excitation.

The next analysis method we attem pted was to look at the direct response 

of the accelerometers in the time domain. Figures 4.10 and 4.11 show a 

typical data set of each accelerometer’s response using the plotting method 

described in section 4.4. The beating of the modes, because of their non

degeneracy, made an accurate measurement of the response in the transducer 

frame difficult.

The method we ended up using was to transform the outputs of the 

accelerometers to mode channels in a way similar to th a t discussed in sec

tion 2.4.4. The transformation was a linear combination of the outputs of 

the accelerometers. By minimizing the beating between modes, the trans

formation could be optimized to  separate the modes from each other into 

channels. The initial response of the modes to an impulse could then be
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Figure 4.11: In-phase (solid lines) and quadrature (dashed lines) response of 
the accelerometers for an impulse excitation applied at time t =  0. This is 
the same data  set shown in Figure 4.10, but plotted as a function of time.
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interpolated by analyzing the mode channels, which were now in the form of 

a single exponentially decaying sine-wave. The techniques used to perform 

this analysis are discussed in greater detail in the following section.

4.6 Separation into M ode Channels

To transform the accelerometer data to mode channels we needed to de

termine the real pattern m atrix for our imperfect “sphere.” We began bv 

guessing a pattern m atrix oriented in a lab coordinate system with the origin 

at the center of the prototype, z axis coaxial with the suspension hole (ver

tical), and a horizontal xy-plane with the x-axis in the direction of pentagon 

face 5 in Figure 2.7. Because of the retention of cylindrical symmetry, there 

was no compelling reason why the modes would choose this orientation of 

the x and y axes, but it seemed like a reasonable place to start.

The results were astonishingly good. Each mode channel resembled a 

relatively clean sine-wave. However, the magnitudes of the sine-waves did 

not follow a simple exponential decay. As shown in Figure 4.12, some of 

the magnitudes oscillated as they decayed. This indicated tha t the pattern 

matrix was off by some small amount. The oscillations also seemed to be 

grouped into two pairs of mode channels. We inferred from this th a t the 

pattern m atrix needed to be rotated so tha t the modes mixed would be 1 

with 2, 3 with 4, and 5 with all.

It is not convenient to change the lab-frame, so we chose to rotate the 

mode-frame relative to the fixed lab-frame. This was done by rotating the
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Figure 4.12: Magnitude of the mode channels calculated using the unrotated 
pattern matrix. The low frequency beating is due to mixing between nearly 
degenerate mode, which can be eliminated by rotating the pattern  m atrix to 
properly describe the transformation between the lab and the mode frames.

spherical harmonics to form a new set of spherical harmonics. The rotation 

was restricted so th a t the orthogonality of the wave functions was maintained.

We chose to use the y-convention of the Euler angles to perform the rota

tions. We ignored the first rotation a  about the z axis. The (3 rotation about 

the y axis mixed mode 5 with the other 4 modes. To keep the orthogonality 

between modes, we performed this rotation on all modes at once, or in other 

words we rotated the entire mode frame relative to the lab frame. The 7 

rotation about the new z axis mixed modes 1 with 2, and 3 with 4, but not 

1 with 3 or 4, etc. The rotations could be different for each pair because the 

modes would remain orthogonal under 7  rotation. Mode 5 was unaffected by 

any 7  rotation.
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Rotation Angle (deg)
/? 1.0

712 -0.1
734 -7.2

Table 4.1: Angles used to rotate the pattern matrix to properly describe the 
transformation between the lab and the mode frames.

To fit for the rotations we minimized the deviations of a  least squares fit 

of the magnitudes of each mode channel to a  simple exponential decay. We 

did three separate fits, one for modes 1 and 2, and another for modes 3 and 

4. We also did a fit for (3 by minimizing the deviations for the W-mode. The 

results are shown in Table 4.1.

The effects of the rotations were quite satisfying. As shown in Figure 4.13, 

each mode separated from the others and behaved as expected, as a exponen

tially decaying harmonic oscillator. Figure 4.14 shows each mode channel in 

the complex plane. Each mode follows a spiral. The number of turns (beat 

cycles) depends on a mode’s frequency difference from the lock-in reference. 

From the polar plots, we can follow the initial excitation of the modes to de

termine the phase of each mode relative to. the others. The small remaining 

oscillations, or “wiggles” , are due to an imperfect separation of the modes 

into mode channels. This is most easily seen by looking at the spectral 

density of the mode channels shown in Figure 4.15. There is still between 

0.008% and 2% admixture from the other quadrupole modes, which could 

not be eliminated with simple rotations of the wave-functions. It may be 

possible to lower the level of admixture by more precisely positioning the
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accelerometers and impulse hammer. However, this result does indicate tha t 

the TI is a good approximation for a sphere, having less than  2% deviation 

from the eigenfunctions of an ideal sphere.

Also shown in Figure 4.14 is the magnitude of the mode channels. By 

performing a least square fit of the magnitudes we are able to measure the 

initial amplitude of the excited sphere modes and their Q. The average Q of 

the five quadrupole modes was ~  20,000 in air.

4.7 M ode R esponse

Because we know the location and direction of the applied impulse, we should 

be able to predict the magnitude of the response of each mode. The output of 

each accelerometer is a  superposition of the wavefunctions of all the modes at 

th a t accelerometer’s location. It is possible to calculate the magnitudes of the 

wavefunctions at these locations for an impulse excitation and compare the 

result to the measured response, but we have devised a model th a t simplifies 

the calculation.

If the prototype had truly degenerate quadrupole modes, we would be 

free to choose a basis set with arbitrary orientation to describe the sphere 

modes. If we chose an orientation, such tha t the z' axis in the mode frame 

was along the direction of the impulse, then only a single mode (y5) in that 

frame would be excited. All of the other modes have radial nodes at the 

north pole (see Figure 2.1), so they would not be excited by an impulse at 

tha t location.
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Figure 4.13: In-phase (solid lines) and quadrature (dashed lines) of the mode 
channels calculated from the da ta  shown in Figure 4.10 using the rotated 
pattern matrix.
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Figure 4.14: Phase and magnitude of the mode channels calculated from the 
data shown in Figure 4.10 using the rotated pattern matrix.

Figure 4.15: Spectral density of the five mode channels calculated using the 
rotated pattern matrix. As discussed in the text, the smaller peaks in each 
mode channel are not quite eliminated by simple rotations of the pattern 
matrix.
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If the impulse is on a pentagon face, using the Vs-mode shape, we con

clude tha t the acceleration at the opposite face has a maximum, and by 

symmetry, the other five accelerometers surrounding will have smaller but 

equal magnitude. Their size relative to  the amplitude of the accelerometer 

opposite to  the hit should be

0.2008 (4.1)
r 5(oo,o°) v ’

According to this model, if we transform back the initial amplitudes of the 

mode channels, we should get the initial amplitudes of the accelerometers. 

Figures 4.16 and 4.17 show the results of this calculation for several different 

impulse positions. For each impulse, we have the accelerometer opposite the 

hit getting excited by a large amount. The other five are also excited but 

to a lesser amplitude. The ratio of the amplitudes fits well with the number 

given in equation (4.1). The accelerometer opposite the impulse has opposite 

phase from the others because it lies on the other side of the line of nodes.

To calculate the initial magnitude of each accelerometer we need to know 

the initial relative phase of each mode channel. Due to filtering and other 

initial transients this cannot be done by simply looking at the measured 

phase at the time of the impulse. Instead, we do a least square fit to the 

phase (see Figure 4.18) well after the impulse (about 300 ms after). This 

allows us to extrapolate back to the initial impulse. There are some small 

systematic variances in the phase, probably due to phase differences in the
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Figure 4.16: Calculated initial amplitudes of the accelerometers from im
pulses on pentagonal faces. They are normalized to the accelerometer oppo
site the impulse. The numbering of the faces correspond to the numbering 
scheme shown in Figure 2.7.
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Figure 4.17: Histogram of the calculated initial amplitudes of the accelerom
eters from impulses on pentagonal faces. They are normalized to the ac
celerometer opposite the impulse. The ratio between the accelerometer op
posite to the impulse to the other accelerometers is consistent with the the
oretical value of -0.2008.

lock-ins and the mode channels frequency offset from the reference, but these 

can easily be taken into account.

4.8 Im pulse D irection

The previous section verified th a t an impulse will only excite the Y*, mode 

in a reference frame where the z' axis is along the direction of the impulse. 

If only the Y5 mode is excited, then the only non-zero mode amplitude in 

that frame will be h5. From equation (2.15) we see that, in this frame, the 

cartesian strain tensor will be diagonal, and the direction of the impulse will 

be in the direction of h3>y.
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Figure 4.18: The phase of the mode channels for a typical impulse excitation. 
The x ’s are the measured phase, and the solid lines are a least square fit to 
the data. The fit appears to be deviate from the data at the beginning 
because filtering of the data produces a lag in the phase.
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However, suppose we do not know the direction of an impulse a priori. 

To determine the impulse direction, we diagonalize the lab frame cartesian 

strain tensor. This will find the transformation to a frame where only the 

y5 mode is excited, so the eigenvector o f the /i3<3/ eigenvalue (the maximum  

eigenvalue) will point in the direction of the impulse.

The mode channels are proportional to the spherical amplitudes, so to 

determine the direction of the impulse we can replace hm in equation (2.15) 

with the mode channels gm. The mode channels were calculated using equa

tion (2.43) where q(t) are now the accelerometer outputs.

The results of this calculation for nine impulse locations are shown in 

Figure 4.19 and Table 4.2. The angles calculated from the data  were very 

consistent; with three hits at each location, the overall standard deviation 

from the mean was ~  0.4°. The calculated locations were all within ~  3% of 

the values expected from the measured position of the impulse hammer. Most 

of the deviation from the expected values is apparently due to systematic 

errors, perhaps from imprecise placement of the accelerometers or the impulse 

hammer. The random errors were small compared to these systematic errors.

The accelerometers were positioned to the center of each pentagon face 

with an accuracy of about 0.5 cm. The hammer was positioned to with about 

the same accuracy, but its angle of impact was much more difficult to control. 

We estimate the accuracy on the angle of impact to be about 5°. For this 

stage of testing we felt that a 3% systematic error was acceptable.
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Figure 4.19: Location of several impulses calculated by diagonalizing the 
cartesian strain tensor. The x ’s mark the calculated locations, and the o’s 
mark the expected location.
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Impulse Face 6 Calculated 0 Expected p  Calculated p  Expected
Pent 1 36.8° 37.3° 64.6° 60.0°
Pent 2 37.0° 37.3° -53.4° -60.0°
Pent 3 36.8° 37.3° -175.1° 180.0°
Pent 4 79.3° 79.1° -116.4° -120.0°
Pent 5 79.4° 79.1° 0.6° 0.0°
Pent 6 78.6° 79.1° 120.2° 120.0°
Top Hex 6 70.4° 70.5° 82.9° 82.2°
Bottom Hex 6 66.5° 70.5° 83.4° 82.2°
Top Hex 8 70.6° 70.5° -155.6° -157.7°

Table 4.2: The average location of several impulses calculated by diagonal
izing the cartesian strain tensor. All the impulses to pentagon faces are 
opposite the accelerometer with the same identification number.

4.9 E xperim ental O bstacles

As with most experiments, the experimental techniques used often have lim

itations or problems associated with them. In this section we describe some 

of the problems we came across and how we fixed them.

Repeatability of impulses was a major problem in the beginning. Each 

time we hit the prototype with the hammer the response of the accelerome

ters was not consistent. One reason for the deviation was th a t the hammer 

was hitting the surface at slightly different angles and different positions for 

each impulse. A human can only position a hammer so well by eye, thus 

a mechanical device is necessary to get consistent impulses. The device we 

built was a shaft attached to a test stand. Figure 4.20 shows the hammer 

attached to the shaft, which can then be easily positioned to strike the pro

totype in a consistent manner. A spring (rubber band) was attached to the 

hammer to help prevent it from hitting the prototype more than once.
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Figure 4.20: Impulse hammer held by a test stand. The spring attached to 
the hammer was used to prevent multiple hits to the prototype.

A major problem with taking this data  digitally was aliasing. As de

scribed in section 4.1, most aliasing could be eliminated through filters. How

ever, the filters we had did not roll-off quickly enough, so large signals at high 

frequency would get through. To help reduce the problem we looked at ways 

to avoid exciting the high frequency modes of the prototype. We accom

plished this by changing the tip on the impulse hammer. We originally used 

a hard metal tip, which is specified to have good response to about 10 kHz. 

We switched it with a medium hardness tip which is specified to have good 

response to about 5 kHz. Because this reduced the number of high frequency 

modes being strongly excited, the aliasing was decreased to a tolerable level.

Another problem was irreproducibility in the response due to variations 

on how well the accelerometers were waxed to the prototype. The only 

solution found was to calibrate the system using the monopole mode prior 

to each test.



Chapter 5

Summary

The first half of this dissertation developed a theory for the mechanical be

havior of a spherical gravitational wave antenna. We developed a multimode 

mechanical model for a sphere with an arbitrary number of mechanical res

onators attached to its surface. The resonators act as mechanical-impedance 

transformers between the primary vibrational modes of the sphere and the ac

tual motion sensors, producing an essential increase in the electro-mechanical 

coupling.

We modeled a specific arrangement of six mechanical resonators which we 

term the truncated icosahedral arrangement. We found an analytic solution 

to the coupled equations of motion for this arrangement. This arrangement 

resulted in equal frequency splitting of the coupled modes and equal coupling 

between all the attached resonators and the sphere’s quadrupole modes. In 

other words, all the resonators were equally sensitive to  the sphere modes.

96
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We developed a specific set of linear combinations of the resonator dis

placements tha t enabled us to extract all the information about an incident 

gravitational wave. We called the resulting combinations “mode channels.” 

They had a one-to-one correspondence with the sphere modes and thus to 

the tensor components of a gravitational wave.

A simple noise model was constructed to predict the sensitivity of a  spher

ical antenna. We found th a t a sphere is 56 times more sensitive in energy 

than an equivalent bar.

The second half of this dissertation described the testing of a room- 

tem perature prototype TIGA. The prototype was constructed to  examine the 

practical problems of applying the ideal mechanical description of a sphere, 

developed in the first half of this dissertation, to an actual detector.

The mode structure of the uncoupled prototype’s modes were verified. All 

the prominent modes were identified in the frequency domain. The quadru

pole modes were no longer degenerate, but their frequency splitting could be 

understood by symmetry arguments.

The eigenfunctions of the uncoupled prototype were fixed in a particu

lar orientation but were otherwise unchanged to within 2%. We were able 

to adjust the linear combinations of accelerometer outputs for the fixed ori

entation of the eigenfunctions to obtain mode channels. As a final test of 

the uncoupled system, we used these mode channels to reconstruct the loca

tion of an impulse excitation. The results were consistent with the expected 

location of the impulse within a 3% systematic error.
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The results presented in this dissertation have verified several of the ele

ments of our approach and theory for a multimode spherical antenna coupled 

to many resonators. The results presented here will be the foundation for the 

next stage of testing the prototype: the addition of mechanical resonators. 

The preliminary investigation of the prototype coupled to several resonators, 

presented in appendix B, lead us to  believe we have not ignored any major 

factors in our theoretical model.

The next step in this project will be the verification tha t the non-degen

eracy of the sphere modes and the small discrepancies of transducer tuning 

can be handled by the device of “mode channels” , and th a t the same methods 

can be used to reconstruct the direction of the excitation. We expect that 

the procedures developed for the uncoupled sphere should still apply in the 

coupled case.

Although a complete investigation of the practicality of a spherical gravi

tational wave antenna has not been completed, this work has generated great 

excitement in the field of resonant mass detectors. Several groups have be

gun exploring the possibility of constructing large spherical antennas. These 

include GRAVITON in Brazil, GRAIL in the Netherlands, ELSA in Italy, 

and TIGA in the United States. Two collaborations to build such antennas 

have also been formed: the US Gravity Wave Co-op and the international 

OMEGA collaboration.



References

[1] W. O. Hamilton, in Proceedings o f the Sixth Marcel Grossmann Confer
ence on General Relativity and Gravitation, edited by H. Sato and T. 
Nakamura (World Scientific Publishing Co., Singapore, 1992).

[2] K. S. Thorne, in Three Hundred Years o f Gravitation, edited by S. W. 
Hawking and W. Israel (Cambridge University Press, Cambridge, 1987).

[3] C. W. Misner, K. S. Thorne, and J. Wheeler, Gravitation (W. H. Free
man, San Francisco, 1973).

[4] A. Papoulis, Signal Analysis (McGraw-Hill, Inc., New York, 1977).

[5] G. Tammann, in Supernova: A Survey of Current Research, edited by 
M. J. Rees and R. J. Stoneham (D. Reidel Publishing, Dordrecht, 1982).

[6] R. A. Hulse and J. H. Taylor, Astrophys. J. Lett. 195, L51 (1975).

[7] J. Weber, Phys. Rev. 117, 306 (1960).

[8] J. Weber, Phys. Rev. Lett. 17, 1228 (1966).

[9] J. Weber, Phys. Rev. Lett. 22, 1320 (1969).

[10] W. M. Fairbank, W. O. Hamilton, and C. W. F. Everitt, in Relativity, 
edited by M. Carmeli, S. I. Fickler, and L. W hitten (Plenum Press, New 
York, 1970).

[11] P. Astone et a l, Phys. Rev. D 47, 362 (1993).

[12] D. G. Blair et al., Phys. Rev. Lett. 74, 1908 (1995).

[13] P. Astone et a l, Europhysics. Letters 16, 231 (1991).

99



100

[14] W. W. Johnson and S. M. Merkowitz, Physical Review Letters 70, 2367 
(1993).

[15] R. Forward, General Relativity Gravitation 2, 149 (1971).

[16] R. V. Wagoner and H. J. Paik, in Proceedings of International Sympo
sium on Experimental Gravitation, Pavia (Roma Accademia Nazionale 
dei Lincei, Roma, 1976), pp. 257-265.

[17] S. Merkowitz and W. Johnson, Physical Review D 51, 2546 (1995).

[18] J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, 
New York, 1975).

[19] H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley Publishing 
Company, Reading, Massachusetts, 1980).

[20] C. Zhou and P. F. Michelson, Physical Review D 51, 2517 (1995).

[21] N. S. Magalhaes, W. W. Johnson, C. Frajuca, and O. D. Aguiar, 
Monthly Notices of the Royal Astronomical Society (1994), accepted 
September 1994.

[22] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon 
Press, New York, 1986).

[23] P. Jaerisch, J.f. Math. (Crelle) B d . 88, (1880).

[24] H. Lamb, in Proceedings o f the London Mathematical Society (1882), 
Vol. 13.

[25] N. Ashby and J. Dreitlein, Physical Review D 12, 336 (1975).

[26] P. F. Michelson and R. C. Taber, J. Appl. Phys. 52, 4313 (1981).

[27] P. Pearce and S. Pearce, Polyhedra Primer (Van Nostrand Reinhold 
Company, New York, 1978).

[28] J. C. Price, Physical Review D 36, 3555 (1987).

[29] R. P. Giffard, Physical Review D 14, 2478 (1976).

[30] A. Abramovici et al., Science 256, 325 (1992).



101

[31] N. Solomonson, W. W. Johnson, and W. O. Hamilton. Physical Review 
D 46, 2299 (1992).

[32] COSMOS/M, Structural Research & Analysis Corporation, 2951 28th 
Street, Suite 1000, Santa Monica, CA 90405.

[33] FAMCO Enterprises, Inc., P.O. Box 143, Port Allen, LA 70767

[34] DVX boards, Analogic Corporation, 8 Centennial Dr., Peabody, MA 
01960.

[35] EG&G Princeton Applied Research, P.O. Box 2565, Princeton, NJ 
08543.

[36] PCB Piezotronics, Inc., 3425 Walden Ave., Depew, NY 14043.

[37] 5 minute epoxy, Cole Parmer Instrument Co., 7425 North Oak Park 
Ave., Niles, IL 60714

[38] Stycast© , Emerson & Cumings, Inc., 77 Dragon Court, Woburn. MA 
01888.

[39] MATLAB©, The M ath Works, Inc., 24 Prime Park Way, Natick, MA 
01760.



Appendix A  

Solution of the Equations of 
M otion

The equations of motion for a sphere with resonators were given by equa

tion (2.34). We simplify this equation by making a number of transforma

tions. First, we transform the resonator displacements and sphere amplitudes 

into the eleven mass weighted coordinates w:

Q.
=  7 W. =

-± = Is/ms = g
w. (A .l)

g Q -7k= Iv™i= .

Next, we remove the matrix multiplying the second time derivatives by multi

plying both sides of the equation by its inverse. We end up with the equation
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which is of the form w +  ujIM  w =  K.E- The matrix M. is symmetric, 

therefore it can be diagonalized by the transformation U jM  U_ =  where 

U_ is a set of eigenvectors, and Q_ is the diagonal matrix of the eigenvalues of 

M . Substituting this in equation (A.2) and multiplying by g E  we get

V + ^o 2 n . = g TK F ,  (A.3)

where 77 are now our normal coordinates. The problem has now been reduced 

to eleven decoupled harmonic oscillator equations th a t can easily be solved 

in a number of different ways. We begin by taking the Fourier transform of 

equation (A.3),

(■- uj2L +  uj20n { w)) n{u) = g TK F { u ) .  (A.4)
>. v '

r ‘M

Because g(u>) is diagonal, G T1(uj) is diagonal, so its inverse is just the diag

onal elements inverted. The normal coordinates are:

V(u) = g TK E H  (A.5)
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To return to the original coordinates we reverse the transformations:

a{uj) 

q(u)
= 7£z?M = igg(u)Uj'KF(uj). (A.6)

For the TI arrangement, the eigenvectors R  have the form given in equations 

(2.38) and (2.39), with the result th a t the matrices become:

7  =

K  =

U =

. 1  /  
y/fHs = 0

o -tk= i= v/mH =

I  - a R

~bRT y f ^ ( l  +  b2R T R )

n -L  0

n+c+il7’ n_c_^ T nal 

0 0 

0 y q 1 2, 1  Q— (uii -u)2) —

0 0 1

n + /

1 r

(A.7)

(A.8)

(A.9)

(.ui'i-u>2) J

(A.10)

where b = a \J m n /m s  and n±, c±, and n 0 are given in equations (2.40)-(2.42). 

To simplify further we define the following

Q±

0±

S " ± c± 0 ^ c±6)
b + c± (1 +  ^-b" 

\  I'K
6 2 m S

27r n ± C ± V m R

(A.11) 

(A-12)
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(A .13)

After some algebra we find the resonator displacements and sphere mode 

amplitudes to be given by:

. . 2n (  a+/c+ a - / c _ \  _ S/ .
~  3 m s  ( > 2 - w 2) +  { u 2_  -  u;2) j  -  ^

' ^  ^ ^ +/C+ +  t ^ = ~ ] R E N(oj), (A .14)
3m s  \(u>+ — u > 2 )  ( u i t  —  u >2 )  J  —

=  i l _  ( . 2° + 2. +  B t F s ( u )3y /ms m R \(i<4 -  oj2) ( u i - D 2) /  —

+

+

^  ^ 0+ + v - A ... B t B3 y / m s m n  y(u;| -  u 2 )  ( u l  -  u i 2 )  J  —  ~

« A 2 > i l  £ " ( “ )• (A -1 5 )6m R  ( u j 2 - u 2 ) - _

To convert the resonator displacements to mode channels we need only 

multiply by the pattern matrix In the frequency domain, the mode 

channels, in terms of the noise forces, are given by the remarkably simple 

expression

g(u) = 1 (-f 2 a * +  2a ~ A p )
yJm s m R \ { uj% - u 2) ( u J t - u j 2) J

1 f  0 +  , P -  \ n r . N ,' /---------- 1 / 2  2s + v 2 2' f i £ > )  (A .16)yJms m R -  ui2) ( u i - u j 2) )  —

= a(u )F ^(u )  +  (A.17)



Appendix B 

Prototype with Resonators

B .l  R esonator D esign  and Tuning

Chapter 2 lists the rudimentary requirements for a resonator, but practical 

considerations require a more extensive list. First, the “transducer mode” 

must be reasonably easy to tune to the quadrupole frequency. Second, the 

transducer mode must be purely radial, so tha t it couples strongly only to 

the radial motion of the quadrupole modes. Third, there should not be any 

other modes of the resonator nearby in frequency. Fourth, there must be a 

practical method of attachment with sufficient mechanical Q.

The design we adopted approximates a lumped mass and a spring. The 

lumped mass, or “head” , is attached to a thin stem, or “neck.” The neck 

is fixed to a base. The transducer mode is such tha t radial motion of the 

head compresses and extends the neck against the base. While the neck is
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relatively rigid in the radial direction, it is relatively flexible in the transverse 

directions, which decouples the transducer mode from transverse motions. 

The length and diameter of the neck can be adjusted to move the rocking and 

toroidal modes of the resonator well below the transducer mode frequency. 

Figure B .l shows the dimensions of the resonator.

We used finite element analysis to fix the final parameters of the resonator. 

The transducer frequency was first tuned by modeling the resonator with its 

base attached to an infinite mass. We then modeled the same design attached 

to a small mass, because we anticipated attaching the resonators to a  small 

aluminum block to test the tuning of the transducer mode. Table B .l shows 

the results of the two models as well as measurements of the mode frequencies 

of the first machined resonator before any fine tuning was performed.

Initial testing of the resonators on the small mass looked promising; how

ever, when we mounted the first resonator on the prototype, the coupled 

frequency was ~  100 Hz low. This is only a 3% discrepancy, but we needed 

to tune them more accurately. It was decided th a t we should tune the res

onators while attached to the prototype rather than to the small mass.

By testing the resonator while attached to the prototype, we could use the 

equations developed in section 2.4 to calculate the coupled mode frequencies 

of the prototype and a single resonator. We combined the lumped mass model 

for the resonators with equation (2.34) for this purpose. We measured the 

coupled mode frequencies of the prototype and one resonator and compared 

them to the eigenvalue solution of equation (2.34) to determine the spring
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Figure B .l: Schematic of the resonator.
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Calculated 
(Infinite Mass)

Calculated 
(Small Mass)

Measured 
(Small Mass)

Mode
Description

181 193 194 head rocks
181 193 197 head rocks
345 346 352 head rotates

2252 2269 2185 head wobbles
2252 2269 2193 head wobbles
3234 3209 3118 transducer

24471 7807 - -
29938 7830 - -
29938 8624 - -
30851 8968 - -

Table B .l: The first ten eigenfrequencies for finite element models of the 
resonator. The boundary conditions for the models were 1. the base fixed to 
an infinite mass and 2. the base attached to the small mass. Also shown for 
comparison is the measurements of the resonator attached to the small mass 
prior to tuning.

constant of the neck of the small resonator. Appendix C gives the numerical 

procedure for calculating the eigenfrequencies and eigenvectors of the coupled 

system. The spring constant was determined by adjusting the spring constant 

in program 3 until the calculated eigenfrequencies matched the measured 

values.

Once the spring constant of the resonator is determined, we can calculate 

its uncoupled eigenfrequency:

/

This gave us two options for tuning the resonator: reduce the mass of the 

head, or lower the spring constant by reducing the diameter of the neck. If

1 /Transducer spring constant 
27t V Transducer head mass
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the eigenfrequency was low, we made large reductions in the mass of the head 

by machining the top, and then made small adjustments by drilling holes in 

the end of the head. If the eigenfrequency was high we filed the side of the 

neck.

B .2 A ttachm ent o f the R esonators

We attached the resonators to the prototype with epoxy. This method was 

chosen because it was a quick way to attach the resonators without per

manently defacing the prototype. This method does, however, have a few 

difficulties: the resonator must be held in place while the epoxy is curing 

and it can be difficult to obtain a high mechanical quality factor Q of the 

coupled system. The first difficulty was easily solved: a flat rubber tiedown 

was strapped around the prototype to hold the resonators in place while the 

epoxy cured. The second difficulty required a little more work.

While testing the resonators on the small mass we experimented with de

tails in the use of epoxy to attem pt to improve the Q of the transducer mode, 

which was very poor in the first test. The first thing we tried was putting 

small groves in a checkerboard pattern  across the base of the resonators. The 

groves were made by scratching the surface with a level gauge. This improved 

the Q dramatically from a smooth base. We tried deeper groves th a t were 

machined into the base, but this had negative results.
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We also varied the type of epoxy. We tried “5 minute epoxy” from Cole 

Parmer [37], “Super Glue” , and Stycast©1266 [38]. The Stycast gave the 

best results (~  3100) while the Super Glue gave the worst (~  0).

To further improve the Q, we tried different methods of treating the 

epoxy. We first tried heating the resonator while the epoxy was curing. This 

gave inconsistent results. Heating would also be difficult once the resonator 

was attached to the prototype due to its large mass, so we did not pursue it 

further. Next we tried deairing the epoxy. The epoxy was placed in rough 

vacuum (~  1 Torr) for about 10 minutes until it stopped bubbling. This 

improved the Q by about a factor of three.

Experimentally, we also found a few other steps th a t could improve the 

Q. The surface of the prototype should not be too smooth; a final sanding 

with 240 grit wet-dry sandpaper gave the best results. The layer of epoxy 

should not be too thin or thick; we found tha t applying extra epoxy to the 

base and then “working out” the excess by rubbing the resonator against 

the prototype’s surface in a circular fashion worked well. The best Q of 

the resonator we were able to reproduce while attached to the small mass 

was ~  3100 in air.

We also measured the Q of the resonator while attached to the prototype. 

The procedure for this is a little more complicated than when the resonator 

is attached to the small mass, because the resonator couples with the modes 

of the prototype. The effect of the coupling will be explained in more detail
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Frequency (Hz) Q
3116.6 10692
3222.5 122237
3233.6 107898
3236.8 40040
3242.8 98189
3272.8 28285
6878.5 181319

Table B.2: The frequency and Q of the modes of the prototype with one 
resonator in a vacuum (5 mTorr).

below. For this Q measurement we chose the coupled mode th a t was domi

nated by the transducer motion. It was at frequency 3117 Hz and had a Q 

of ~  3900 in air.

We also measured the Q of the prototype with one resonator in vacuum 

to determine how much of the mechanical loss was due to air damping. We 

excited the modes by putting a random voltage across a strain gauge epoxied 

to the neck of the resonator. This white noise is broad band so it excited all 

the modes we were interested in. We then disconnected the noise generator 

and switched the output of the strain gauge to a spectrum analyzer and 

measured the decay. The results are shown in Table B.2. The Q improved 

by about a factor of 2.5 for the mode tha t is dominated by the transducer 

motion (3117 Hz). This indicated tha t at this level, air damping plays a 

significant role in degrading the Q of the coupled system. Because of this, 

the final mode analysis testing of the system with six attached resonators 

will most likely need to  be performed in vacuum.
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B .3 C oupled A ntenna Spectra

The resonators were attached to the prototype one at a  time, and the frequen

cies of the coupled modes were measured after each change. Equation 2.34 

was solved to predict the behavior of the system as we attached each addi

tional resonator.

The response of the resonators to an excitation was measured using a 

PZT strain gauge epoxied to the neck. The strain of the neck induces a 

strain in the PZT, which uses the piezoelectric effect to convert the strain to 

an electrical voltage. To measure the frequencies of the modes, we connected 

the strain gauge to a spectrum analyzer, which performed a Fourier transform 

on the signal.

We excited the modes with an impulse from a hammer in the same fashion 

tha t was used in testing the prototype without any resonators. We found tha t 

the impulse could not be applied to the head of the resonators. An impulse 

at this location would excite other modes of the resonator to too high an 

amplitude, thus overloading the function generator. Since these modes are 

not strongly coupled to the motion of the prototype’s surface, they were not 

so highly excited when the impulse was applied to the prototype.

The strain gauge could also be used to drive the system. By putting a 

time dependent voltage across the PZT we could induce a strain in the neck 

of the resonator, exciting the modes. This was convenient when we wanted 

to excite a single mode. We could drive the PZT with a sine-wave a t a
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resonance frequency th a t would only excite the mode(s) at th a t frequency. 

This was also the method we used to excite the modes when the prototype 

was placed under vacuum in our bell jar where it was not practical to use 

the hammer.

The calculated and measured quadrupole mode frequencies were fairly 

consistent with each other. The non-degeneracy of the prototype’s quad

rupole modes did not introduce very much deviation from a perfectly de

generate system. It was also found tha t neither the toroidal modes nor the 

monopole mode were shifted by more than 1 Hz when the resonators were 

added. Figure B.2 shows the results of the frequency measurements of the 

coupled modes for each addition of a resonator. The results are compared 

with what is expected from the eigenvalue solution of equation (2.34). The 

two sets are consistent within 0.2%.

In section 4.6 we measured the eigenfunctions of the uncoupled system 

and found that, except for some rotations, they were within a few percent 

of the eigenfunctions calculated for a perfect sphere. Because there is good 

agreement between the measured and calculated frequencies of the coupled 

system, we conclude th a t the eigenfunctions have not been significantly al

tered. There may be a small amount of admixture between modes, but from 

the eigenfrequency results we estimate tha t it is below the 0.2% level. We 

should be able to measure the coupled modes orientation relative to the lab 

frame using the same methods developed in section 4.6. Once an accurate 

pattern matrix is measured, we should be able to determine the location and 

direction of a given excitation.
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Figure B.2: Frequency measurements of the coupled modes for each addition 
of a resonator. The solid lines are the measured values and the dotted lines 
are the calculated. The lines th a t are double in height represent degenerate 
doublets.
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Appendix C

Programs

The following programs are written in MATLAB©[39]. We include them 

here in the hopes th a t they may be useful to others. They are general enough 

tha t they may be easily adapted for various problems.

Program 1 (lengths.m )

7, Name: len g th s
/o

7. Purpose: C a lcu la te  the  d i s t a n c e s  and ang les  involved  in
7. b u i ld in g  a t r u n c a t e d  icosahedron
/o

7. Notation: angles  have t h r e e  l e t t e r s ,  d i s t a n c e s  have two. 
7c r  = Radius of sphere
7c H = Hexagon c e n te r
7c P = Pentagon c e n te r
7c v = Vertex (corner)
7c e = Edge c e n te r
7c V = Vertex dodecahedron
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r  = 16.75; ’/.inches

HcH = 41.8103 * p i /180 ;
PcH = 37.3773 * p i /180 ;
Hce = 0 .5  * HcH; 
ece = HcH;
Pee = PcH -  Hce;
Pcv = a tan ( tan (P c e )  /  cos(36 * p i / 1 8 0 ) ) ;  
vcv = 2 * a s in ( s in ( 3 6  * p i /180 )  * s in (P c v ) ) ;  
vce = 0 .5  * vcv;
Hcv = acos(cos(Pcv) * cos(Hce) /  co s(Pce) ) ;  

cv = r ;
vv = 2 * r  * s in ( v c e ) ;
Pv = r  * s i n ( P c v ) ; 
cP = r  * cos(Pcv);
Pe = r  * cos(Pcv) * t a n ( P c e ) ;
ce = r  * cos(Pcv) /  c o s (P ce ) ; ;
cH = ce * cos(Hce) ;
He = ce * s in ( H c e ) ;
Hv = r  * sin(Hcv);
HH = 2 * cH * sin(HcH/2);  % ad jacen t  hexagons
PP = 2 * cP * s i n  ((Pcv + vcv + Pcv ) /2 ) ;  ’/, a d jac e n t  pentagons

xvv = r  * sin(Pcv+vcv) -  Pv;
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Program 2 (Finite Element M odel)

7. Name: t i g a _ p o i n t s
7.
7o Purpose: To c a l c u l a t e  th e  co o rd in a te s  of t h e  v e r t i c i e s  of 
% a t ru n c a t e d  icosahedron. Used to  b u i ld  th e  f i n i t e
% element model of t h e  TI
7.
7. Cal led: 
7.
7.
7.
% Output: 
%

l eng ths
s in d  ( e q u iv a len t  t o  s in (an g le_ in _ d eg ree s  * p i /1 8 0 ) )  
cosd ( e q u iv a len t  t o  cos(ang le_ in_degrees  * p i /1 8 0 ) )

F i l e  ( s o c c e r .d a t )  c o n ta in in g  p o in t s

Lengths

z l  = cP; % top  pentagon h e igh t
s i  = vv; % s ide  l en g th
r l  = Pe; 7» r a d iu s  of i n s c r i b e d  c i r c l e
r r l  = Pv; % r a d iu s  of c i rcumscr ibed  c i r c l e

pi = [ - s l / 2 , - r l , z l ] ; 
p2 = [ s l / 2 , - r l , z l ] ; 
p3 = [ - s l * ( . 5 + c o s ( 2 * p i / 5 ) ) 
p4 = [ s l * ( . 5 + c o s ( 2 * p i / 5 ) ) 
p5 = [0 , r r l  , z l ] ;

z2 = r  * cosd(Pcv + vcv);  
s2 = 2 * Hv; 
r2  = cH * s ind(PcH); 
r r 2  = r  * sind(Pcv + v c v ) ;

ppl = [ - s 2 / 2 , - r 2 , z 2 ] ; 
pp2 = [ s 2 / 2 , - r 2 , z 2 ] ; 
pp3 = [~s2*( . 5 + co s (2 * p i /5 ) ) 
pp4 = [ s 2 * ( . 5 + co s (2 * p i /5 ) ) 
pp5 = [0 , r r 2  , z 2 ] ;

s l * s i n ( 2 * p i / 5 ) - r l
s l * s i n ( 2 * p i / 5 ) - r l

z l ]  ; 
z l ]  ;

, s 2 * s in ( 2 * p i /5 ) - r 2  
s 2 * s i n ( 2 * p i / 5 ) - r 2  ,

. z2] ; 
z2] ;
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% The t h i r d  polygon i s  a non reg u la r  decagon.
*/, Every o th e r  s id e  has t h e  same l en g th .
% The two l e n g th s  a re :  th e  edge le n g th  of the  pentagons
% and hexagons,  and the  l e n g th  of a v e r t e x  d iagonal  of th e  
°/, pentagons.  There are  two p o s s i b l e  i n s c r ib e d  c i r c l e s  but 
% only one c i rcumscribed c i r c l e .

z3 = ce * cosd(Pce+Hce+Hce); 
s3 = vv ;
s3p = 2*vv*s ind(54) ; 
r3  = ce * sind(Pce+Hce+Hce); 
r r 3  = s q r t (  (s3 /  2 ) “2 + (r3)~2 );  
r3p = s q r t (  ( r r3 )~2  -  (s3p /  2)~2 ) ;

% angs = angle  between v on one s id e  of an edge of l e n g th  s3,
°/0 th e  c e n te r  of the  decagon, and v on o th e r  s id e  of edge.
% angsp = angle  between v on one s id e  of an edge of l e n g th  s3p,
% th e  c e n te r  of the  decagon, and v on o th e r  s id e  of edge,
angs = 2 * a s in d (  (s3 /  2) /  r r 3  );
angsp = 2 * a s in d (  (s3p /  2) /  r r 3  );

7„ edge len g th  
% v e r t e x  d iagonal  l e n g th  
% decagon c e n te r  t o  s3 
% decagon c e n te r  t o  v e r t e x  
% decagon c e n te r  t o  s3p

dl = [~s3/2,  - r 3 ,  z 3 ] ;
d2 = [ s3 /2 ,  - r 3 ,  z 3 ] ;
d3 = E-rr3*s ind(angsp+angs /2 ) , - r r3 * co sd (an g sp + an g s /2 ) , z3] ;
d4 = [ r r3 * s in d (an g sp + a n g s /2 ) , - r r3 * co sd (an g sp + an g s /2 ) , z 3 ] ;
d5 = E~rr3*sind(angsp+3*angs/2), - r r3*cosd(angsp+3*angs /2 ) , z3] ;
d6 = [ r r3*s ind (angsp+3*angs /2 ) , - r r3*cosd(angsp+3*angs /2 ) , z3] ;
d7 = [~ r r3*s ind(angs+angsp /2 ) , r r3*cosd (angs+ angsp /2 ) , z 3 ] ;
d8 = E rr3*sind(angs+cLngsp/2), r r3*cosd (angs+ angsp /2 ) , z3] ;
d9 = [ - s3p /2 ,  r3p ,  z 3 ] ;
d.10 = [ s3p/2 ,  r3p ,  z3] ;

% The f o u r th  polygon a l so  i s  a nonregu la r  decagon.
% Like the  t h i r d ,  every o th e r  s ide  has the  same len g th .
% The two l en g th s  a re :  t h e  s id e  l en g th  of the  pentagons 
% and hexagons, and the  l e n g th  of a v e r t e x  d iagonal  of the
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7. hexagons. There a re  two p o s s ib l e  i n s c r ib e d  c i r c l e s  but 
% only one c i rcumscribed c i r c l e .

z4
s4
s4h
r4
r r 4
r4h

ce * cosd(Pcv+vcv+Pcv+Pce); 
vv;
2*Hv;
ce * sindCPcv+vcv+Pcv+Pce); 
s q r t ( (s4 /  2)~2 + ( r 4 ) “2 );

7. edge len g th  
7. v e r t e x  d iagonal  l eng th  
7. decagon c e n te r  t o  s4 
7. decagon c e n te r  t o  v e r t e x

= s q r t (  ( r r4 )~2  -  (s4h /  2) "2 ) ;  7. decagon c e n te r  t o  s4h

7« angs = angle  between v on one s id e  of an edge of l e n g th  s4,
7. th e  c e n te r  of th e  decagon, and v on o th e r  s id e  of edge.
7. angsh = angle  between v on one s id e  of an edge of l e n g th  s4h,
7. th e  c e n te r  of th e  decagon, and v on o th e r  s id e  of edge,
angs = 2 * a s in d (  (s4 /  2) /  r r 4  );
angsh = 2 * a s in d (  (s4h /  2) /  r r 4  );

ddl = [ - s4 h /2 ,  - r4 h ,  z 4 ] ;
dd2 = [ s4h /2 ,  - r4 h ,  z 4 ] ;
dd3 = [~ r r4*s ind(angs+angsh /2 ) , - r r4 * co sd (an g s+ an g sh /2 ) , z 4 ] ;
dd4 = [ r r 4 * s in d (an g s+ a n g sh /2 ) , - r r4 * co sd (an g s+ an g sh /2 ) , z 4 ] ;
dd5 = [ - r r4*s ind (angsh+ 3*angs /2 ) , r r4*cosd(angsh+3*angs /2 ) , z 4 ] ;
dd6 = [ r r4*s ind (angsh+ 3*angs /2 ) , r r4*cosd(angsh+3*angs /2) , z 4 ] ;
dd7 = [ - r r4 * s in d (a n g sh + a n g s /2 ) , r r4*cosd (angsh+angs /2 ) , z 4 ] ;
dd8 = [ r r4 * s in d (an g sh + a n g s /2 ) , r r4*cosd (angsh+angs /2 ) , z 4 ] ;
dd9 = [ - s4 /2 ,  r4 ,  z 4 ] ;
ddlO = [ s4 /2 ,  r4 ,  z 4 ] ;

7. Now we f in d  th e  co o rd in a te s  of the  c e n t e r  of th e  f aces  
7. The top  face  i s  easy:

t c = [0, 0, z l ] ;

7. Next we have a pentagon t h a t  connects  t h e  c e n t e r s  of t h e  top  
7. hexagons

z5 = cH * cosd(PcH); 
s5 = HH;
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r5 = cH * sind(PcH) * cosd(36);  
r r 5  = cH * s ind(PcH);

phcl = [ - s 5 / 2 , r 5 , z 5 ] ;
phc2 = [ s 5 / 2 , r 5 , z 5 ] ;
phc3 = [ - s 5 * ( . 5+co s(2 * p i /5 ) ) , - ( s 5 * s i n ( 2 * p i / 5 ) - r 5 )  , z 5 ] ;
phc4 = [ s5* ( .5 + co s (2 * p i /5 ) )  , - ( s 5 * s i n ( 2 * p i / 5 ) - r 5 )  , z 5 ] ;
phc5 = [0 , - r r 5  , z 5 ] ;

% Now we have a pentagon t h a t  connects th e  c e n te r s  of  the  
% middle pentagons

z6 = cH * cosd(Pcv + vcv + Pcv);
s6 = PP;
r6  = cH * sind(Pcv + vcv + Pcv) * cosd(36);
r r 6  = cH * sind(Pcv + vcv + P c v ) ;

ppcl = [ - s 6 / 2 , - r 6 , z 6 ] ;
ppc2 = [ s 6 / 2 , - r 6 , z 6 ] ;
ppc3 = [ - s6 * ( .5 + c o s (2 * p i /5 ) )  , s 6 * s in ( 2 * p i /5 ) - r 6  , z 6 ] ;
ppc4 = [ s6* ( .5 + co s(2 * p i /5 ) )  , s 6 * s in ( 2 * p i /5 ) - r 6  , z 6 ] ;
ppc5 = [0 , r r 6  , z 6 ] ;

% The l a s t  one i s  a pentagon t h a t  connects th e  c e n te r s  of th e  
% middle hexagons

z7 = cH * cosd(Pce + Hce + HcH);
s7 = 2 * HH * s i n d ( 5 4 ) ;
r7  = cH * s ind(Pce  + Hce + HcH) * cosd(36);
r r 7  = cH * s ind(Pce  + Hce + HcH);

phhcl = [ - s 7 / 2 , r 7 , z 7 ] ; 
phhc2 = [ s 7 / 2 , r 7 , z 7 ] ;
phhc3 = [ - s 7 * ( . 5+co s (2 * p i /5 ) ) , - ( s 7 * s i n ( 2 * p i / 5 ) - r 7 )  , z 7 ] ; 
phhc4 = [ s7* ( .5 + co s (2 * p i /5 ) )  , - ( s 7 * s i n ( 2 * p i / 5 ) - r 7 )  , z 7 ] ; 
phhc5 = [0 , - r r 7  , z7] ;

p t  = z e r o s (61 ,3 ) ;
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p t (2 , : )  = [ p l ( l ) , p l ( 2 ) , p l ( 3 ) ]  
p t (3 , : )  = [ p 2 ( l ) , p 2 ( 2 ) ,p 2 ( 3 ) ]
p t (4 , : )  = [ p 3 ( l ) , p 3 ( 2 ) ,p 3 ( 3 ) ]
p t (5 , :) = [ p 4 ( l ) ,p 4 (2 ) ,p 4 ( 3 )3
p t (6 , :) = [ p 5 ( l ) , p 5 ( 2 ) ,p 5 ( 3 ) ]

p t (7 , :)  = [ p p l ( l ) , p p l ( 2 ) , p p l ( 3 ) 3  
p t (8 , : )  = [ pp2( 1 ) , pp2( 2 ) , pp2(3)] 
p t ( 9  , :) = [ pp3( 1 ) , pp3( 2 ) , pp3(3)] 
p t ( 1 0 , :) = [ p p 4 ( l ) , p p 4 ( 2 ) , p p 4 ( 3 ) ] ; 
p t (11, :) = [ p p 5 ( l ) , p p 5 ( 2 ) , p p 5 ( 3 ) ] ;

p t ( 1 2 , : )  = [ d l ( l ) , d l ( 2 ) , d l ( 3 ) ]  
p t ( 1 3 , :)  = [ d 2 ( l ) , d 2 ( 2 ) ,d 2 ( 3 ) ]  
p t ( 1 4 , : )  = [ d 3 ( l ) , d 3 ( 2 ) ,d 3 ( 3 ) ]  
p t ( 1 5 , : )  = [ d 4 ( l ) , d 4 ( 2 ) ,d 4 ( 3 ) ]  
p t ( 1 6 , : )  = C d 5 ( l ) ,d5 (2 ) ,d5 (3 ) ]  
p t ( 1 7 , : )  = [ d 6 ( l ) , d 6 ( 2 ) ,d 6 ( 3 ) ]  
p t  (18, :) = [d7(D ,d 7 (2) ,d 7 (3)] 
p t ( 1 9 , : )  = [ d 8 ( l ) , d 8 ( 2 ) ,d 8 ( 3 ) ]  
p t ( 2 0 , :) = [ d 9 ( l ) , d 9 ( 2 ) ,d 9 ( 3 ) ]  
p t ( 2 1 , :) = [ d l O ( l ) , d l 0 ( 2 ) , d l 0 ( 3 ) ] ;

p t ( 2 2 , : )  = [ d d l ( l ) , d d l ( 2 ) , d d l ( 3 ) ]  
p t ( 2 3 , :) = [d d 2 ( l ) ,d d 2 (2 ) ,d d 2 (3 ) ]  
p t ( 2 4 , : )  = [d d 3 ( l ) ,d d 3 (2 ) ,d d 3 (3 ) ]  
p t ( 2 5 , :) = [d d 4 ( l ) ,d d 4 (2 ) ,d d 4 (3 ) ]  
p t ( 2 6 , : )  = [d d 5 ( l ) ,d d 5 (2 ) ,d d 5 (3 ) ]  
p t ( 2 7 , : )  = [d d 6 ( l ) ,d d 6 (2 ) ,d d 6 (3 ) ]  
p t ( 2 8 , :) = [dd7(D ,dd7(2) , d d 7 (3)] 
p t ( 2 9 , :) = [d d 8 ( l ) ,d d 8 (2 ) ,d d 8 (3 ) ]  
p t ( 3 0 , :) = [d d 9 ( l ) ,d d 9 (2 ) ,d d 9 (3 ) ]  
p t ( 3 1 , : )  = [ d d l 0 ( l ) , d d l 0 ( 2 ) , d d l 0 ( 3 ) ] ;

p t ( 3 2 , :) = [ - d d l ( l ) , - d d l ( 2 ) , - d d l ( 3 ) ]  
p t ( 3 3 , : )  = [ - d d 2 ( l ) , - d d 2 ( 2 ) , - d d 2 ( 3 ) ]  
p t ( 3 4 , :) = [ - d d 3 ( l ) , - d d 3 ( 2 ) , - d d 3 ( 3 ) ]  
p t ( 3 5 , : )  = C -d d 4 ( l ) , -d d 4 (2 ) , -d d 4 (3 ) ]



p t (3 6 , ) = [ - d d 5 ( l ) , - d d 5 ( 2 ) , - d d 5 ( 3 ) j ;
p t (3 7 , ) = [ - d d 6 ( l ) , - d d 6 ( 2 ) , - d d 6 ( 3 ) ] ;
p t (3 8 , ) = [ -dd7(D  ,-dd7(2) , -dd7(3)]  ;
p t (3 9 , ) = [ - d d 8 ( l ) , - d d 8 ( 2 ) , - d d 8 ( 3 ) ] ;
p t (4 0 , ) = [ - d d 9 ( l ) J- d d 9 ( 2 ) , - d d 9 ( 3 ) j ;
p t (41, ) = [ - d d l O ( l ) , - d d l 0 ( 2 ) , - d d l 0 ( 3 ) ]

p t (4 2 , ) = [ - d l ( l ) , - d l ( 2 ) , - d l ( 3 ) ]
p t (4 3 , ) = [ - d 2 ( l ) , - d 2 ( 2 ) , - d 2 ( 3 ) ]
p t (4 4 , ) = [ - d 3 ( l ) , - d 3 ( 2 ) , - d 3 ( 3 ) ]
p t (4 5 , ) = [-d4CD , - d 4 ( 2 ) , - d 4 ( 3 ) ]
p t (4 6 , ) = [ - d 5 ( l ) , - d 5 ( 2 ) , - d 5 ( 3 ) ]
p t (47, ) = [ - d 6 ( l ) , - d 6 ( 2 ) , - d 6 ( 3 ) ]
p t (4 8 , ) = [ - d 7 ( l ) , - d 7 ( 2 ) , - d 7 (3)]
p t (4 9 , ) = [ - d 8 ( l ) , - d 8 ( 2 ) , - d 8 ( 3 ) ]
p t (5 0 , ) = [ - d 9 ( l ) , - d 9 ( 2 ) , - d 9 ( 3 ) ]
p t (5 1 , ) = C - d l O ( l ) , - d l 0 ( 2 ) , - d l 0 ( 3 ) ] ;

p t (5 2 , ) = [ - p p l ( l ) , - p p l ( 2 ) , - p p l ( 3 ) ] ;
p t  (53, ) = [ - p p 2 ( l ) , - p p 2 ( 2 ) , - p p 2 ( 3 ) ] ;
p t (5 4 , ) = [ - p p 3 ( l ) , - p p 3 ( 2 ) , ~ p p 3 ( 3 ) ] ;
p t (5 5 , ) = [ - p p 4 ( l ) , - p p 4 ( 2 ) , - p p 4 ( 3 ) ] ;
p t (5 6 , ) = E - p p 5 ( l ) , - p p 5 ( 2 ) , - p p 5 ( 3 ) ] ;

p t (5 7 , ) = [ - p l ( l ) , - p l ( 2 ) , - p l ( 3 ) ]
p t (5 8 , ) = [ - p 2 ( l ) , - p 2 ( 2 ) , - p 2 ( 3 ) ]
p t (5 9 , ) = [ - p 3 ( l ) , - p 3 ( 2 ) , - p 3 ( 3 ) ]
p t (6 0 , ) = [ - p 4 ( l ) , - p 4 ( 2 ) , - p 4 ( 3 ) ]
p t ( 6 1 , ) = [ - p 5 ( l ) , - p 5 ( 2 ) , - p 5 ( 3 ) ]

p t (62  , : )  = [ t c ( l ) , t c ( 2 ) , t c ( 3 ) ]  ;

p t (6 3  , : )  = [ p h c l ( l ) , p h c l ( 2 ) , p h c l ( 3 ) ]  
p t (64  , : )  = [p h c2 ( l ) ,p h c2 (2 ) ,p h c2 (3 ) ]  
p t (65  , : )  = [p h c3 ( l ) ,p h c3 (2 ) ,p h c3 (3 ) ]  
p t (66  , : )  = [p h c4 ( l ) ,p h c4 (2 ) ,p h c4 (3 ) ]  
p t (67  , : )  = [p h c5 ( l ) ,p h c5 (2 ) ,p h c5 (3 ) ]
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pt(68 :) = [ p p c l ( l ) , p p c l ( 2 ) , p p c l ( 3 ) ] ;
p t (69 ) = [ppc2(D ,ppc2(2) ,ppc2(3)] ;
p t (70 ) = [ p p c 3 ( l ) , p p c 3 ( 2 ) ,p p c 3 ( 3 ) ] ;
p t(71 ) = [ p p c 4 ( D ,p p c 4 ( 2 ) ,p p c 4 ( 3 ) ] ;
p t (72 ) — [ p p c 5 ( l ) ,p p c 5 (2 ) ,p p c 5 ( 3 )3 ;

p t (73 ) = [ p h h c l ( l ) , p h h c l ( 2 ) , p h h c l ( 3 ) ] ;
p t  (74 ) = [ p h h c 2 ( l ) ,p h h c 2 (2 ) ,p h h c 2 ( 3 ) ] ;
p t  (75 ) = [phhc3( l ) ,phhc3(2) ,phhc3(3)]  ;
p t (76 ) = [phhc4( l ) ,phhc4(2 ) ,phhc4(3)]  ;
p t  (77 ) = [phhc5( l ) ,phhc5(2) ,phhc5(3)]  ;

p t (78 ) = - [ p h h c l ( l ) , p h h c l ( 2 ) , p h h c l ( 3 ) ]
p t (79 ) - [phhc2( l ) ,phhc2(2) ,phhc2(3)]
p t (80 ) = ~ [phhc3( l ) ,phhc3(2) ,phhc3(3) ]
pt(81 9 ) = -Cphhc4( l ) ,phhc4(2) ,phhc4(3) ]
p t (82 9 ) ~ [phhc5( l ) ,phhc5(2) ,phhc5(3) ]

p t (83 ) = - [ p p c l ( l ) , p p c l ( 2 ) , p p c l ( 3 ) ] ;

p t (84 ) = ~ [ p p c 2 ( l ) , p p c 2 ( 2 ) ,p p c 2 ( 3 ) ] ;

p t (85 9 ) = - [ p p c 3 ( l ) , p p c 3 ( 2 ) ,p p c 3 ( 3 ) ] ;

p t (86 9 ) = ~ [ p p c 4 ( l ) , p p c 4 ( 2 ) ,p p c 4 ( 3 ) ] ;

pt(87 > ) = ~ [ p p c 5 ( l ) , p p c 5 ( 2 ) ,p p c 5 ( 3 ) ] ;

p t (88 9 ) = - [p h c l ( 1 ) , p h c l ( 2 ) , p h c l ( 3 ) ] ;

p t (89 9 ) - ~ [ p h c 2 ( l ) , p h c 2 ( 2 ) ,p h c 2 ( 3 ) ] ;
p t (90 9 ) = - tp h c 3 ( l ) , p h c 3 ( 2 ) ,p h c 3 ( 3 ) ]  ;
p t(91 9 ) = - [ p h c 4 ( l ) ,p h c 4 ( 2 ) ,p h c 4 ( 3 ) ]  ;
p t (92 9 ) — - [ p h c 5 ( l ) ,p h c 5 ( 2 ) ,p h c 5 ( 3 ) ]  ;

p t (93 9 *) = - t t c ( l ) , t c ( 2 ) , t c ( 3 ) ] ;

ro t_ a n g le = -PcH;
ro t_ m a tr ij [1, 0, 0

0, c o s d ( r o t _ a n g l e ) , s in d ( ro t_ a n g le )
0, - s i n d ( r o t _ a n g l e ) , c o s d ( r o t _ a n g l e ) ] ;

p t  = p t  * ro t_m atr ix ;
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f o r  i= l :9 3
f p r i n t f  ( ’s o c c e r . d a t ;  1 ’ , ’PT,7,g, ’ , i )  ;
f p r i n t f  ( ’s o c c e r . d a t ;  1 ’ , ’ °/.g, °/.g, */„g\n ’ , p t ( i , l )  , p t ( i , 2 )  , p t ( i , 3 ) ) ; 

end
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Program 3 (coupled_modes.m)

I
I  couplecLmodes
I
7. Purpose: Find the spectrum of the TI with different number
% of r e s o n a to r s
7.
% Cal led: c a r t e s i a n  = conver t  t o  c a r t e s i a n  c o o rd in a te s
7» y lc  -  y5c = th e  f i v e  s p h e r i c a l  harmonics in  c a r t e s i a n
7, c o o rd in a te s .  These fu n c t io n s  a l s o  perform
% th e  b e t a  and gamma r o t a t i o n s .  See y lc  f o r
7. an example.
7.

7.
7. Data f o r  comparison 
7.

fO = [3223 3224 3237 3238 3249];
f l  = [3167 3223 3236 3238 3245 3305 3307] t

f 2 = [3160 3177 3233 3236 3240 3302 3311]
f3 = [3160 3160 3191 3236 3236 3297 3310 3311] >

f4 = [3159 3160 3168 3199 3236 3285 3310 3311 3319] t

f5  = [3152 3160 3163 3169 3209 3268 3304 3310 3313 3319];
f6 = [3151 3156 3162 3167 3170 3239 3302 3308 3312 3316 3319]

7.
7. Uncoupled f r eq u e n c ie s  of th e  TI and r e s o n a to r a s  
7.

fo = fO;
fR = [3241, 3241, 3241, 3241, 3241 3241]; 

nModes = l e n g t h ( f o ) ;

f o r  nRes = 1:6,
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wo = fo*2*pi;
wR = fR*2*pi;
r s  = 8190.46/mean(wo);
d e n s i ty  = 2.7e3;
ms = (4*p i /3 )* rs~3*dens i ty ;
mR = 0.42; %ms*3.6e-4;

sphere  angular  f r e q  ( r a d / s )
7, Resonator  angu lar  f r e q  ( r a d / s )  
7. sphere  r a d iu s  
% d e n s i t y  of A1 Kg/nT3 
% sphere  mass (Kg)
*/, t r a n s d u c e r  mass (Kg)

a e f f  = -0.300632587; % a c t u a l l y  a e f f / r  
a lpha  = -2.86541;

ks = ms * wo.“2;
kR = mR * wR(l:nRes) . ~2;

%

% Location of r e s o n a to r s
y.
phi = [60 , -60 ,180 , -120 ,0 ,120]  * p i /180 ;
t h e t a = [37.3773 ,37 .3773 ,37 .3773 ,79 .1876 ,79 .1876 ,79 .1876]* p i /1 8 0 ;

resOrder = [ 4 6 5 2 3 1 ] ;  % o rde r  the  r e s o n a to r s  were put on TI 
phi = p h i ( r e s O r d e r ) ; 
t h e t a  = t h e t a ( r e s O r d e r ) ;

' /convert  t o  c a r t e s i a n  coords
[x, y,  z] = c a r t e s i a n ( o n e s ( s i z e ( p h i ) ) , t h e t a ,  p h i ) ;

%

% Rota t ion  angles  of th e  p a t t e r n  m atr ix  
%

b e ta _ r o t  = 1 . 0 * o n e s ( l , 5 ) ;
gamma_rot = [-0 .1  -0 .1  - 7 .2  -7 .2  0 .0 ] ;

%
% C alcu la te  th e  p a t t e r n  matr ix
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B = zeros(nModes,nRes); 
f o r  i= l :nRes ,

B ( : , i )  = [ y l c ( x ( i ) , y ( i ) , z ( i ) , b e t a _ r o t ( l ) , g a m m a _ r o t ( l ) ) ;
y 2 c ( x ( i ) , y ( i ) , z ( i ) , b e t a _ r o t ( 2 ) , g a m m a _ r o t (2)) ; 
y 3 c ( x ( i ) , y ( i ) , z ( i ) , b e t a _ r o t ( 3 ) , g a m m a _ r o t (3)) ; 
y 4 c ( x ( i ) , y ( i ) , z ( i ) , b e t a _ r o t ( 4 ) , g a m m a _ r o t ( 4 ) ) ; 
y 5 c ( x ( i ) , y ( i ) , z ( i ) , b e t a _ r o t ( 5 ) , g a m m a _ r o t ( 5 ) ) ] ;

end;

7.
7, Mass weight m a t r ix  
%

gamma = [ ( l / s q r t ( m s ) )  * eye(nModes,nModes), zeros(nModes,nRes) ;
zeros(nRes,  nModes), ( l / sq r t (m R ))  * eye(nRes ,nRes)] ;

7.
7. Mass m atr ix  
7.

M = [m s  * eye(nModes,nModes), zeros(nModes,nRes) ; 
mR * a lpha  * B’ , mR * eye(nRes,nRes)] ;

7.
7. S t i f f n e s s  matr ix  
%

K = [ d i a g ( k s ) ,  -kR(ones(nModes,1 ) , : )  .* a lpha  .* B 
zeros(nRes,  nModes), d i a g ( k R ) ] ;

7.
7. Put in  mass weighted coords.
7.

M = gamma * M;
K = gamma * K;

7.
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’/, Find th e  e igenvalues  and e ig envec to rs  
%

[U,D] = eig( inv(M)*K);

°/.
% Output th e  r e s u l t s
I

f r e q s  = s q r t ( d i a g ( D ) ) / ( 2 * p i )  
end;
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P r o g r a m  4 (y lc .m )

fu n c t io n  r e s u l t  = y lc (x ,y ,z ,b e ta_ ro t ,g am m a_ ro t )
7.
7. Purpose :
7. 
7.
7. I n p u t s :
%
%

I  
%

7.
7« O utpu ts :
7.

Ry = [ c o s ( b e t a _ r o t ) , 0, - s i n ( b e t a _ r o t ) ;
0 , 1 , 0 ;
s i n ( b e t a _ r o t ) , 0, c o s ( b e t a _ r o t ) ] ;

Rz = [ cos(gamma_rot) , s in (gamma_ro t) , 0;
-s in(gamma_rot) , cos(gamma_rot) , 0 ;

0 , 0 , 1] ;

v = Rz*Ry*[x( :) ’ ; y ( : ) ’ ; z ( :) ’] ;

xp = v ( 1 , : ) ;  
yp = v ( 2 , : ) ;  
zp = v(3,  : ) ;

C a lcu la te  the  y l  s p h e r i c a l  harmonic in  
c a r t e s i a n  c oo rd ina te s

x = x p o s i t i o n  
y = y p o s i t i o n  
z = z p o s i t i o n
b e ta _ r o t  = r o t a t i o n  about t h e  y ax i s  
gamma_rot = r o t a t i o n  about t h e  new z ax i s

r e s u l t  = s p h e r i c a l  harmonic

r e s u l t = s q r t  (15/  ( 16*p i ) ) * (x p . "2 -y p . ~2) . /  (x p . '’2+yp. ~2+zp. "2);
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